Stevanović, Sanja

Link to this page

Authority KeyName Variants
5348b577-87ce-42b1-a750-859a6ec6e4c1
  • Stevanović, Sanja (5)

Author's Bibliography

Design of PtSnZn Nanocatalysts for Anodic Reactions in Fuel Cells

Stevanović, Sanja; Milošević, Dragana; Tripković, Dušan; Ćosović, Vladan; Nikolić, Nebojša; Maksimović, Vesna

(Society of Chemists and Technologists of Macedonia, 2023)

TY  - CONF
AU  - Stevanović, Sanja
AU  - Milošević, Dragana
AU  - Tripković, Dušan
AU  - Ćosović, Vladan
AU  - Nikolić, Nebojša
AU  - Maksimović, Vesna
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11758
AB  - In order to achieve widespread application of fuel cell technology, the development of an efficient and economical catalyst is a crucial step. Reducing the diameter of catalyst particles, producing particles with a specific orientation surface, and alloying noble metals with less expensive metals are possible approaches to improve catalyst performance. This study will be focused on novel ways for creating PtSnZn catalysts that are more effective for the anodic reactions in fuel cell such are methanol, ethanol and formic acid oxidation reactions. PtZn and PtSnZn nanoparticles were produced using the microwave assisted polyol method and were supported on high surface area carbon Vulcan XC-72R material. The electrochemical behavior of synthesized catalysts was investigated utilizing the cyclic voltammetry, chronoamperometric technique, and electro-oxidation of adsorbed CO. To determine the catalyst's physicochemical characteristics, X-ray diffraction (XRD), transmission electron microscopy analysis (TEM), and thermogravimetric analysis (TGA) were used. High catalytic activity of the PtSnZn/C catalysts was achieved thanks to the benefits of microwave synthesis and carefully adjusted metal alloying.
PB  - Society of Chemists and Technologists of Macedonia
C3  - 26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia
T1  - Design of PtSnZn Nanocatalysts for Anodic Reactions in Fuel Cells
SP  - 132
EP  - 132
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11758
ER  - 
@conference{
author = "Stevanović, Sanja and Milošević, Dragana and Tripković, Dušan and Ćosović, Vladan and Nikolić, Nebojša and Maksimović, Vesna",
year = "2023",
abstract = "In order to achieve widespread application of fuel cell technology, the development of an efficient and economical catalyst is a crucial step. Reducing the diameter of catalyst particles, producing particles with a specific orientation surface, and alloying noble metals with less expensive metals are possible approaches to improve catalyst performance. This study will be focused on novel ways for creating PtSnZn catalysts that are more effective for the anodic reactions in fuel cell such are methanol, ethanol and formic acid oxidation reactions. PtZn and PtSnZn nanoparticles were produced using the microwave assisted polyol method and were supported on high surface area carbon Vulcan XC-72R material. The electrochemical behavior of synthesized catalysts was investigated utilizing the cyclic voltammetry, chronoamperometric technique, and electro-oxidation of adsorbed CO. To determine the catalyst's physicochemical characteristics, X-ray diffraction (XRD), transmission electron microscopy analysis (TEM), and thermogravimetric analysis (TGA) were used. High catalytic activity of the PtSnZn/C catalysts was achieved thanks to the benefits of microwave synthesis and carefully adjusted metal alloying.",
publisher = "Society of Chemists and Technologists of Macedonia",
journal = "26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia",
title = "Design of PtSnZn Nanocatalysts for Anodic Reactions in Fuel Cells",
pages = "132-132",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11758"
}
Stevanović, S., Milošević, D., Tripković, D., Ćosović, V., Nikolić, N.,& Maksimović, V.. (2023). Design of PtSnZn Nanocatalysts for Anodic Reactions in Fuel Cells. in 26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia
Society of Chemists and Technologists of Macedonia., 132-132.
https://hdl.handle.net/21.15107/rcub_vinar_11758
Stevanović S, Milošević D, Tripković D, Ćosović V, Nikolić N, Maksimović V. Design of PtSnZn Nanocatalysts for Anodic Reactions in Fuel Cells. in 26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia. 2023;:132-132.
https://hdl.handle.net/21.15107/rcub_vinar_11758 .
Stevanović, Sanja, Milošević, Dragana, Tripković, Dušan, Ćosović, Vladan, Nikolić, Nebojša, Maksimović, Vesna, "Design of PtSnZn Nanocatalysts for Anodic Reactions in Fuel Cells" in 26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia (2023):132-132,
https://hdl.handle.net/21.15107/rcub_vinar_11758 .

