Dožić, Sanja

Link to this page

Authority KeyName Variants
a27ecb97-4c15-43a1-a5f4-d715ca324d45
  • Dožić, Sanja (2)
Projects

Author's Bibliography

Liquid-Liquid Equilibria in Aqueous 1-Alkyl-3-methylimidazolium- and 1-Butyl-3-ethylimidazolium-Based Ionic Liquids

Dimitrijević, Aleksandra; Trtić-Petrović, Tatjana M.; Vraneš, Milan; Papović, Snežana; Tot, Aleksandar; Dožić, Sanja; Gadžurić, Slobodan

(2016)

TY  - JOUR
AU  - Dimitrijević, Aleksandra
AU  - Trtić-Petrović, Tatjana M.
AU  - Vraneš, Milan
AU  - Papović, Snežana
AU  - Tot, Aleksandar
AU  - Dožić, Sanja
AU  - Gadžurić, Slobodan
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/899
AB  - In this work, novel phase diagrams for aqueous solutions of 1-alkyl-3-methylimidazolium- and 1-butyl-3-ethylimidazolium-based ILs combined with phosphate-based salts, namely, K3PO4 or K2HPO4, are reported and discussed. To correlate the binodal data, the Merchuk equation is applied. The tie lines and tie-line lengths are also presented. The anion influence on the ability to form aqueous biphasic system (ABS) is investigated for the IL with the same1-butyl-3-methylimidazolium cation, [bmim](+), and various anions, for example, salicylate, [SAL](-); trifluoromethanesulfonate, [TFS](-); dicyanamide, [DCA](-); and chloride, [Cl](-). The order of studied anions to form ABS is [TFS](-) GT [SAL](-) GT [DCA](-) GT [Cl](-). The effect of alkyl chain length on imidazolium ion on liquidliquid equilibrium is discussed in terms of increasing ionic liquid hydrophobicity and poorer affinity for water. It is shown that 1-hexyl-3-methylimidazolium chloride ionic liquid has a better ability to form ABS comparing to ionic liquid with butyl chain and the same anion. Newly synthesized ionic-liquid-containing ethyl group 1-butyl-3-ethylimidazolium bromide was also investigated, showing the influence of both ethyl group and bromide anion on the ability of ABS formation.
T2  - Journal of Chemical and Engineering Data
T1  - Liquid-Liquid Equilibria in Aqueous 1-Alkyl-3-methylimidazolium- and 1-Butyl-3-ethylimidazolium-Based Ionic Liquids
VL  - 61
IS  - 1
SP  - 549
EP  - 555
DO  - 10.1021/acs.jced.5b00697
ER  - 
@article{
author = "Dimitrijević, Aleksandra and Trtić-Petrović, Tatjana M. and Vraneš, Milan and Papović, Snežana and Tot, Aleksandar and Dožić, Sanja and Gadžurić, Slobodan",
year = "2016",
