Antić, Bratislav

Link to this page

Authority KeyName Variants
orcid::0000-0002-5693-6401
  • Antić, Bratislav (111)
Projects
Magnetic and radionuclide labeled nanostructured materials for medical applications Strengthening of the MagBioVin Research and Innovation Team for Development of Novel Approaches for Tumour Therapy based on Nanostructured Materials
Application of advanced oxidation processes and nanostructured oxide materials for the removal of pollutants from the environment, development and optimisation of instrumental techniques for efficiency monitoring EUREKA [E! 13303 MED-BIO-TEST]
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200168 (University of Belgrade, Faculty of Chemistry) Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM)
EUREKA [Project E!13303] Eureka Project [E!9982]
Allergens, antibodies, enzymes and small physiologically important molecules: design, structure, function and relevance Ministry of Education, Science and Technological Development of the Republic of Serbia [E!9982]
Ministry of Education, Science and Technological Development of the Republic of Serbia through the Eureka Project (E!9982) Serbian Ministry of Science and Environmental Protection
APVV [0189-10] Bilateral cooperation Serbia–Croatia [project No 337-00-205/2019-09/03]
Bilateral Croatian-Chinese scientific project “Iron oxide nanostructures for environmental and energy applications” bilateral Croatian-Chinese scientific project "Synthesis and characterization of iron oxide nanoparticles and nanofibers and their application in environmental catalysis"
bilateral Croatian-Serbian scientific project " Nanostructured iron oxides for environmental applications" Bilateral Croatian-Serbian scientific project “Nanostructured iron oxides for environmental applications”
Bilateral Serbian-Croatian scientific project (Ministry of Education, Science and Technological Development of the Republic of Serbia & the Ministry of Science and Education of the Republic of Croatia) CEEPUS networkCIII-CZ-0212-12-1819-M-120151 (Education of Modern Analytical and Bioanalytical Methods).
Center of excellence of environmental health (ITMS No. 26240120033) COST Action CA [19114]
COST ACTION-Multifunctional Nanoparticles for Magnetic Hyperthermia and Indirect Radiation Therapy (RADIOMAG) [TD 1402] COST Action RADIOMAG [TD1402]
COST action TD1402 (RADIOMAG) Croatian Science Foundation [IP-2016-06-825]
Croatian Science Foundation (IP-2016-06-8254) DFG within the framework of the Priority Program Crystalline None quilibrium Phases [SPP 1415], VEGA [2/0097/13, 2/0097/14], APVV [14-0103, 0528-11], DAAD

Author's Bibliography

Self-Heating Flower-like Nanoconstructs with Limited Incorporation of Yttrium in Maghemite: Effect of Chemical Composition on Heating Efficiency, Cytotoxicity and Genotoxicity

Ognjanović, Miloš; Jaćimović, Željko; Kosović-Perutović, Milica; Besu Žižak, Irina; Stanojković, Tatjana; Žižak, Željko; Dojčinović, Biljana; Stanković, Dalibor M.; Antić, Bratislav

