Maslarević, Aleksandar

Link to this page

Authority KeyName Variants
orcid::0000-0002-3822-8145
  • Maslarević, Aleksandar (3)
  • Maslarevic, Aleksandar (2)
Projects

Author's Bibliography

Erosion Wear Behavior of High Chromium Cast Irons

Rajičić, Bratislav; Maslarević, Aleksandar; Bakić, Gordana; Maksimović, Vesna; Đukić, Miloš B.

(2023)

TY  - JOUR
AU  - Rajičić, Bratislav
AU  - Maslarević, Aleksandar
AU  - Bakić, Gordana
AU  - Maksimović, Vesna
AU  - Đukić, Miloš B.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10614
AB  - In this study, two high chromium cast irons (HCCI) with different chromium content (15%Cr and 25%Cr), in as-cast and annealed conditions (heat-treated, HT), were tested to determine the erosion wear behavior of these alloys. Erosion tests were done using a gas blast sand facility with high erodent particle velocity (90 m/s) and high erodent feed rate, at an impact angle of 45°, which represents conditions similar to service conditions of some components of thermal power plants using pulverized high mineral content coals. To identify erosion mechanisms, microstructural characterization was done by a scanning electron microscope on samples before and after erosion tests. Identification of microstructural phases was done by X-ray diffraction analysis. The main results of the tests shown in this paper indicate that matrix plastic deformation and distribution of carbide phase have a significant contribution to erosion resistance of HCCI alloys in severe erosion service conditions.
T2  - Transactions of the Indian Institute of Metals
T1  - Erosion Wear Behavior of High Chromium Cast Irons
DO  - 10.1007/s12666-022-02860-7
ER  - 
@article{
author = "Rajičić, Bratislav and Maslarević, Aleksandar and Bakić, Gordana and Maksimović, Vesna and Đukić, Miloš B.",
year = "2023",
abstract = "In this study, two high chromium cast irons (HCCI) with different chromium content (15%Cr and 25%Cr), in as-cast and annealed conditions (heat-treated, HT), were tested to determine the erosion wear behavior of these alloys. Erosion tests were done using a gas blast sand facility with high erodent particle velocity (90 m/s) and high erodent feed rate, at an impact angle of 45°, which represents conditions similar to service conditions of some components of thermal power plants using pulverized high mineral content coals. To identify erosion mechanisms, microstructural characterization was done by a scanning electron microscope on samples before and after erosion tests. Identification of microstructural phases was done by X-ray diffraction analysis. The main results of the tests shown in this paper indicate that matrix plastic deformation and distribution of carbide phase have a significant contribution to erosion resistance of HCCI alloys in severe erosion service conditions.",
journal = "Transactions of the Indian Institute of Metals",
title = "Erosion Wear Behavior of High Chromium Cast Irons",
doi = "10.1007/s12666-022-02860-7"
}
Rajičić, B., Maslarević, A., Bakić, G., Maksimović, V.,& Đukić, M. B.. (2023). Erosion Wear Behavior of High Chromium Cast Irons. in Transactions of the Indian Institute of Metals.
https://doi.org/10.1007/s12666-022-02860-7
Rajičić B, Maslarević A, Bakić G, Maksimović V, Đukić MB. Erosion Wear Behavior of High Chromium Cast Irons. in Transactions of the Indian Institute of Metals. 2023;.
doi:10.1007/s12666-022-02860-7 .
Rajičić, Bratislav, Maslarević, Aleksandar, Bakić, Gordana, Maksimović, Vesna, Đukić, Miloš B., "Erosion Wear Behavior of High Chromium Cast Irons" in Transactions of the Indian Institute of Metals (2023),
https://doi.org/10.1007/s12666-022-02860-7 . .
1
2

Microstructure and Wear Behavior of MMC Coatings Deposited by Plasma Transferred Arc Welding and Thermal Flame Spraying Processes

Maslarević, Aleksandar; Bakić, Gordana M.; Đukić, Miloš B.; Rajičić, Bratislav; Maksimović, Vesna; Pavkov, Vladimir

(2020)