abstract = "In this work, novel phase diagrams for aqueous solutions of 1-alkyl-3-methylimidazolium- and 1-butyl-3-ethylimidazolium-based ILs combined with phosphate-based salts, namely, K3PO4 or K2HPO4, are reported and discussed. To correlate the binodal data, the Merchuk equation is applied. The tie lines and tie-line lengths are also presented. The anion influence on the ability to form aqueous biphasic system (ABS) is investigated for the IL with the same1-butyl-3-methylimidazolium cation, [bmim](+), and various anions, for example, salicylate, [SAL](-); trifluoromethanesulfonate, [TFS](-); dicyanamide, [DCA](-); and chloride, [Cl](-). The order of studied anions to form ABS is [TFS](-) GT [SAL](-) GT [DCA](-) GT [Cl](-). The effect of alkyl chain length on imidazolium ion on liquidliquid equilibrium is discussed in terms of increasing ionic liquid hydrophobicity and poorer affinity for water. It is shown that 1-hexyl-3-methylimidazolium chloride ionic liquid has a better ability to form ABS comparing to ionic liquid with butyl chain and the same anion. Newly synthesized ionic-liquid-containing ethyl group 1-butyl-3-ethylimidazolium bromide was also investigated, showing the influence of both ethyl group and bromide anion on the ability of ABS formation.",
journal = "Journal of Chemical and Engineering Data",
title = "Liquid-Liquid Equilibria in Aqueous 1-Alkyl-3-methylimidazolium- and 1-Butyl-3-ethylimidazolium-Based Ionic Liquids",
volume = "61",
number = "1",
pages = "549-555",
doi = "10.1021/acs.jced.5b00697"
}
Dimitrijević, A., Trtić-Petrović, T. M., Vraneš, M., Papović, S., Tot, A., Dožić, S.,& Gadžurić, S.. (2016). Liquid-Liquid Equilibria in Aqueous 1-Alkyl-3-methylimidazolium- and 1-Butyl-3-ethylimidazolium-Based Ionic Liquids. in Journal of Chemical and Engineering Data, 61(1), 549-555.
https://doi.org/10.1021/acs.jced.5b00697
Dimitrijević A, Trtić-Petrović TM, Vraneš M, Papović S, Tot A, Dožić S, Gadžurić S. Liquid-Liquid Equilibria in Aqueous 1-Alkyl-3-methylimidazolium- and 1-Butyl-3-ethylimidazolium-Based Ionic Liquids. in Journal of Chemical and Engineering Data. 2016;61(1):549-555.
doi:10.1021/acs.jced.5b00697 .
Dimitrijević, Aleksandra, Trtić-Petrović, Tatjana M., Vraneš, Milan, Papović, Snežana, Tot, Aleksandar, Dožić, Sanja, Gadžurić, Slobodan, "Liquid-Liquid Equilibria in Aqueous 1-Alkyl-3-methylimidazolium- and 1-Butyl-3-ethylimidazolium-Based Ionic Liquids" in Journal of Chemical and Engineering Data, 61, no. 1 (2016):549-555,
https://doi.org/10.1021/acs.jced.5b00697 . .
29
25
30