(2023)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Jaćimović, Željko
AU  - Kosović-Perutović, Milica
AU  - Besu Žižak, Irina
AU  - Stanojković, Tatjana
AU  - Žižak, Željko
AU  - Dojčinović, Biljana
AU  - Stanković, Dalibor M.
AU  - Antić, Bratislav
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10733
AB  - Partial cation substitution can significantly change the physical properties of parent compounds. By controlling the chemical composition and knowing the mutual relationship between composition and physical properties, it is possible to tailor the properties of materials to those that are superior for desired technological application. Using the polyol synthesis procedure, a series of yttrium-substituted iron oxide nanoconstructs, γ-Fe2−xYxO3 (YIONs), was prepared. It was found that Y3+ could substitute Fe3+ in the crystal structures of maghemite (γ-Fe2O3) up to a limited concentration of ~1.5% (γ-Fe1.969Y0.031O3). Analysis of TEM micrographs showed that crystallites or particles were aggregated in flower-like structures with diameters from 53.7 ± 6.2 nm to 97.3 ± 37.0 nm, depending on yttrium concentration. To be investigated for potential applications as magnetic hyperthermia agents, YIONs were tested twice: their heating efficiency was tested and their toxicity was investigated. The Specific Absorption Rate (SAR) values were in the range of 32.6 W/g to 513 W/g and significantly decreased with increased yttrium concentration in the samples. Intrinsic loss power (ILP) for γ-Fe2O3 and γ-Fe1.995Y0.005O3 were ~8–9 nH·m2/Kg, which pointed to their excellent heating efficiency. IC50 values of investigated samples against cancer (HeLa) and normal (MRC-5) cells decreased with increased yttrium concentration and were higher than ~300 μg/mL. The samples of γ-Fe2−xYxO3 did not show a genotoxic effect. The results of toxicity studies show that YIONs are suitable for further in vitro/in vivo studies toward to their potential medical applications, while results of heat generation point to their potential use in magnetic hyperthermia cancer treatment or use as self-heating systems for other technological applications such as catalysis.
T2  - Nanomaterials
T1  - Self-Heating Flower-like Nanoconstructs with Limited Incorporation of Yttrium in Maghemite: Effect of Chemical Composition on Heating Efficiency, Cytotoxicity and Genotoxicity
VL  - 13
IS  - 5
SP  - 870
DO  - 10.3390/nano13050870
ER  - 
@article{
author = "Ognjanović, Miloš and Jaćimović, Željko and Kosović-Perutović, Milica and Besu Žižak, Irina and Stanojković, Tatjana and Žižak, Željko and Dojčinović, Biljana and Stanković, Dalibor M. and Antić, Bratislav",
year = "2023",
abstract = "Partial cation substitution can significantly change the physical properties of parent compounds. By controlling the chemical composition and knowing the mutual relationship between composition and physical properties, it is possible to tailor the properties of materials to those that are superior for desired technological application. Using the polyol synthesis procedure, a series of yttrium-substituted iron oxide nanoconstructs, γ-Fe2−xYxO3 (YIONs), was prepared. It was found that Y3+ could substitute Fe3+ in the crystal structures of maghemite (γ-Fe2O3) up to a limited concentration of ~1.5% (γ-Fe1.969Y0.031O3). Analysis of TEM micrographs showed that crystallites or particles were aggregated in flower-like structures with diameters from 53.7 ± 6.2 nm to 97.3 ± 37.0 nm, depending on yttrium concentration. To be investigated for potential applications as magnetic hyperthermia agents, YIONs were tested twice: their heating efficiency was tested and their toxicity was investigated. The Specific Absorption Rate (SAR) values were in the range of 32.6 W/g to 513 W/g and significantly decreased with increased yttrium concentration in the samples. Intrinsic loss power (ILP) for γ-Fe2O3 and γ-Fe1.995Y0.005O3 were ~8–9 nH·m2/Kg, which pointed to their excellent heating efficiency. IC50 values of investigated samples against cancer (HeLa) and normal (MRC-5) cells decreased with increased yttrium concentration and were higher than ~300 μg/mL. The samples of γ-Fe2−xYxO3 did not show a genotoxic effect. The results of toxicity studies show that YIONs are suitable for further in vitro/in vivo studies toward to their potential medical applications, while results of heat generation point to their potential use in magnetic hyperthermia cancer treatment or use as self-heating systems for other technological applications such as catalysis.",
journal = "Nanomaterials",
title = "Self-Heating Flower-like Nanoconstructs with Limited Incorporation of Yttrium in Maghemite: Effect of Chemical Composition on Heating Efficiency, Cytotoxicity and Genotoxicity",
volume = "13",
number = "5",
pages = "870",
doi = "10.3390/nano13050870"
}
Ognjanović, M., Jaćimović, Ž., Kosović-Perutović, M., Besu Žižak, I., Stanojković, T., Žižak, Ž., Dojčinović, B., Stanković, D. M.,& Antić, B.. (2023). Self-Heating Flower-like Nanoconstructs with Limited Incorporation of Yttrium in Maghemite: Effect of Chemical Composition on Heating Efficiency, Cytotoxicity and Genotoxicity. in Nanomaterials, 13(5), 870.