Electrochemical potential of poly(viniyl acohol) modified bacterial nanocellulose as platinum nanoparticles support

Ponjavić, Marijana; Stevanović, Sanja; Jeremić, Sanja; Nikodinović-Runić, Jasmina; Ćosović, Vladan; Maksimović, Vesna

(University in Banjaluka : Faculty of Technology, 2022)

TY  - CONF
AU  - Ponjavić, Marijana
AU  - Stevanović, Sanja
AU  - Jeremić, Sanja
AU  - Nikodinović-Runić, Jasmina
AU  - Ćosović, Vladan
AU  - Maksimović, Vesna
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11666
AB  - Bacterial nanocellulose (BNC) has gain on its popularity in the last decades and it has attracted a contemporary research interest as a promising material suitable for different applications (in medicine as a material for biomedical implants or scaffolds, in pharmacy as controlled release drug carriers, in industry as barriers, membranes, and absorbers, and electronics. BNC is hydroxyl group rich biopolymer which further provides various possibilities for modifications and the production of composites. Poly(vinyl alcohol), PVA, polymer of excellent film forming capacity, high thermal stability, flexibility, good chemical resistance, and mechanical properties has been recognized as promising material for BNC/PVA composite preparation. PVA is chemically compatible with BNC, due to their polarity and large amount of hydroxyl groups forming strong inter-molecular hydrogen bonds. The main objective of this work was to prepare new platinum supported catalyst on BNC/PVA composite as nanoparticles carrier, designed for electrocatalytic applications. For that purpose, BNC/Pt suspension was mixed with 1 wt% PVA solution and BNC/PVA/Pt catalyst in the form of film was successfully synthesized. The structure and thermal properties of catalyst were characterized by ATR-FTIR and TG analysis, respectively, while its crystallinity was investigated by XRD analysis. Electrocatalytic potential of BNC/PVA/Pt catalyst was tested in methanol oxidation reaction. Remarkable catalytic activity of new Pt based catalyst was confirmed. The obtained results for catalyst activity was comparable to those obtained for preferentially used carbon based Pt supports pointing that BNC based composited can be considered as great substitution of carbon based materials with the green one.
PB  - University in Banjaluka : Faculty of Technology
C3  - 14th Conference of chemists, technologists and environmentalists of Republic of Srpska : the book of abstracts; Oct 21-22, Banja Luka, Republic of Srpska
T1  - Electrochemical potential of poly(viniyl acohol) modified bacterial nanocellulose as platinum nanoparticles support
SP  - 33
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11666
ER  - 
@conference{
author = "Ponjavić, Marijana and Stevanović, Sanja and Jeremić, Sanja and Nikodinović-Runić, Jasmina and Ćosović, Vladan and Maksimović, Vesna",
year = "2022",
abstract = "Bacterial nanocellulose (BNC) has gain on its popularity in the last decades and it has attracted a contemporary research interest as a promising material suitable for different applications (in medicine as a material for biomedical implants or scaffolds, in pharmacy as controlled release drug carriers, in industry as barriers, membranes, and absorbers, and electronics. BNC is hydroxyl group rich biopolymer which further provides various possibilities for modifications and the production of composites. Poly(vinyl alcohol), PVA, polymer of excellent film forming capacity, high thermal stability, flexibility, good chemical resistance, and mechanical properties has been recognized as promising material for BNC/PVA composite preparation. PVA is chemically compatible with BNC, due to their polarity and large amount of hydroxyl groups forming strong inter-molecular hydrogen bonds. The main objective of this work was to prepare new platinum supported catalyst on BNC/PVA composite as nanoparticles carrier, designed for electrocatalytic applications. For that purpose, BNC/Pt suspension was mixed with 1 wt% PVA solution and BNC/PVA/Pt catalyst in the form of film was successfully synthesized. The structure and thermal properties of catalyst were characterized by ATR-FTIR and TG analysis, respectively, while its crystallinity was investigated by XRD analysis. Electrocatalytic potential of BNC/PVA/Pt catalyst was tested in methanol oxidation reaction. Remarkable catalytic activity of new Pt based catalyst was confirmed. The obtained results for catalyst activity was comparable to those obtained for preferentially used carbon based Pt supports pointing that BNC based composited can be considered as great substitution of carbon based materials with the green one.",
publisher = "University in Banjaluka : Faculty of Technology",
journal = "14th Conference of chemists, technologists and environmentalists of Republic of Srpska : the book of abstracts; Oct 21-22, Banja Luka, Republic of Srpska",
title = "Electrochemical potential of poly(viniyl acohol) modified bacterial nanocellulose as platinum nanoparticles support",
pages = "33",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11666"
}
Ponjavić, M., Stevanović, S., Jeremić, S., Nikodinović-Runić, J., Ćosović, V.,& Maksimović, V.. (2022). Electrochemical potential of poly(viniyl acohol) modified bacterial nanocellulose as platinum nanoparticles support. in 14th Conference of chemists, technologists and environmentalists of Republic of Srpska : the book of abstracts; Oct 21-22, Banja Luka, Republic of Srpska
University in Banjaluka : Faculty of Technology., 33.
https://hdl.handle.net/21.15107/rcub_vinar_11666
Ponjavić M, Stevanović S, Jeremić S, Nikodinović-Runić J, Ćosović V, Maksimović V. Electrochemical potential of poly(viniyl acohol) modified bacterial nanocellulose as platinum nanoparticles support. in 14th Conference of chemists, technologists and environmentalists of Republic of Srpska : the book of abstracts; Oct 21-22, Banja Luka, Republic of Srpska. 2022;:33.
https://hdl.handle.net/21.15107/rcub_vinar_11666 .
Ponjavić, Marijana, Stevanović, Sanja, Jeremić, Sanja, Nikodinović-Runić, Jasmina, Ćosović, Vladan, Maksimović, Vesna, "Electrochemical potential of poly(viniyl acohol) modified bacterial nanocellulose as platinum nanoparticles support" in 14th Conference of chemists, technologists and environmentalists of Republic of Srpska : the book of abstracts; Oct 21-22, Banja Luka, Republic of Srpska (2022):33,
https://hdl.handle.net/21.15107/rcub_vinar_11666 .