TY  - JOUR
AU  - Maslarević, Aleksandar
AU  - Bakić, Gordana M.
AU  - Đukić, Miloš B.
AU  - Rajičić, Bratislav
AU  - Maksimović, Vesna
AU  - Pavkov, Vladimir
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8624
AB  - In this study, two erosion protection MMC coatings with WC particles were deposited by the plasma transferred arc (PTA) welding. One of the coatings with tungsten carbide WC in the NiBSi matrix (WC/NiBSi), and the second coating WC in NiCrBSi matrix (WC/NiCrBSi) was deposited by the flame spray process on the same substrate material S235JR steel. Experiments were performed using a gas blast sand erosion test facility with high-velocity erodent particles impact (approximately 100 m/s) at different particle impact angles (20°–45°), with an objective to study erosion wear characteristics and mass loss of two MMC coatings. Microstructural characterization of MMC coatings was done by scanning electron microscope equipped with energy-dispersive X-ray spectroscopy, whereas X-ray diffraction analysis was used for identification of present phases. The hardness of coatings was determined by Vickers hardness measurements. WC/NiBSi obtained by the PTA process shows superior hardness and erosion properties. © 2019, The Indian Institute of Metals - IIM.
T2  - Transactions of the Indian Institute of Metals
T1  - Microstructure and Wear Behavior of MMC Coatings Deposited by Plasma Transferred Arc Welding and Thermal Flame Spraying Processes
VL  - 73
IS  - 1
SP  - 259
EP  - 271
DO  - 10.1007/s12666-019-01831-9
ER  - 
@article{
author = "Maslarević, Aleksandar and Bakić, Gordana M. and Đukić, Miloš B. and Rajičić, Bratislav and Maksimović, Vesna and Pavkov, Vladimir",
year = "2020",
abstract = "In this study, two erosion protection MMC coatings with WC particles were deposited by the plasma transferred arc (PTA) welding. One of the coatings with tungsten carbide WC in the NiBSi matrix (WC/NiBSi), and the second coating WC in NiCrBSi matrix (WC/NiCrBSi) was deposited by the flame spray process on the same substrate material S235JR steel. Experiments were performed using a gas blast sand erosion test facility with high-velocity erodent particles impact (approximately 100 m/s) at different particle impact angles (20°–45°), with an objective to study erosion wear characteristics and mass loss of two MMC coatings. Microstructural characterization of MMC coatings was done by scanning electron microscope equipped with energy-dispersive X-ray spectroscopy, whereas X-ray diffraction analysis was used for identification of present phases. The hardness of coatings was determined by Vickers hardness measurements. WC/NiBSi obtained by the PTA process shows superior hardness and erosion properties. © 2019, The Indian Institute of Metals - IIM.",
journal = "Transactions of the Indian Institute of Metals",
title = "Microstructure and Wear Behavior of MMC Coatings Deposited by Plasma Transferred Arc Welding and Thermal Flame Spraying Processes",
volume = "73",
number = "1",
pages = "259-271",
doi = "10.1007/s12666-019-01831-9"
}
Maslarević, A., Bakić, G. M., Đukić, M. B., Rajičić, B., Maksimović, V.,& Pavkov, V.. (2020). Microstructure and Wear Behavior of MMC Coatings Deposited by Plasma Transferred Arc Welding and Thermal Flame Spraying Processes. in Transactions of the Indian Institute of Metals, 73(1), 259-271.
https://doi.org/10.1007/s12666-019-01831-9
Maslarević A, Bakić GM, Đukić MB, Rajičić B, Maksimović V, Pavkov V. Microstructure and Wear Behavior of MMC Coatings Deposited by Plasma Transferred Arc Welding and Thermal Flame Spraying Processes. in Transactions of the Indian Institute of Metals. 2020;73(1):259-271.
doi:10.1007/s12666-019-01831-9 .
Maslarević, Aleksandar, Bakić, Gordana M., Đukić, Miloš B., Rajičić, Bratislav, Maksimović, Vesna, Pavkov, Vladimir, "Microstructure and Wear Behavior of MMC Coatings Deposited by Plasma Transferred Arc Welding and Thermal Flame Spraying Processes" in Transactions of the Indian Institute of Metals, 73, no. 1 (2020):259-271,
https://doi.org/10.1007/s12666-019-01831-9 . .
9
13
6
14

Thermal and Mechanical Characteristics of Dual Cure Self-etching, Self-adhesive Resin Based Cement

Mitrović, Aleksandra; Mitrović, Nenad; Maslarević, Aleksandar; Adžić, Vuk; Popović, Dejana; Milošević, Miloš; Antonović, Dušan