https://doi.org/10.3390/nano13050870
Ognjanović M, Jaćimović Ž, Kosović-Perutović M, Besu Žižak I, Stanojković T, Žižak Ž, Dojčinović B, Stanković DM, Antić B. Self-Heating Flower-like Nanoconstructs with Limited Incorporation of Yttrium in Maghemite: Effect of Chemical Composition on Heating Efficiency, Cytotoxicity and Genotoxicity. in Nanomaterials. 2023;13(5):870.
doi:10.3390/nano13050870 .
Ognjanović, Miloš, Jaćimović, Željko, Kosović-Perutović, Milica, Besu Žižak, Irina, Stanojković, Tatjana, Žižak, Željko, Dojčinović, Biljana, Stanković, Dalibor M., Antić, Bratislav, "Self-Heating Flower-like Nanoconstructs with Limited Incorporation of Yttrium in Maghemite: Effect of Chemical Composition on Heating Efficiency, Cytotoxicity and Genotoxicity" in Nanomaterials, 13, no. 5 (2023):870,
https://doi.org/10.3390/nano13050870 . .

Design of an ethidium bromide control circuit supported by deep theoretical insight

Vlahović, Filip; Ognjanović, Miloš; Đurđić, Slađana; Kukuruzar, Andrej; Antić, Bratislav; Dojčinović, Biljana; Stanković, Dalibor M.

(2023)

TY  - JOUR
AU  - Vlahović, Filip
AU  - Ognjanović, Miloš
AU  - Đurđić, Slađana
AU  - Kukuruzar, Andrej
AU  - Antić, Bratislav
AU  - Dojčinović, Biljana
AU  - Stanković, Dalibor M.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10919
AB  - We have set-up an electrochemical advanced oxidation process for ethidium bromide (1), based on the Eu-doped MnWO4 (Eu:MnWO4), obtained through a template-driven synthesis, along with developing a suitable monitoring method. Under galvanostatic conditions, Eu:MnWO4-coated graphite electrode serves as anode, applicable for removal of 1. To go further and augment the catalytic method, we have applied a modified carbon paste electrode for the monitoring of 1 with the limit of detection (LOD) of 54 nM. Enhancement of the hydrogen evolution reaction is an indication of electrocatalytic properties of the material, whereby developed method emerges as a candidate for straightforward application in electrochemical advanced oxidation processes (EAOPs). We have enriched experimental data with theoretical insights, provided by Density Functional Theory (DFT), and proposed oxidation mechanism of 1. Based on obtained results, we propose the new nanomaterial as a potent electrochemical modifier, suitable for catalytic treatment and process monitoring of the 1-polluted waters.
T2  - Applied Catalysis B: Environmental
T1  - Design of an ethidium bromide control circuit supported by deep theoretical insight
VL  - 334
SP  - 122819
DO  - 10.1016/j.apcatb.2023.122819
ER  - 
@article{
author = "Vlahović, Filip and Ognjanović, Miloš and Đurđić, Slađana and Kukuruzar, Andrej and Antić, Bratislav and Dojčinović, Biljana and Stanković, Dalibor M.",
year = "2023",
abstract = "We have set-up an electrochemical advanced oxidation process for ethidium bromide (1), based on the Eu-doped MnWO4 (Eu:MnWO4), obtained through a template-driven synthesis, along with developing a suitable monitoring method. Under galvanostatic conditions, Eu:MnWO4-coated graphite electrode serves as anode, applicable for removal of 1. To go further and augment the catalytic method, we have applied a modified carbon paste electrode for the monitoring of 1 with the limit of detection (LOD) of 54 nM. Enhancement of the hydrogen evolution reaction is an indication of electrocatalytic properties of the material, whereby developed method emerges as a candidate for straightforward application in electrochemical advanced oxidation processes (EAOPs). We have enriched experimental data with theoretical insights, provided by Density Functional Theory (DFT), and proposed oxidation mechanism of 1. Based on obtained results, we propose the new nanomaterial as a potent electrochemical modifier, suitable for catalytic treatment and process monitoring of the 1-polluted waters.",
journal = "Applied Catalysis B: Environmental",
title = "Design of an ethidium bromide control circuit supported by deep theoretical insight",
volume = "334",
pages = "122819",
doi = "10.1016/j.apcatb.2023.122819"
}
Vlahović, F., Ognjanović, M., Đurđić, S., Kukuruzar, A., Antić, B., Dojčinović, B.,& Stanković, D. M.. (2023). Design of an ethidium bromide control circuit supported by deep theoretical insight. in Applied Catalysis B: Environmental, 334, 122819.
https://doi.org/10.1016/j.apcatb.2023.122819
Vlahović F, Ognjanović M, Đurđić S, Kukuruzar A, Antić B, Dojčinović B, Stanković DM. Design of an ethidium bromide control circuit supported by deep theoretical insight. in Applied Catalysis B: Environmental. 2023;334:122819.
doi:10.1016/j.apcatb.2023.122819 .
Vlahović, Filip, Ognjanović, Miloš, Đurđić, Slađana, Kukuruzar, Andrej, Antić, Bratislav, Dojčinović, Biljana, Stanković, Dalibor M., "Design of an ethidium bromide control circuit supported by deep theoretical insight" in Applied Catalysis B: Environmental, 334 (2023):122819,
https://doi.org/10.1016/j.apcatb.2023.122819 . .
2