Bacterial nanocellulose as green support of platinum nanoparticles for effective methanol oxidation

Ponjavić, Marijana; Stevanović, Sanja; Nikodinović-Runić, Jasmina; Jeremić, Sanja; Ćosović, Vladan; Maksimović, Vesna

(2022)

TY  - JOUR
AU  - Ponjavić, Marijana
AU  - Stevanović, Sanja
AU  - Nikodinović-Runić, Jasmina
AU  - Jeremić, Sanja
AU  - Ćosović, Vladan
AU  - Maksimović, Vesna
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10509
AB  - Bacterial nanocellulose, BNC, has emerged as a new class of nanomaterials recognized as renewable, biodegradable, biocompatible and material for versatile applications. BNC also proved as a perfect support matrix for metallic nanoparticle synthesis and appeared as suitable alternative for widely used carbon based materials. Following the idea to replace commonly used carbon based materials for platinum supports with the green and sustainable one, BNC appeared as an excellent candidate. Herein, microwave assisted synthesis has been reported for the first time for platinum nanoparticles supported on BNC as green material. Bacterial nanocelullose-platinum catalyst, Pt/BNC, was investigated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), atomic force microscopy (AFM), X-ray diffractometry (XRD) and transmission-electron microscopy (TEM) analysis. The obtained results confirmed successful synthesis of new Pt-based catalyst. It was found that Pt/BNC catalyst has high electrocatalytic performance in methanol oxidation reaction. Green/sustainable catalytic system is highly desirable and provided by the elegant microwave assisted synthesis of Pt/BNC will pave the way for a larger scale application and expedite the market penetration of such fuel cells.
T2  - International Journal of Biological Macromolecules
T1  - Bacterial nanocellulose as green support of platinum nanoparticles for effective methanol oxidation
VL  - 223
SP  - 1474
EP  - 1484
DO  - 10.1016/j.ijbiomac.2022.10.278
ER  - 
@article{
author = "Ponjavić, Marijana and Stevanović, Sanja and Nikodinović-Runić, Jasmina and Jeremić, Sanja and Ćosović, Vladan and Maksimović, Vesna",
year = "2022",
abstract = "Bacterial nanocellulose, BNC, has emerged as a new class of nanomaterials recognized as renewable, biodegradable, biocompatible and material for versatile applications. BNC also proved as a perfect support matrix for metallic nanoparticle synthesis and appeared as suitable alternative for widely used carbon based materials. Following the idea to replace commonly used carbon based materials for platinum supports with the green and sustainable one, BNC appeared as an excellent candidate. Herein, microwave assisted synthesis has been reported for the first time for platinum nanoparticles supported on BNC as green material. Bacterial nanocelullose-platinum catalyst, Pt/BNC, was investigated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), atomic force microscopy (AFM), X-ray diffractometry (XRD) and transmission-electron microscopy (TEM) analysis. The obtained results confirmed successful synthesis of new Pt-based catalyst. It was found that Pt/BNC catalyst has high electrocatalytic performance in methanol oxidation reaction. Green/sustainable catalytic system is highly desirable and provided by the elegant microwave assisted synthesis of Pt/BNC will pave the way for a larger scale application and expedite the market penetration of such fuel cells.",
journal = "International Journal of Biological Macromolecules",
title = "Bacterial nanocellulose as green support of platinum nanoparticles for effective methanol oxidation",
volume = "223",
pages = "1474-1484",
doi = "10.1016/j.ijbiomac.2022.10.278"
}
Ponjavić, M., Stevanović, S., Nikodinović-Runić, J., Jeremić, S., Ćosović, V.,& Maksimović, V.. (2022). Bacterial nanocellulose as green support of platinum nanoparticles for effective methanol oxidation. in International Journal of Biological Macromolecules, 223, 1474-1484.
https://doi.org/10.1016/j.ijbiomac.2022.10.278
Ponjavić M, Stevanović S, Nikodinović-Runić J, Jeremić S, Ćosović V, Maksimović V. Bacterial nanocellulose as green support of platinum nanoparticles for effective methanol oxidation. in International Journal of Biological Macromolecules. 2022;223:1474-1484.
doi:10.1016/j.ijbiomac.2022.10.278 .
Ponjavić, Marijana, Stevanović, Sanja, Nikodinović-Runić, Jasmina, Jeremić, Sanja, Ćosović, Vladan, Maksimović, Vesna, "Bacterial nanocellulose as green support of platinum nanoparticles for effective methanol oxidation" in International Journal of Biological Macromolecules, 223 (2022):1474-1484,
https://doi.org/10.1016/j.ijbiomac.2022.10.278 . .
3
2
3