(2019)

TY  - CHAP
AU  - Mitrović, Aleksandra
AU  - Mitrović, Nenad
AU  - Maslarević, Aleksandar
AU  - Adžić, Vuk
AU  - Popović, Dejana
AU  - Milošević, Miloš
AU  - Antonović, Dušan
PY  - 2019
UR  - http://link.springer.com/10.1007/978-3-319-99620-2_1
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8106
AB  - One of the main objectives in research and development of resin based cements (RBCs) is to enhance their clinical longevity and ease of use. In spite of the undeniable technological advances introduced in the last few decades, the polymerization shrinkage i.e. strain that accompanies the chain-growth polymerization of dimethacrylate monomers remains one of the major concerns for the clinical performance of composite restorations. Also, RBCs can produce a considerable amount of heat, due to the light energy from the curing lights and exothermic reaction of polymerization. The purpose of this study was to determine the temperature changes during the photo-polymerization using thermocouples and to measure strain field of the self-etching, self-adhesive RBC, Maxcem Elite (Kerr, Orange, CA, USA) (ø5 × 1Â mm - Group I and ø5 × 2Â mm - Group II) using experimental technique, 3D Digital Image Correlation (DIC) method. Digital images were recorded immediately after photo-polymerization of the samples with a LED-curing unit for 20Â s, according to manufacturer’s recommendation. Vickers microhardness was determined after photo-polymerization and after 24Â h. Temperature curves for both groups indicated similar patterns but the peak temperature of Group II was significantly higher compared to peak temperature of Group I. DIC showed that peripheral zone of the samples had the highest strain values in both groups. Group I indicated significantly higher values of hardness. All the results were material-dependent and probably correlated to the composition of each material, which is not fully disclosed by the manufacturers. © Springer Nature Switzerland AG 2019.
T2  - Lecture Notes in Networks and Systems
T1  - Thermal and Mechanical Characteristics of Dual Cure Self-etching, Self-adhesive Resin Based Cement
VL  - 54
SP  - 3
EP  - 15
DO  - 10.1007/978-3-319-99620-2_1
ER  - 
@inbook{
author = "Mitrović, Aleksandra and Mitrović, Nenad and Maslarević, Aleksandar and Adžić, Vuk and Popović, Dejana and Milošević, Miloš and Antonović, Dušan",
year = "2019",
abstract = "One of the main objectives in research and development of resin based cements (RBCs) is to enhance their clinical longevity and ease of use. In spite of the undeniable technological advances introduced in the last few decades, the polymerization shrinkage i.e. strain that accompanies the chain-growth polymerization of dimethacrylate monomers remains one of the major concerns for the clinical performance of composite restorations. Also, RBCs can produce a considerable amount of heat, due to the light energy from the curing lights and exothermic reaction of polymerization. The purpose of this study was to determine the temperature changes during the photo-polymerization using thermocouples and to measure strain field of the self-etching, self-adhesive RBC, Maxcem Elite (Kerr, Orange, CA, USA) (ø5 × 1Â mm - Group I and ø5 × 2Â mm - Group II) using experimental technique, 3D Digital Image Correlation (DIC) method. Digital images were recorded immediately after photo-polymerization of the samples with a LED-curing unit for 20Â s, according to manufacturer’s recommendation. Vickers microhardness was determined after photo-polymerization and after 24Â h. Temperature curves for both groups indicated similar patterns but the peak temperature of Group II was significantly higher compared to peak temperature of Group I. DIC showed that peripheral zone of the samples had the highest strain values in both groups. Group I indicated significantly higher values of hardness. All the results were material-dependent and probably correlated to the composition of each material, which is not fully disclosed by the manufacturers. © Springer Nature Switzerland AG 2019.",
journal = "Lecture Notes in Networks and Systems",
booktitle = "Thermal and Mechanical Characteristics of Dual Cure Self-etching, Self-adhesive Resin Based Cement",
volume = "54",
pages = "3-15",
doi = "10.1007/978-3-319-99620-2_1"
}
Mitrović, A., Mitrović, N., Maslarević, A., Adžić, V., Popović, D., Milošević, M.,& Antonović, D.. (2019). Thermal and Mechanical Characteristics of Dual Cure Self-etching, Self-adhesive Resin Based Cement. in Lecture Notes in Networks and Systems, 54, 3-15.
https://doi.org/10.1007/978-3-319-99620-2_1
Mitrović A, Mitrović N, Maslarević A, Adžić V, Popović D, Milošević M, Antonović D. Thermal and Mechanical Characteristics of Dual Cure Self-etching, Self-adhesive Resin Based Cement. in Lecture Notes in Networks and Systems. 2019;54:3-15.
doi:10.1007/978-3-319-99620-2_1 .
Mitrović, Aleksandra, Mitrović, Nenad, Maslarević, Aleksandar, Adžić, Vuk, Popović, Dejana, Milošević, Miloš, Antonović, Dušan, "Thermal and Mechanical Characteristics of Dual Cure Self-etching, Self-adhesive Resin Based Cement" in Lecture Notes in Networks and Systems, 54 (2019):3-15,
https://doi.org/10.1007/978-3-319-99620-2_1 . .
6
1
5