Synthesis, Characterization, and Therapeutic Efficacy of 177Lu-DMSA@SPIONs in Nanobrachytherapy of Solid Tumors

Stanković, Dragana; Radović, Magdalena; Stanković, Aljoša; Mirković, Marija; Vukadinović, Aleksandar; Mijović, Milica; Milanović, Zorana; Ognjanović, Miloš; Janković, Drina; Antić, Bratislav; Vranješ-Đurić, Sanja; Savić, Miroslav; Prijović, Željko

(2023)

TY  - JOUR
AU  - Stanković, Dragana
AU  - Radović, Magdalena
AU  - Stanković, Aljoša
AU  - Mirković, Marija
AU  - Vukadinović, Aleksandar
AU  - Mijović, Milica
AU  - Milanović, Zorana
AU  - Ognjanović, Miloš
AU  - Janković, Drina
AU  - Antić, Bratislav
AU  - Vranješ-Đurić, Sanja
AU  - Savić, Miroslav
AU  - Prijović, Željko
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11387
AB  - As an alternative to classical brachytherapy, intratumoral injection of radionuclide-labeled nanoparticles (nanobrachytherapy, NBT) has been investigated as a superior delivery method over an intravenous route for radionuclide therapy of solid tumors. We created superparamagnetic iron oxide nanoparticles (SPIONs) coated with meso-1,2-dimercaptosuccinic acid (DMSA) and radiolabeled with Lutetium-177 (177Lu), generating 177Lu-DMSA@SPIONs as a potential antitumor agent for nanobrachytherapy. Efficient radiolabeling of DMSA@SPIONS by 177Lu resulted in a stable bond with minimal leakage in vitro. After an intratumoral injection to mouse colorectal CT-26 or breast 4T1 subcutaneous tumors, the nanoparticles remained well localized at the injection site for weeks, with limited leakage. The dose of 3.70 MBq/100 µg/50 µL of 177Lu-DMSA@SPIONs applied intratumorally resulted in a high therapeutic efficacy, without signs of general toxicity. A decreased dose of 1.85 MBq/100 µg/50 µL still retained therapeutic efficacy, while an increased dose of 9.25 MBq/100 µg/50 µL did not significantly benefit the therapy. Histopathology analysis revealed that the 177Lu-DMSA@SPIONs act within a limited range around the injection site, which explains the good therapeutic efficacy achieved by a single administration of a relatively low dose without the need for increased or repeated dosing. Overall, 177Lu-DMSA@SPIONs are safe and potent agents suitable for intra-tumoral administration for localized tumor radionuclide therapy
T2  - Pharmaceutics
T1  - Synthesis, Characterization, and Therapeutic Efficacy of 177Lu-DMSA@SPIONs in Nanobrachytherapy of Solid Tumors
VL  - 15
IS  - 7
SP  - 1943
DO  - 10.3390/pharmaceutics15071943
ER  - 
@article{
author = "Stanković, Dragana and Radović, Magdalena and Stanković, Aljoša and Mirković, Marija and Vukadinović, Aleksandar and Mijović, Milica and Milanović, Zorana and Ognjanović, Miloš and Janković, Drina and Antić, Bratislav and Vranješ-Đurić, Sanja and Savić, Miroslav and Prijović, Željko",
year = "2023",
abstract = "As an alternative to classical brachytherapy, intratumoral injection of radionuclide-labeled nanoparticles (nanobrachytherapy, NBT) has been investigated as a superior delivery method over an intravenous route for radionuclide therapy of solid tumors. We created superparamagnetic iron oxide nanoparticles (SPIONs) coated with meso-1,2-dimercaptosuccinic acid (DMSA) and radiolabeled with Lutetium-177 (177Lu), generating 177Lu-DMSA@SPIONs as a potential antitumor agent for nanobrachytherapy. Efficient radiolabeling of DMSA@SPIONS by 177Lu resulted in a stable bond with minimal leakage in vitro. After an intratumoral injection to mouse colorectal CT-26 or breast 4T1 subcutaneous tumors, the nanoparticles remained well localized at the injection site for weeks, with limited leakage. The dose of 3.70 MBq/100 µg/50 µL of 177Lu-DMSA@SPIONs applied intratumorally resulted in a high therapeutic efficacy, without signs of general toxicity. A decreased dose of 1.85 MBq/100 µg/50 µL still retained therapeutic efficacy, while an increased dose of 9.25 MBq/100 µg/50 µL did not significantly benefit the therapy. Histopathology analysis revealed that the 177Lu-DMSA@SPIONs act within a limited range around the injection site, which explains the good therapeutic efficacy achieved by a single administration of a relatively low dose without the need for increased or repeated dosing. Overall, 177Lu-DMSA@SPIONs are safe and potent agents suitable for intra-tumoral administration for localized tumor radionuclide therapy",
journal = "Pharmaceutics",
title = "Synthesis, Characterization, and Therapeutic Efficacy of 177Lu-DMSA@SPIONs in Nanobrachytherapy of Solid Tumors",
volume = "15",
number = "7",
pages = "1943",
doi = "10.3390/pharmaceutics15071943"
}
Stanković, D., Radović, M., Stanković, A., Mirković, M., Vukadinović, A., Mijović, M., Milanović, Z., Ognjanović, M., Janković, D., Antić, B., Vranješ-Đurić, S., Savić, M.,& Prijović, Ž.. (2023). Synthesis, Characterization, and Therapeutic Efficacy of 177Lu-DMSA@SPIONs in Nanobrachytherapy of Solid Tumors. in Pharmaceutics, 15(7), 1943.
https://doi.org/10.3390/pharmaceutics15071943
Stanković D, Radović M, Stanković A, Mirković M, Vukadinović A, Mijović M, Milanović Z, Ognjanović M, Janković D, Antić B, Vranješ-Đurić S, Savić M, Prijović Ž. Synthesis, Characterization, and Therapeutic Efficacy of 177Lu-DMSA@SPIONs in Nanobrachytherapy of Solid Tumors. in Pharmaceutics. 2023;15(7):1943.
doi:10.3390/pharmaceutics15071943 .
Stanković, Dragana, Radović, Magdalena, Stanković, Aljoša, Mirković, Marija, Vukadinović, Aleksandar, Mijović, Milica, Milanović, Zorana, Ognjanović, Miloš, Janković, Drina, Antić, Bratislav, Vranješ-Đurić, Sanja, Savić, Miroslav, Prijović, Željko, "Synthesis, Characterization, and Therapeutic Efficacy of 177Lu-DMSA@SPIONs in Nanobrachytherapy of Solid Tumors" in Pharmaceutics, 15, no. 7 (2023):1943,
https://doi.org/10.3390/pharmaceutics15071943 . .
1