Aqueous biphasic system formation using 1-alkyl-3-ethylimidazolium bromide ionic liquids as new extractants

Dimitrijević, Aleksandra; Zec, Nebojša; Zdolšek, Nikola; Dožić, Sanja; Tot, Aleksandar; Gadžurić, Slobodan; Vraneš, Milan; Trtić-Petrović, Tatjana M.

(2016)

TY  - JOUR
AU  - Dimitrijević, Aleksandra
AU  - Zec, Nebojša
AU  - Zdolšek, Nikola
AU  - Dožić, Sanja
AU  - Tot, Aleksandar
AU  - Gadžurić, Slobodan
AU  - Vraneš, Milan
AU  - Trtić-Petrović, Tatjana M.
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1213
AB  - In this work three 1-alkyl-3-ethylimidazolium bromide ionic liquids (alkyl = ethyl, hexyl and octyl) were synthesized applying both, conventional and microwave assisted synthetic paths. The phase diagrams for aqueous solutions of 1-alkyl-3-ethylimidazolium bromide ionic liquids as novel extractants combined with phosphate-based salts are reported and discussed in terms of aqueous biphasic system (ABS) formation. Merchuk equation was applied in order to correlate the,experimental binodal data. The liquid-liquid equilibrium data (tie-line compositions and tie-line length) were also experimentally determined by a gravimetric method. The influence of the alkyl chain length on ABS formation ability was investigated. It was found that ability to form ABS increases with the increase of the alkyl chain length on the imidazolium cation. Also, it was found that ionic liquids with ethyl group in the N-3 position better form ABS compared to those with methyl substituent. This was discussed in terms of increasing ionic liquid hydrophobicity and poor affinity for water. In order to better understand the impact of the alkyl side chain of the imidazolium ion and the efficiency of ABS formation, computer simulations were performed using investigated ionic liquids with the ethyl group in the position N-3 of the cation and different alkyl substituents in the position N-1. Also, extraction of selected organic dyes was performed to demonstrate application of studied ionic liquids as novel extractants. (C) 2016 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
T2  - Journal of Industrial and Engineering Chemistry
T1  - Aqueous biphasic system formation using 1-alkyl-3-ethylimidazolium bromide ionic liquids as new extractants
VL  - 40
SP  - 152
EP  - 160
DO  - 10.1016/j.jiec.2016.06.017
ER  - 
@article{
author = "Dimitrijević, Aleksandra and Zec, Nebojša and Zdolšek, Nikola and Dožić, Sanja and Tot, Aleksandar and Gadžurić, Slobodan and Vraneš, Milan and Trtić-Petrović, Tatjana M.",
year = "2016",
abstract = "In this work three 1-alkyl-3-ethylimidazolium bromide ionic liquids (alkyl = ethyl, hexyl and octyl) were synthesized applying both, conventional and microwave assisted synthetic paths. The phase diagrams for aqueous solutions of 1-alkyl-3-ethylimidazolium bromide ionic liquids as novel extractants combined with phosphate-based salts are reported and discussed in terms of aqueous biphasic system (ABS) formation. Merchuk equation was applied in order to correlate the,experimental binodal data. The liquid-liquid equilibrium data (tie-line compositions and tie-line length) were also experimentally determined by a gravimetric method. The influence of the alkyl chain length on ABS formation ability was investigated. It was found that ability to form ABS increases with the increase of the alkyl chain length on the imidazolium cation. Also, it was found that ionic liquids with ethyl group in the N-3 position better form ABS compared to those with methyl substituent. This was discussed in terms of increasing ionic liquid hydrophobicity and poor affinity for water. In order to better understand the impact of the alkyl side chain of the imidazolium ion and the efficiency of ABS formation, computer simulations were performed using investigated ionic liquids with the ethyl group in the position N-3 of the cation and different alkyl substituents in the position N-1. Also, extraction of selected organic dyes was performed to demonstrate application of studied ionic liquids as novel extractants. (C) 2016 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.",
journal = "Journal of Industrial and Engineering Chemistry",
title = "Aqueous biphasic system formation using 1-alkyl-3-ethylimidazolium bromide ionic liquids as new extractants",
volume = "40",
pages = "152-160",
doi = "10.1016/j.jiec.2016.06.017"
}
Dimitrijević, A., Zec, N., Zdolšek, N., Dožić, S., Tot, A., Gadžurić, S., Vraneš, M.,& Trtić-Petrović, T. M.. (2016). Aqueous biphasic system formation using 1-alkyl-3-ethylimidazolium bromide ionic liquids as new extractants. in Journal of Industrial and Engineering Chemistry, 40, 152-160.
https://doi.org/10.1016/j.jiec.2016.06.017
Dimitrijević A, Zec N, Zdolšek N, Dožić S, Tot A, Gadžurić S, Vraneš M, Trtić-Petrović TM. Aqueous biphasic system formation using 1-alkyl-3-ethylimidazolium bromide ionic liquids as new extractants. in Journal of Industrial and Engineering Chemistry. 2016;40:152-160.
doi:10.1016/j.jiec.2016.06.017 .
Dimitrijević, Aleksandra, Zec, Nebojša, Zdolšek, Nikola, Dožić, Sanja, Tot, Aleksandar, Gadžurić, Slobodan, Vraneš, Milan, Trtić-Petrović, Tatjana M., "Aqueous biphasic system formation using 1-alkyl-3-ethylimidazolium bromide ionic liquids as new extractants" in Journal of Industrial and Engineering Chemistry, 40 (2016):152-160,
https://doi.org/10.1016/j.jiec.2016.06.017 . .
22
15
22