Characterization of a coating 316L applied by plasma transferred arc

Maslarevic, Aleksandar; Bakic, Gordana; Đukić, Miloš B.; Rajicic, Bratislav; Maksimović, Vesna

(2018)

TY  - JOUR
AU  - Maslarevic, Aleksandar
AU  - Bakic, Gordana
AU  - Đukić, Miloš B.
AU  - Rajicic, Bratislav
AU  - Maksimović, Vesna
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7722
AB  - Parts of industrial machines and structures are often exposed to the action of aggressive environments, which in a short period of time can provoke the loss of their integrity. It is well known that for extending the service life against erosion and corrosion, protection of the exposed structure zone by coating is frequently used. Various application methods of protective coatings are applied, and the most common are welding and thermal spraying processes. The aim of this study was characterization of coatings made of stainless steel 316L, widely used in chemical and petrochemical industries. The coating was applied on a structural steel S235JR by plasma transferred arc using powder as a filler material. Due to a number of advantages, the plasma transferred arc (PTA) surfacing process has found significant usages in the field of surface protection. This paper presents results of hardness measurements in characteristic zones of the coating and the base material, as well as microstructural characterization of coatings using optical and scanning electron microscopy. Results of EDS analysis of the coating and hardness measurements indicated that a relatively high dilution (26.1 %) of the base material (BM) and the filler material (FM) occurred in a very narrow zone above the fusion line, and thus did not significantly affect the chemical composition of the rest of the coating. Also, erosion resistance tests of coatings were performed by changing the basic functional parameters that is the impact angle and the speed of erodent particles. It was observed that the erosion resistance of the coating material decreases approximately linearly with the increase of the particle speed. Also, with the increase of the impact angle of the erodent (up to 45 °), the mass loss of the coating material is increased.
AB  - Delovi mašina i konstrukcija su tokom rada izloženi delovanju agresivne radne sredine koja u kratkom vremenskom periodu može da naruši njihov integritet. U zavisnosti od radnih uslova, površina materijala može da bude izložena raznim mehanizmima oštećenja, od kojih se izdvajaju eroziona i koroziona oštećenja. Produžetak radnog veka ugroženih zona mašinskih konstrukcija moguće je izvesti različitim postupcima nanošenja zaštitnih prevlaka, a najčešće su to različiti postupci navarivanja i metalizacije. Cilj ovog rada je karakterizacija prevlake izrađene od nerđajućeg čelika klase 316L, koja je našla široku primenu u hemijskoj i petrohemijskoj industriji, nanete plazma postupkom navarivanja korišćenjem dodatnog materijala u obliku praha, na konstrukcioni čelik S235JR. U radu je izvršeno merenje tvrdoće u karakterističnim zonama prevlake i osnovnog materijala, kao i mikrostrukturna karakterizacija prevlake na optičkom i skenirajućem elektronskom mikroskopu. Takođe, izvršeno je eroziono ispitivanje prevlake promenom parametara ispitivanja, pre svega ugla nastrujavanja i brzine čestica erodenta.
T2  - Hemijska industrija
T1  - Characterization of a coating 316L applied by plasma transferred arc
T1  - Karakterizacija prevlake 316L nanete postupkom plazma navarivanja
VL  - 72
IS  - 3
SP  - 139
EP  - 147
DO  - 10.2298/HEMIND170928005M
ER  - 
@article{
author = "Maslarevic, Aleksandar and Bakic, Gordana and Đukić, Miloš B. and Rajicic, Bratislav and Maksimović, Vesna",
year = "2018",