Engineering multi-core flower-like magnetic nanoparticles with high intrinsic loss power

Ognjanović, Miloš; Radović, Magdalena; Mirković, Marija; Vranješ-Đurić, Sanja; Dojčinović, Biljana; Stanković, Dalibor; Antić, Bratislav

(Society of Chemists and Technologists of Macedonia, 2023)

TY  - CONF
AU  - Ognjanović, Miloš
AU  - Radović, Magdalena
AU  - Mirković, Marija
AU  - Vranješ-Đurić, Sanja
AU  - Dojčinović, Biljana
AU  - Stanković, Dalibor
AU  - Antić, Bratislav
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11671
AB  - In the last decades, self-heating magnetic nanoparticles (MNPs) were engineered and investigated for magnetic hyperthermia (MH) and other applications such as catalysis and chemical synthesis. To be applied as nanoheaters for in vivo MH in cancer therapy, MNPs should have high heating efficiency expressed by Intrinsic Loss Power (ILP). One of the requirements for in vivo applications of MNPs is their non-toxicity. Hence, the most investigated MNPs for MH are based on iron oxides (magnetite and maghemite), which are non-toxic or slightly toxic. This work aimed to apply thepolyol-mediated protocol to engineer mixed Zn1-xMnxFe2O4 and analyze their heating abilities. To obtain a series of Zn1-xMnxFe2O4 samples with a specific nominal composition, the initial components, salts of Zn, Mn and Fe, were mixed in the appropriate stoichiometric ratio. The deviation from the target stoichiometry and the formation of samples with polyvalent ions and possibly vacancies were determined after ICP analysis. By analyzing TEM micrographs, we found that the change in the chemical composition does not affect the morphology. Multicore flower-like nanostructures with a size in the range of 47-63 nm were obtained. They consist of many cores (crystallites or nanoparticles) with a size of \textasciitilde10 nm. The samples show good colloidal stability, which is significant for their medical applications. Magnetization measurements in different DC fields showed that the samples are superparamagnetic at 300K and that the saturation magnetization values are in the range of \textasciitilde59-73 emu/g. The hyperthermic efficiency of the synthesized samples was tested in an external ac field of 252 kHz and a field strength of 15.9 kA/m. Significantly different values were obtained for the ILP parameter (in units nHm2/Kg): 5.77 (Zn0.098Mn0.447Fe2.455O4) ˃ 3.22 (Mn0.624Fe2.376O4) ˃ 2.04 (Zn0.182Mn0.344Fe2.474O4) ˃ 1.36 (Zn0.309Mn0.240Fe2.451O4) ˃ 1.01 (Zn0.394Mn0.138Fe2.468O4) ˃ 0.34 (Zn0.640Fe2.360O4). To explain the values of the ILP parameter, additional research is required, which includes the analysis of the influence of local defects and cation distribution on the magnetism of the investigated nanostructures. Also, significantly high ILP values indicate that some samples can be selected and further tested for in vitro/in vivo applications.
PB  - Society of Chemists and Technologists of Macedonia
C3  - 26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia
T1  - Engineering multi-core flower-like magnetic nanoparticles with high intrinsic loss power
SP  - 185
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11671
ER  - 
@conference{
author = "Ognjanović, Miloš and Radović, Magdalena and Mirković, Marija and Vranješ-Đurić, Sanja and Dojčinović, Biljana and Stanković, Dalibor and Antić, Bratislav",
year = "2023",
abstract = "In the last decades, self-heating magnetic nanoparticles (MNPs) were engineered and investigated for magnetic hyperthermia (MH) and other applications such as catalysis and chemical synthesis. To be applied as nanoheaters for in vivo MH in cancer therapy, MNPs should have high heating efficiency expressed by Intrinsic Loss Power (ILP). One of the requirements for in vivo applications of MNPs is their non-toxicity. Hence, the most investigated MNPs for MH are based on iron oxides (magnetite and maghemite), which are non-toxic or slightly toxic. This work aimed to apply thepolyol-mediated protocol to engineer mixed Zn1-xMnxFe2O4 and analyze their heating abilities. To obtain a series of Zn1-xMnxFe2O4 samples with a specific nominal composition, the initial components, salts of Zn, Mn and Fe, were mixed in the appropriate stoichiometric ratio. The deviation from the target stoichiometry and the formation of samples with polyvalent ions and possibly vacancies were determined after ICP analysis. By analyzing TEM micrographs, we found that the change in the chemical composition does not affect the morphology. Multicore flower-like nanostructures with a size in the range of 47-63 nm were obtained. They consist of many cores (crystallites or nanoparticles) with a size of \textasciitilde10 nm. The samples show good colloidal stability, which is significant for their medical applications. Magnetization measurements in different DC fields showed that the samples are superparamagnetic at 300K and that the saturation magnetization values are in the range of \textasciitilde59-73 emu/g. The hyperthermic efficiency of the synthesized samples was tested in an external ac field of 252 kHz and a field strength of 15.9 kA/m. Significantly different values were obtained for the ILP parameter (in units nHm2/Kg): 5.77 (Zn0.098Mn0.447Fe2.455O4) ˃ 3.22 (Mn0.624Fe2.376O4) ˃ 2.04 (Zn0.182Mn0.344Fe2.474O4) ˃ 1.36 (Zn0.309Mn0.240Fe2.451O4) ˃ 1.01 (Zn0.394Mn0.138Fe2.468O4) ˃ 0.34 (Zn0.640Fe2.360O4). To explain the values of the ILP parameter, additional research is required, which includes the analysis of the influence of local defects and cation distribution on the magnetism of the investigated nanostructures. Also, significantly high ILP values indicate that some samples can be selected and further tested for in vitro/in vivo applications.",
publisher = "Society of Chemists and Technologists of Macedonia",
journal = "26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia",
title = "Engineering multi-core flower-like magnetic nanoparticles with high intrinsic loss power",
pages = "185",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11671"
}
Ognjanović, M., Radović, M., Mirković, M., Vranješ-Đurić, S., Dojčinović, B., Stanković, D.,& Antić, B.. (2023). Engineering multi-core flower-like magnetic nanoparticles with high intrinsic loss power. in 26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia
Society of Chemists and Technologists of Macedonia., 185.
https://hdl.handle.net/21.15107/rcub_vinar_11671
Ognjanović M, Radović M, Mirković M, Vranješ-Đurić S, Dojčinović B, Stanković D, Antić B. Engineering multi-core flower-like magnetic nanoparticles with high intrinsic loss power. in 26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia. 2023;:185.
https://hdl.handle.net/21.15107/rcub_vinar_11671 .
Ognjanović, Miloš, Radović, Magdalena, Mirković, Marija, Vranješ-Đurić, Sanja, Dojčinović, Biljana, Stanković, Dalibor, Antić, Bratislav, "Engineering multi-core flower-like magnetic nanoparticles with high intrinsic loss power" in 26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia (2023):185,
https://hdl.handle.net/21.15107/rcub_vinar_11671 .