Structural Properties of the Multiwall Carbon Nanotubes/Poly(Methyl Methacrylate) Nanocomposites: Effect of the Multiwall Carbon Nanotubes Covalent Functionalization

Brković, Danijela V.; Pavlović, Vladimir B.; Pavlović, Vera P.; Obradović, Nina; Mitrić, Miodrag; Stevanović, Sanja; Vlahović, Branislav; Uskoković, Petar S.; Marinković, Aleksandar D.

(2017)

TY  - JOUR
AU  - Brković, Danijela V.
AU  - Pavlović, Vladimir B.
AU  - Pavlović, Vera P.
AU  - Obradović, Nina
AU  - Mitrić, Miodrag
AU  - Stevanović, Sanja
AU  - Vlahović, Branislav
AU  - Uskoković, Petar S.
AU  - Marinković, Aleksandar D.
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1753
AB  - The structural characteristics of polymer nanocomposites with functionalized multiwall carbon nanotubes (MWCNTs) in poly(methyl methacrylate) matrix have been studied in relation to nanofiller loading and surface functionality. Different functional groups have been covalently attached on the MWCNTs sidewalls in order to induce interfacial interactions at nanofiller/polymer interface, which resulted in an improved nanomechanical features. Structural properties of nanocomposites, studied with XRD and Raman analysis, indicated the most pronounced decrease in a degree of amorphousness for samples containing 0.5 and 1 wt% of MWCNTs functionalized with dapsone (dapson-MWCNT) and diethyl malonate (dem-MWCNT). SEM and TEM micrographs confirmed improved dispersibility of the MWCNTs modified with aromatic structure of dapsone inside PMMA matrix. A significant increase in a glass transition temperature of over 60 degrees C has been found for the 1 wt% dapson-MWCNT nanocomposite. Additional modification of dapson-MWCNT by further increasing aromaticity and voluminosity of attached moiety (fid-MWCNT), showed 30 degrees C increases in a glass transition temperature at 4 wt% of nanofiller loading, which is similar to shift of 37 degrees C with loading of MWCNTs modified with ester terminal group. A maximum increase of 56% of reduced modulus and 86% of hardness was obtained for 1 wt% loading of dapson-MWCNT nanofiller. (C) 2016 Society of Plastics Engineers
T2  - Polymer Composites
T1  - Structural Properties of the Multiwall Carbon Nanotubes/Poly(Methyl Methacrylate) Nanocomposites: Effect of the Multiwall Carbon Nanotubes Covalent Functionalization
VL  - 38
IS  - SI
SP  - E472
EP  - E489
DO  - 10.1002/pc.23996
ER  - 
@article{
author = "Brković, Danijela V. and Pavlović, Vladimir B. and Pavlović, Vera P. and Obradović, Nina and Mitrić, Miodrag and Stevanović, Sanja and Vlahović, Branislav and Uskoković, Petar S. and Marinković, Aleksandar D.",
year = "2017",