abstract = "Parts of industrial machines and structures are often exposed to the action of aggressive environments, which in a short period of time can provoke the loss of their integrity. It is well known that for extending the service life against erosion and corrosion, protection of the exposed structure zone by coating is frequently used. Various application methods of protective coatings are applied, and the most common are welding and thermal spraying processes. The aim of this study was characterization of coatings made of stainless steel 316L, widely used in chemical and petrochemical industries. The coating was applied on a structural steel S235JR by plasma transferred arc using powder as a filler material. Due to a number of advantages, the plasma transferred arc (PTA) surfacing process has found significant usages in the field of surface protection. This paper presents results of hardness measurements in characteristic zones of the coating and the base material, as well as microstructural characterization of coatings using optical and scanning electron microscopy. Results of EDS analysis of the coating and hardness measurements indicated that a relatively high dilution (26.1 %) of the base material (BM) and the filler material (FM) occurred in a very narrow zone above the fusion line, and thus did not significantly affect the chemical composition of the rest of the coating. Also, erosion resistance tests of coatings were performed by changing the basic functional parameters that is the impact angle and the speed of erodent particles. It was observed that the erosion resistance of the coating material decreases approximately linearly with the increase of the particle speed. Also, with the increase of the impact angle of the erodent (up to 45 °), the mass loss of the coating material is increased., Delovi mašina i konstrukcija su tokom rada izloženi delovanju agresivne radne sredine koja u kratkom vremenskom periodu može da naruši njihov integritet. U zavisnosti od radnih uslova, površina materijala može da bude izložena raznim mehanizmima oštećenja, od kojih se izdvajaju eroziona i koroziona oštećenja. Produžetak radnog veka ugroženih zona mašinskih konstrukcija moguće je izvesti različitim postupcima nanošenja zaštitnih prevlaka, a najčešće su to različiti postupci navarivanja i metalizacije. Cilj ovog rada je karakterizacija prevlake izrađene od nerđajućeg čelika klase 316L, koja je našla široku primenu u hemijskoj i petrohemijskoj industriji, nanete plazma postupkom navarivanja korišćenjem dodatnog materijala u obliku praha, na konstrukcioni čelik S235JR. U radu je izvršeno merenje tvrdoće u karakterističnim zonama prevlake i osnovnog materijala, kao i mikrostrukturna karakterizacija prevlake na optičkom i skenirajućem elektronskom mikroskopu. Takođe, izvršeno je eroziono ispitivanje prevlake promenom parametara ispitivanja, pre svega ugla nastrujavanja i brzine čestica erodenta.",
journal = "Hemijska industrija",
title = "Characterization of a coating 316L applied by plasma transferred arc, Karakterizacija prevlake 316L nanete postupkom plazma navarivanja",
volume = "72",
number = "3",
pages = "139-147",
doi = "10.2298/HEMIND170928005M"
}
Maslarevic, A., Bakic, G., Đukić, M. B., Rajicic, B.,& Maksimović, V.. (2018). Characterization of a coating 316L applied by plasma transferred arc. in Hemijska industrija, 72(3), 139-147.
https://doi.org/10.2298/HEMIND170928005M
Maslarevic A, Bakic G, Đukić MB, Rajicic B, Maksimović V. Characterization of a coating 316L applied by plasma transferred arc. in Hemijska industrija. 2018;72(3):139-147.
doi:10.2298/HEMIND170928005M .
Maslarevic, Aleksandar, Bakic, Gordana, Đukić, Miloš B., Rajicic, Bratislav, Maksimović, Vesna, "Characterization of a coating 316L applied by plasma transferred arc" in Hemijska industrija, 72, no. 3 (2018):139-147,
https://doi.org/10.2298/HEMIND170928005M . .
1
2
1
3

Characterization of Tube Repair Weld in Thermal Power Plant Made of a 12% Cr Tempered Martensite Ferritic Steel

Bakic, Gordana M.; Đukić, Miloš B.; Rajicic, Bratislav; Zeravcic, Vera Sijacki; Maslarevic, Aleksandar; Radović, Miladin; Maksimović, Vesna; Milošević, Nenad Z.