Radiolabeled surface-modified single-core (Mg,Fe)3O4 colloidal nanoparticles as vectors in radionuclidetherapy of cancer

Ognjanović, Miloš; Stanojković, Tatjana; Dojčinović, Biljana; Radović, Magdalena; Mirković, Marija; Vranješ-Đurić, Sanja; Antić, Bratislav

(Society of Chemists and Technologists of Macedonia, 2023)

TY  - CONF
AU  - Ognjanović, Miloš
AU  - Stanojković, Tatjana
AU  - Dojčinović, Biljana
AU  - Radović, Magdalena
AU  - Mirković, Marija
AU  - Vranješ-Đurić, Sanja
AU  - Antić, Bratislav
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11672
AB  - A series of MgxFe3-xO4 (x=0, 0.1, 0.2, 0.4, 0.6, 0.8, and 1) magnetic nanoparticles (MNP) were synthesized by a two-step procedure, a co-precipitation method followed by hydrothermal treatment in a microwave field. The MNP are single-core, with crystallite size gradually decreasing from 15.5(3) up to 2.5(3) nm with an increase ofx. TEM images show pseudospherical log-normally distributed particles with an average particle diameter of 19.8 nm and a polydispersity index of 26.1% for magnetite. The particle diameter decreases with the increase of magnesium (x) in the formula unit. The colloidal stability of MNP was achieved by their surface modification with citric acid (CA), oleic acid (OA) and polyethylene glycol (PEG). The cytotoxic activity of uncoated and coated Mg0.6Fe2.4O4 was tested against target malignant cells (HeLa, LC174, A549) and normal MRC5 cells. The investigated MNP show moderate cytotoxic activity against the tested malignant cells in vitro. In contrast, MNP didn’tshow any significant cytotoxic effect against normal cells. HeLa cells exhibited the highest susceptibility among the malignant cells. Mg0.6Fe2.4O4@OA show good cytotoxic activity against all examined malignant cells, significantly higher than other tested MNP. It can be seen that Mg0.6Fe2.4O4@PEG show a lower cytotoxic activity compared to all analyzed MNP. A direct method was used for labeling with radionuclide 90Y, which involves incubation of MNP with 90Y at a certain temperature and time. The labeling yield of the 90Y-coated MNP was determined by analyzing the radiochemical purity after labeling. 90YMg0.2Fe2.8O4@PEG were labeled in high yield (100%), while the yield for 90YMg0.2Fe2.8O4@CA was 83%. In vitro stability of 90Y-coated MNP at room temperature in physiological solution and human serum was monitored within 72 h from the moment of labeling by determining the radiochemical purity of ITLC-SG by radio chromatographic method. The stability of 90Y-Mg0.2Fe2.8O4@PEG was about 97%, while 90Y-Mg0.2Fe2.8O4@CA stability was 73%. The results of this study indicate that radiolabeled surface-modified (Mg, Fe)3O4 can be used as vectors in radionuclide therapy of malignant diseases.
PB  - Society of Chemists and Technologists of Macedonia
C3  - 26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia
T1  - Radiolabeled surface-modified single-core (Mg,Fe)3O4 colloidal nanoparticles as vectors in radionuclidetherapy of cancer
SP  - 186
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11672
ER  - 
@conference{
author = "Ognjanović, Miloš and Stanojković, Tatjana and Dojčinović, Biljana and Radović, Magdalena and Mirković, Marija and Vranješ-Đurić, Sanja and Antić, Bratislav",
year = "2023",
abstract = "A series of MgxFe3-xO4 (x=0, 0.1, 0.2, 0.4, 0.6, 0.8, and 1) magnetic nanoparticles (MNP) were synthesized by a two-step procedure, a co-precipitation method followed by hydrothermal treatment in a microwave field. The MNP are single-core, with crystallite size gradually decreasing from 15.5(3) up to 2.5(3) nm with an increase ofx. TEM images show pseudospherical log-normally distributed particles with an average particle diameter of 19.8 nm and a polydispersity index of 26.1% for magnetite. The particle diameter decreases with the increase of magnesium (x) in the formula unit. The colloidal stability of MNP was achieved by their surface modification with citric acid (CA), oleic acid (OA) and polyethylene glycol (PEG). The cytotoxic activity of uncoated and coated Mg0.6Fe2.4O4 was tested against target malignant cells (HeLa, LC174, A549) and normal MRC5 cells. The investigated MNP show moderate cytotoxic activity against the tested malignant cells in vitro. In contrast, MNP didn’tshow any significant cytotoxic effect against normal cells. HeLa cells exhibited the highest susceptibility among the malignant cells. Mg0.6Fe2.4O4@OA show good cytotoxic activity against all examined malignant cells, significantly higher than other tested MNP. It can be seen that Mg0.6Fe2.4O4@PEG show a lower cytotoxic activity compared to all analyzed MNP. A direct method was used for labeling with radionuclide 90Y, which involves incubation of MNP with 90Y at a certain temperature and time. The labeling yield of the 90Y-coated MNP was determined by analyzing the radiochemical purity after labeling. 90YMg0.2Fe2.8O4@PEG were labeled in high yield (100%), while the yield for 90YMg0.2Fe2.8O4@CA was 83%. In vitro stability of 90Y-coated MNP at room temperature in physiological solution and human serum was monitored within 72 h from the moment of labeling by determining the radiochemical purity of ITLC-SG by radio chromatographic method. The stability of 90Y-Mg0.2Fe2.8O4@PEG was about 97%, while 90Y-Mg0.2Fe2.8O4@CA stability was 73%. The results of this study indicate that radiolabeled surface-modified (Mg, Fe)3O4 can be used as vectors in radionuclide therapy of malignant diseases.",
publisher = "Society of Chemists and Technologists of Macedonia",
journal = "26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia",
title = "Radiolabeled surface-modified single-core (Mg,Fe)3O4 colloidal nanoparticles as vectors in radionuclidetherapy of cancer",
pages = "186",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11672"
}
Ognjanović, M., Stanojković, T., Dojčinović, B., Radović, M., Mirković, M., Vranješ-Đurić, S.,& Antić, B.. (2023). Radiolabeled surface-modified single-core (Mg,Fe)3O4 colloidal nanoparticles as vectors in radionuclidetherapy of cancer. in 26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia
Society of Chemists and Technologists of Macedonia., 186.
https://hdl.handle.net/21.15107/rcub_vinar_11672
Ognjanović M, Stanojković T, Dojčinović B, Radović M, Mirković M, Vranješ-Đurić S, Antić B. Radiolabeled surface-modified single-core (Mg,Fe)3O4 colloidal nanoparticles as vectors in radionuclidetherapy of cancer. in 26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia. 2023;:186.
https://hdl.handle.net/21.15107/rcub_vinar_11672 .
Ognjanović, Miloš, Stanojković, Tatjana, Dojčinović, Biljana, Radović, Magdalena, Mirković, Marija, Vranješ-Đurić, Sanja, Antić, Bratislav, "Radiolabeled surface-modified single-core (Mg,Fe)3O4 colloidal nanoparticles as vectors in radionuclidetherapy of cancer" in 26th Congress of the Society of Chemists and Technologists of Macedonia : the book of abstracts; September 20-23, Ohrid, Macedonia (2023):186,
https://hdl.handle.net/21.15107/rcub_vinar_11672 .

Multicore flower-like magnetite for potential application in cancer nanomedicine

Ognjanović, Miloš; Dojčinović, Biljana; Stanković, Dalibor; Mirković, Marija; Vranješ-Đurić, Sanja; Antić, Bratislav

(Association of Metallurgical Engineers of Serbia (AMES), 2023)

