Tanaskovic, D.

Link to this page

Authority KeyName Variants
19c863dc-aea5-4ff8-8e04-92e4acae6a7b
  • Tanaskovic, D. (1)
Projects

Author's Bibliography

Double-layer bioactive glass coatings obtained by pulsed laser deposition

Tanaskovic, D.; Veljović, Đorđe N.; Petrovic, R.; Janaćković, Đorđe T.; Mitrić, Miodrag; Cojanu, C.; Ristoscu, Carmen; Mihailescu, Ion N.

(2008)

TY  - CONF
AU  - Tanaskovic, D.
AU  - Veljović, Đorđe N.
AU  - Petrovic, R.
AU  - Janaćković, Đorđe T.
AU  - Mitrić, Miodrag
AU  - Cojanu, C.
AU  - Ristoscu, Carmen
AU  - Mihailescu, Ion N.
PY  - 2008
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/6718
AB  - Pulsed laser deposition was used to obtain functionally graded bioactive glass coatings on titanium substrates. An UV KrF* (lambda=248 nm, tau GT 7 ns) excimer laser was used for the multi-pulse irradiation of the targets. The depositions were performed in oxygen while keeping substrate temperature at 400 degrees C. We used sintered glass targets in the system SiO2-Na2O-K2O-CaO-MgO-P2O5 that differed in SiO2 content, which was either 57 wt.% (6P57) or 61 wt.% (6P61). A glass 6P61 was used as the first layer in direct contact with the metallic substrate, while the outer bioactive layer was made of glass 6P57. Both the bioactive coatings and the bulk glasses were analyzed by Fourier transform infrared spectrometry (FTIR), grazing incidence X-ray diffraction (GIXRD), and scanning electron microscopy (SEM). The FTIR spectra of the glass powders and glass coatings showed the main vibration modes of the Si-O-Si groups. GIXRD analysis confirmed that the glass coatings had an amorphous structure. The SEM micrographs of the glass coatings showed the films to consist of droplets with diameters ranging from 0.2 to 5 Pm. SEM was used to determine the rate of apatite formation on the coating when exposed to simulated body fluid (SBF) solution for 7 days. We demonstrated that pulsed laser deposition leads to good glass-metal adhesion on the substrate and well attached bioactive particles on the surface. We consider therefore this method appropriate for forming implants that can develop an apatite layer after immersion in SBF.
C3  - Key Engineering Materials
T1  - Double-layer bioactive glass coatings obtained by pulsed laser deposition
VL  - 361-363
SP  - 277
EP  - +
UR  - https://hdl.handle.net/21.15107/rcub_vinar_6718
ER  - 
@conference{
author = "Tanaskovic, D. and Veljović, Đorđe N. and Petrovic, R. and Janaćković, Đorđe T. and Mitrić, Miodrag and Cojanu, C. and Ristoscu, Carmen and Mihailescu, Ion N.",
year = "2008",
abstract = "Pulsed laser deposition was used to obtain functionally graded bioactive glass coatings on titanium substrates. An UV KrF* (lambda=248 nm, tau GT 7 ns) excimer laser was used for the multi-pulse irradiation of the targets. The depositions were performed in oxygen while keeping substrate temperature at 400 degrees C. We used sintered glass targets in the system SiO2-Na2O-K2O-CaO-MgO-P2O5 that differed in SiO2 content, which was either 57 wt.% (6P57) or 61 wt.% (6P61). A glass 6P61 was used as the first layer in direct contact with the metallic substrate, while the outer bioactive layer was made of glass 6P57. Both the bioactive coatings and the bulk glasses were analyzed by Fourier transform infrared spectrometry (FTIR), grazing incidence X-ray diffraction (GIXRD), and scanning electron microscopy (SEM). The FTIR spectra of the glass powders and glass coatings showed the main vibration modes of the Si-O-Si groups. GIXRD analysis confirmed that the glass coatings had an amorphous structure. The SEM micrographs of the glass coatings showed the films to consist of droplets with diameters ranging from 0.2 to 5 Pm. SEM was used to determine the rate of apatite formation on the coating when exposed to simulated body fluid (SBF) solution for 7 days. We demonstrated that pulsed laser deposition leads to good glass-metal adhesion on the substrate and well attached bioactive particles on the surface. We consider therefore this method appropriate for forming implants that can develop an apatite layer after immersion in SBF.",
journal = "Key Engineering Materials",
title = "Double-layer bioactive glass coatings obtained by pulsed laser deposition",
volume = "361-363",
pages = "277-+",
url = "https://hdl.handle.net/21.15107/rcub_vinar_6718"
}
Tanaskovic, D., Veljović, Đ. N., Petrovic, R., Janaćković, Đ. T., Mitrić, M., Cojanu, C., Ristoscu, C.,& Mihailescu, I. N.. (2008). Double-layer bioactive glass coatings obtained by pulsed laser deposition. in Key Engineering Materials, 361-363, 277-+.
https://hdl.handle.net/21.15107/rcub_vinar_6718
Tanaskovic D, Veljović ĐN, Petrovic R, Janaćković ĐT, Mitrić M, Cojanu C, Ristoscu C, Mihailescu IN. Double-layer bioactive glass coatings obtained by pulsed laser deposition. in Key Engineering Materials. 2008;361-363:277-+.
https://hdl.handle.net/21.15107/rcub_vinar_6718 .
Tanaskovic, D., Veljović, Đorđe N., Petrovic, R., Janaćković, Đorđe T., Mitrić, Miodrag, Cojanu, C., Ristoscu, Carmen, Mihailescu, Ion N., "Double-layer bioactive glass coatings obtained by pulsed laser deposition" in Key Engineering Materials, 361-363 (2008):277-+,
https://hdl.handle.net/21.15107/rcub_vinar_6718 .
4