abstract = "The structural characteristics of polymer nanocomposites with functionalized multiwall carbon nanotubes (MWCNTs) in poly(methyl methacrylate) matrix have been studied in relation to nanofiller loading and surface functionality. Different functional groups have been covalently attached on the MWCNTs sidewalls in order to induce interfacial interactions at nanofiller/polymer interface, which resulted in an improved nanomechanical features. Structural properties of nanocomposites, studied with XRD and Raman analysis, indicated the most pronounced decrease in a degree of amorphousness for samples containing 0.5 and 1 wt% of MWCNTs functionalized with dapsone (dapson-MWCNT) and diethyl malonate (dem-MWCNT). SEM and TEM micrographs confirmed improved dispersibility of the MWCNTs modified with aromatic structure of dapsone inside PMMA matrix. A significant increase in a glass transition temperature of over 60 degrees C has been found for the 1 wt% dapson-MWCNT nanocomposite. Additional modification of dapson-MWCNT by further increasing aromaticity and voluminosity of attached moiety (fid-MWCNT), showed 30 degrees C increases in a glass transition temperature at 4 wt% of nanofiller loading, which is similar to shift of 37 degrees C with loading of MWCNTs modified with ester terminal group. A maximum increase of 56% of reduced modulus and 86% of hardness was obtained for 1 wt% loading of dapson-MWCNT nanofiller. (C) 2016 Society of Plastics Engineers",
journal = "Polymer Composites",
title = "Structural Properties of the Multiwall Carbon Nanotubes/Poly(Methyl Methacrylate) Nanocomposites: Effect of the Multiwall Carbon Nanotubes Covalent Functionalization",
volume = "38",
number = "SI",
pages = "E472-E489",
doi = "10.1002/pc.23996"
}
Brković, D. V., Pavlović, V. B., Pavlović, V. P., Obradović, N., Mitrić, M., Stevanović, S., Vlahović, B., Uskoković, P. S.,& Marinković, A. D.. (2017). Structural Properties of the Multiwall Carbon Nanotubes/Poly(Methyl Methacrylate) Nanocomposites: Effect of the Multiwall Carbon Nanotubes Covalent Functionalization. in Polymer Composites, 38(SI), E472-E489.
https://doi.org/10.1002/pc.23996
Brković DV, Pavlović VB, Pavlović VP, Obradović N, Mitrić M, Stevanović S, Vlahović B, Uskoković PS, Marinković AD. Structural Properties of the Multiwall Carbon Nanotubes/Poly(Methyl Methacrylate) Nanocomposites: Effect of the Multiwall Carbon Nanotubes Covalent Functionalization. in Polymer Composites. 2017;38(SI):E472-E489.
doi:10.1002/pc.23996 .
Brković, Danijela V., Pavlović, Vladimir B., Pavlović, Vera P., Obradović, Nina, Mitrić, Miodrag, Stevanović, Sanja, Vlahović, Branislav, Uskoković, Petar S., Marinković, Aleksandar D., "Structural Properties of the Multiwall Carbon Nanotubes/Poly(Methyl Methacrylate) Nanocomposites: Effect of the Multiwall Carbon Nanotubes Covalent Functionalization" in Polymer Composites, 38, no. SI (2017):E472-E489,
https://doi.org/10.1002/pc.23996 . .
11
6
11

Protective properties of cataphoretic epoxy coating on aluminium alloy AA6060 modified with electrodeposited Ce-based coatings: Effect of post-treatment

Živković, Ljiljana; Bajat, Jelena B.; Popić, Jovan P.; Jegdić, Bore V.; Stevanović, Sanja; Mišković-Stanković, Vesna B.