TY  - CONF
AU  - Ognjanović, Miloš
AU  - Dojčinović, Biljana
AU  - Stanković, Dalibor
AU  - Mirković, Marija
AU  - Vranješ-Đurić, Sanja
AU  - Antić, Bratislav
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11678
AB  - Nanomaterials are intensively researched both from the fundamental aspect due to new properties at the nanoscale, as well as the aspect of their application in many areas of technology. Magnetic nanoparticles (MNPs) are being tested for use in the diagnosis and therapy of diseases. A new field of medicine, Magnetic nanomedicine is primarily based on the application of MNPs as drug carriers, diagnostic agents in Magnetic Resonance Imaging (MRI) and heat generators in magnetic hyperthermia. Among nanoparticles, magnetic nanoplatforms based on iron oxides for cancer diagnosis and therapy (Cancer nanomedicine) are the most researched and clinically tested. This study presents the results of research into the physicochemical properties of iron oxide nanoparticles prepared by the polyol route, as well as their testing for potential applications as agents in magnetic hyperthermia (MH) and radionuclide carriers (vectors) for the diagnosis and therapy of malignant diseases. Multicore iron oxide structures synthesized by the "polyol" method represent clusters of single-core nanoparticles or crystallites. The dimensions of the single core particles are \textasciitilde13.5 nm, while the nanoflowers formed by clustering are \textasciitilde25 nm, depending on the applied synthesis parameters. For targeted medical applications, nanoflowers are coated with different ligands in order to increase colloidal stability and biocompatibility. The best results were by coating MNPs with polyacrylic acid (PAA). The multifunctionality of nanoflowers was investigated by measuring their hyperthermic efficiency for applications in magnetic hyperthermia and radiolabeling with diagnostic (99mTc) and therapeutic radionuclides (177Lu, 90Y). In addition to traditional methods of cancer therapy (surgery, radiotherapy, and chemotherapy), new ways of therapy such as MH are constantly being developed. MH is a therapy based on the property of MNPs that when placed in an alternating (AC) magnetic field, transform the electromagnetic energy of the field into heat. When located inside a tumor, MNPs can locally generate a temperature of 42-46 °C and destroy cancer cells by heat. The hyperthermic efficiency of MNPs is expressed through the Intrinsic Loss Power (ILP) parameter. The measured ILP was 7.3 nHm2/kg which is considered one of the higher reported values found in the literature for iron oxides. Nanoflowers were radiolabeled with 99mTc, 177Lu, and 90Y radionuclides. The in vitro stability of radiolabeling was investigated. Good in vitro stability indicates that the formed radioactive particles can be used simultaneously for bi-modal cancer therapy (MH and radionuclide therapy) or for MH therapy and diagnostics (theranostics), in the case of labeling with 99mTc.
PB  - Association of Metallurgical Engineers of Serbia (AMES)
C3  - MME SEE : 5th Metallurgical and Materials Engineering Congress of South-East Europe : book of abstracts; June 7-10, Trebinje, Bosnia and Herzegovina
T1  - Multicore flower-like magnetite for potential application in cancer nanomedicine
SP  - 21
EP  - 21
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11678
ER  - 
@conference{
author = "Ognjanović, Miloš and Dojčinović, Biljana and Stanković, Dalibor and Mirković, Marija and Vranješ-Đurić, Sanja and Antić, Bratislav",
year = "2023",
abstract = "Nanomaterials are intensively researched both from the fundamental aspect due to new properties at the nanoscale, as well as the aspect of their application in many areas of technology. Magnetic nanoparticles (MNPs) are being tested for use in the diagnosis and therapy of diseases. A new field of medicine, Magnetic nanomedicine is primarily based on the application of MNPs as drug carriers, diagnostic agents in Magnetic Resonance Imaging (MRI) and heat generators in magnetic hyperthermia. Among nanoparticles, magnetic nanoplatforms based on iron oxides for cancer diagnosis and therapy (Cancer nanomedicine) are the most researched and clinically tested. This study presents the results of research into the physicochemical properties of iron oxide nanoparticles prepared by the polyol route, as well as their testing for potential applications as agents in magnetic hyperthermia (MH) and radionuclide carriers (vectors) for the diagnosis and therapy of malignant diseases. Multicore iron oxide structures synthesized by the "polyol" method represent clusters of single-core nanoparticles or crystallites. The dimensions of the single core particles are \textasciitilde13.5 nm, while the nanoflowers formed by clustering are \textasciitilde25 nm, depending on the applied synthesis parameters. For targeted medical applications, nanoflowers are coated with different ligands in order to increase colloidal stability and biocompatibility. The best results were by coating MNPs with polyacrylic acid (PAA). The multifunctionality of nanoflowers was investigated by measuring their hyperthermic efficiency for applications in magnetic hyperthermia and radiolabeling with diagnostic (99mTc) and therapeutic radionuclides (177Lu, 90Y). In addition to traditional methods of cancer therapy (surgery, radiotherapy, and chemotherapy), new ways of therapy such as MH are constantly being developed. MH is a therapy based on the property of MNPs that when placed in an alternating (AC) magnetic field, transform the electromagnetic energy of the field into heat. When located inside a tumor, MNPs can locally generate a temperature of 42-46 °C and destroy cancer cells by heat. The hyperthermic efficiency of MNPs is expressed through the Intrinsic Loss Power (ILP) parameter. The measured ILP was 7.3 nHm2/kg which is considered one of the higher reported values found in the literature for iron oxides. Nanoflowers were radiolabeled with 99mTc, 177Lu, and 90Y radionuclides. The in vitro stability of radiolabeling was investigated. Good in vitro stability indicates that the formed radioactive particles can be used simultaneously for bi-modal cancer therapy (MH and radionuclide therapy) or for MH therapy and diagnostics (theranostics), in the case of labeling with 99mTc.",
publisher = "Association of Metallurgical Engineers of Serbia (AMES)",
journal = "MME SEE : 5th Metallurgical and Materials Engineering Congress of South-East Europe : book of abstracts; June 7-10, Trebinje, Bosnia and Herzegovina",
title = "Multicore flower-like magnetite for potential application in cancer nanomedicine",
pages = "21-21",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11678"
}
Ognjanović, M., Dojčinović, B., Stanković, D., Mirković, M., Vranješ-Đurić, S.,& Antić, B.. (2023). Multicore flower-like magnetite for potential application in cancer nanomedicine. in MME SEE : 5th Metallurgical and Materials Engineering Congress of South-East Europe : book of abstracts; June 7-10, Trebinje, Bosnia and Herzegovina
Association of Metallurgical Engineers of Serbia (AMES)., 21-21.
https://hdl.handle.net/21.15107/rcub_vinar_11678
Ognjanović M, Dojčinović B, Stanković D, Mirković M, Vranješ-Đurić S, Antić B. Multicore flower-like magnetite for potential application in cancer nanomedicine. in MME SEE : 5th Metallurgical and Materials Engineering Congress of South-East Europe : book of abstracts; June 7-10, Trebinje, Bosnia and Herzegovina. 2023;:21-21.
https://hdl.handle.net/21.15107/rcub_vinar_11678 .
Ognjanović, Miloš, Dojčinović, Biljana, Stanković, Dalibor, Mirković, Marija, Vranješ-Đurić, Sanja, Antić, Bratislav, "Multicore flower-like magnetite for potential application in cancer nanomedicine" in MME SEE : 5th Metallurgical and Materials Engineering Congress of South-East Europe : book of abstracts; June 7-10, Trebinje, Bosnia and Herzegovina (2023):21-21,
https://hdl.handle.net/21.15107/rcub_vinar_11678 .