(2017)

TY  - CONF
AU  - Bakic, Gordana M.
AU  - Đukić, Miloš B.
AU  - Rajicic, Bratislav
AU  - Zeravcic, Vera Sijacki
AU  - Maslarevic, Aleksandar
AU  - Radović, Miladin
AU  - Maksimović, Vesna
AU  - Milošević, Nenad Z.
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7149
AB  - The heat resistant tempered martensite ferritic steel X20CrMoV121 (DIN) has been extensively used within the last few decades as a material for boiler tubing systems and pipelines in thermal power plants (TPP). Long-term behavior of this steel is vastly researched and very well known, but main disadvantage is its poor weldability. In situ welding of martensitic steels is always challenging task and is usually quite difficult to implement properly in a short time, during forced outages of TPP. In this paper, characterization and mechanical properties of undermatch welded joint made during partial replacement of boiler outlet superheater (SH) in TPP by austenitic filler material, after 10 years of service are presented. Due to cold technique of welding, which does not required post weld heat treatment, this procedure were regular and widely used repair welding technique in two TPP (620 MW) units. In the purpose of comparison, two other type of matching welding joints of the same SH were also characterized: shop welded joint made by electrical resistance flash butt welding, as well as field welded joint made by gas tungsten arc welding during assembling of SH, which were both in service approximately 150,000 h.
T1  - Characterization of Tube Repair Weld in Thermal Power Plant Made of a 12% Cr Tempered Martensite Ferritic Steel
SP  - 151
EP  - 169
DO  - 10.1007/978-3-319-32634-4_8
ER  - 
@conference{
author = "Bakic, Gordana M. and Đukić, Miloš B. and Rajicic, Bratislav and Zeravcic, Vera Sijacki and Maslarevic, Aleksandar and Radović, Miladin and Maksimović, Vesna and Milošević, Nenad Z.",
year = "2017",
abstract = "The heat resistant tempered martensite ferritic steel X20CrMoV121 (DIN) has been extensively used within the last few decades as a material for boiler tubing systems and pipelines in thermal power plants (TPP). Long-term behavior of this steel is vastly researched and very well known, but main disadvantage is its poor weldability. In situ welding of martensitic steels is always challenging task and is usually quite difficult to implement properly in a short time, during forced outages of TPP. In this paper, characterization and mechanical properties of undermatch welded joint made during partial replacement of boiler outlet superheater (SH) in TPP by austenitic filler material, after 10 years of service are presented. Due to cold technique of welding, which does not required post weld heat treatment, this procedure were regular and widely used repair welding technique in two TPP (620 MW) units. In the purpose of comparison, two other type of matching welding joints of the same SH were also characterized: shop welded joint made by electrical resistance flash butt welding, as well as field welded joint made by gas tungsten arc welding during assembling of SH, which were both in service approximately 150,000 h.",
title = "Characterization of Tube Repair Weld in Thermal Power Plant Made of a 12% Cr Tempered Martensite Ferritic Steel",
pages = "151-169",
doi = "10.1007/978-3-319-32634-4_8"
}
Bakic, G. M., Đukić, M. B., Rajicic, B., Zeravcic, V. S., Maslarevic, A., Radović, M., Maksimović, V.,& Milošević, N. Z.. (2017). Characterization of Tube Repair Weld in Thermal Power Plant Made of a 12% Cr Tempered Martensite Ferritic Steel. , 151-169.
https://doi.org/10.1007/978-3-319-32634-4_8
Bakic GM, Đukić MB, Rajicic B, Zeravcic VS, Maslarevic A, Radović M, Maksimović V, Milošević NZ. Characterization of Tube Repair Weld in Thermal Power Plant Made of a 12% Cr Tempered Martensite Ferritic Steel. 2017;:151-169.
doi:10.1007/978-3-319-32634-4_8 .
Bakic, Gordana M., Đukić, Miloš B., Rajicic, Bratislav, Zeravcic, Vera Sijacki, Maslarevic, Aleksandar, Radović, Miladin, Maksimović, Vesna, Milošević, Nenad Z., "Characterization of Tube Repair Weld in Thermal Power Plant Made of a 12% Cr Tempered Martensite Ferritic Steel" (2017):151-169,
https://doi.org/10.1007/978-3-319-32634-4_8 . .
8
1