(2015)

TY  - JOUR
AU  - Živković, Ljiljana
AU  - Bajat, Jelena B.
AU  - Popić, Jovan P.
AU  - Jegdić, Bore V.
AU  - Stevanović, Sanja
AU  - Mišković-Stanković, Vesna B.
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/384
AB  - Ce-based conversion coatings (CeCCs) are a promising alternative to toxic chromate coatings on the metal substrates. In this work the CeCCs were electrodeposited on aluminium alloy AA6060 from aqueous solution of Ce(NO3)(3) at different potentials (-0.95 V, -1.2 V and -1.4V). Effect of deposition potential and post-treatment in the phosphate solution on morphology and protective properties of CeCCs with top cataphoretic epoxy coating was studied. To assess the differences between the protective systems, originating from the different CeCCs pre-treatments, electrochemical impedance spectroscopy (EIS), polarization measurements, AFM and SEM/EDS analysis were used. The EIS study was undertaken to follow the evolution of corrosion behaviour of epoxy coating/CeCCs protective systems over prolonged time of exposure to the chloride environment (3 wt.% NaCl). Results suggest significantly improved corrosion stability of epoxy coating on AA6060 with as-deposited CeCCs sub-layers with respect to the same epoxy coatings with phosphate post-treated CeCCs. The far best protective properties, i.e., the greatest value of pore resistance and the lowest value of corrosion current density were provided by the epoxy coating/CeCC protective system with CeCC deposited at -1.2V and without post-treatment. (C) 2014 Elsevier B.V. All rights reserved.
T2  - Progress in Organic Coatings
T1  - Protective properties of cataphoretic epoxy coating on aluminium alloy AA6060 modified with electrodeposited Ce-based coatings: Effect of post-treatment
VL  - 79
SP  - 43
EP  - 52
DO  - 10.1016/j.porgcoat.2014.10.014
ER  - 
@article{
author = "Živković, Ljiljana and Bajat, Jelena B. and Popić, Jovan P. and Jegdić, Bore V. and Stevanović, Sanja and Mišković-Stanković, Vesna B.",
year = "2015",
abstract = "Ce-based conversion coatings (CeCCs) are a promising alternative to toxic chromate coatings on the metal substrates. In this work the CeCCs were electrodeposited on aluminium alloy AA6060 from aqueous solution of Ce(NO3)(3) at different potentials (-0.95 V, -1.2 V and -1.4V). Effect of deposition potential and post-treatment in the phosphate solution on morphology and protective properties of CeCCs with top cataphoretic epoxy coating was studied. To assess the differences between the protective systems, originating from the different CeCCs pre-treatments, electrochemical impedance spectroscopy (EIS), polarization measurements, AFM and SEM/EDS analysis were used. The EIS study was undertaken to follow the evolution of corrosion behaviour of epoxy coating/CeCCs protective systems over prolonged time of exposure to the chloride environment (3 wt.% NaCl). Results suggest significantly improved corrosion stability of epoxy coating on AA6060 with as-deposited CeCCs sub-layers with respect to the same epoxy coatings with phosphate post-treated CeCCs. The far best protective properties, i.e., the greatest value of pore resistance and the lowest value of corrosion current density were provided by the epoxy coating/CeCC protective system with CeCC deposited at -1.2V and without post-treatment. (C) 2014 Elsevier B.V. All rights reserved.",
journal = "Progress in Organic Coatings",
title = "Protective properties of cataphoretic epoxy coating on aluminium alloy AA6060 modified with electrodeposited Ce-based coatings: Effect of post-treatment",
volume = "79",
pages = "43-52",
doi = "10.1016/j.porgcoat.2014.10.014"
}
Živković, L., Bajat, J. B., Popić, J. P., Jegdić, B. V., Stevanović, S.,& Mišković-Stanković, V. B.. (2015). Protective properties of cataphoretic epoxy coating on aluminium alloy AA6060 modified with electrodeposited Ce-based coatings: Effect of post-treatment. in Progress in Organic Coatings, 79, 43-52.
https://doi.org/10.1016/j.porgcoat.2014.10.014
Živković L, Bajat JB, Popić JP, Jegdić BV, Stevanović S, Mišković-Stanković VB. Protective properties of cataphoretic epoxy coating on aluminium alloy AA6060 modified with electrodeposited Ce-based coatings: Effect of post-treatment. in Progress in Organic Coatings. 2015;79:43-52.
doi:10.1016/j.porgcoat.2014.10.014 .
Živković, Ljiljana, Bajat, Jelena B., Popić, Jovan P., Jegdić, Bore V., Stevanović, Sanja, Mišković-Stanković, Vesna B., "Protective properties of cataphoretic epoxy coating on aluminium alloy AA6060 modified with electrodeposited Ce-based coatings: Effect of post-treatment" in Progress in Organic Coatings, 79 (2015):43-52,
https://doi.org/10.1016/j.porgcoat.2014.10.014 . .
18
13
16