Nanoscale metal oxides as materials used for modification of carbon-based electrodes in electrochemical sensors

Ognjanović, Miloš; Dojčinović, Biljana; Antić, Bratislav; Stanković, Dalibor

(Association of Metallurgical Engineers of Serbia (AMES), 2023)

TY  - CONF
AU  - Ognjanović, Miloš
AU  - Dojčinović, Biljana
AU  - Antić, Bratislav
AU  - Stanković, Dalibor
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11679
AB  - Nanostructured metal oxides used as modifiers of various carbon-based working electrodes serve as the basis for designing sensitive electrochemical sensors to detect desired analytes. The sensors we develop are distinguished by low detection limit (LOD), high analyte selectivity, sensitivity, and versatile real-world sample use case. In this work we present the design of two based on metal oxides as modifiers of carbon paste working electrode (CPE) and their applications in the electrochemical determination of levodopa and adrenaline. The physicochemical properties of designed materials were analyzed by complementary experimental technics (XRPD, TEM, SEM, EDS, electrochemical measurements) to determine their (micro)structural properties and correlate them with electroanalytical performance. Europium has been considered a significant lanthanide element with higher redox reaction behavior. We conducted a hydrothermal synthesis of Eu2O3@Cr2O3 and used them for CPE modification. The proposed Eu2O3@Cr2O3/CPE electrode was used to develop an analytical procedure quantifying L-Dopa in a wide micromolar linear range (1-100 µM), high sensitivity of 1.38 µA µM−1 cm−2 and a low detection limit (LOD = 0.72 µM). On the other side, we investigated the physicochemical properties of the gallium/bismuth mixed oxides and studied the influence of different Ga2O3:Bi2O3 ratios on the electrochemical detection of adrenaline. Square wave voltammetry was optimized, and the best electrode showed a wide linear working range of 7-100 μM, under optimized conditions. The LOD for the proposed sensor was calculated to be 1.9 μM, with a low limit of quantification (LOQ = 5.8 μM). The total performance of the sensors, particularly their performance on real-world samples and their potential for commercialization, had to be carefully evaluated during the sensor construction. Our team is devoted to developing highly selective electrochemical sensors based on nanomaterials to be potentially used as the basis for the fabrication of high-performance miniature devices with exceptional sensitivity to specific analytes, like adrenaline and L-Dopa, in this research.
PB  - Association of Metallurgical Engineers of Serbia (AMES)
C3  - MME SEE : 5th Metallurgical and Materials Engineering Congress of South-East Europe : book of abstracts; June 7-10, Trebinje, Bosnia and Herzegovina
T1  - Nanoscale metal oxides as materials used for modification of carbon-based electrodes in electrochemical sensors
SP  - 76
EP  - 76
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11679
ER  - 
@conference{
author = "Ognjanović, Miloš and Dojčinović, Biljana and Antić, Bratislav and Stanković, Dalibor",
year = "2023",
abstract = "Nanostructured metal oxides used as modifiers of various carbon-based working electrodes serve as the basis for designing sensitive electrochemical sensors to detect desired analytes. The sensors we develop are distinguished by low detection limit (LOD), high analyte selectivity, sensitivity, and versatile real-world sample use case. In this work we present the design of two based on metal oxides as modifiers of carbon paste working electrode (CPE) and their applications in the electrochemical determination of levodopa and adrenaline. The physicochemical properties of designed materials were analyzed by complementary experimental technics (XRPD, TEM, SEM, EDS, electrochemical measurements) to determine their (micro)structural properties and correlate them with electroanalytical performance. Europium has been considered a significant lanthanide element with higher redox reaction behavior. We conducted a hydrothermal synthesis of Eu2O3@Cr2O3 and used them for CPE modification. The proposed Eu2O3@Cr2O3/CPE electrode was used to develop an analytical procedure quantifying L-Dopa in a wide micromolar linear range (1-100 µM), high sensitivity of 1.38 µA µM−1 cm−2 and a low detection limit (LOD = 0.72 µM). On the other side, we investigated the physicochemical properties of the gallium/bismuth mixed oxides and studied the influence of different Ga2O3:Bi2O3 ratios on the electrochemical detection of adrenaline. Square wave voltammetry was optimized, and the best electrode showed a wide linear working range of 7-100 μM, under optimized conditions. The LOD for the proposed sensor was calculated to be 1.9 μM, with a low limit of quantification (LOQ = 5.8 μM). The total performance of the sensors, particularly their performance on real-world samples and their potential for commercialization, had to be carefully evaluated during the sensor construction. Our team is devoted to developing highly selective electrochemical sensors based on nanomaterials to be potentially used as the basis for the fabrication of high-performance miniature devices with exceptional sensitivity to specific analytes, like adrenaline and L-Dopa, in this research.",
publisher = "Association of Metallurgical Engineers of Serbia (AMES)",
journal = "MME SEE : 5th Metallurgical and Materials Engineering Congress of South-East Europe : book of abstracts; June 7-10, Trebinje, Bosnia and Herzegovina",
title = "Nanoscale metal oxides as materials used for modification of carbon-based electrodes in electrochemical sensors",
pages = "76-76",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11679"
}
Ognjanović, M., Dojčinović, B., Antić, B.,& Stanković, D.. (2023). Nanoscale metal oxides as materials used for modification of carbon-based electrodes in electrochemical sensors. in MME SEE : 5th Metallurgical and Materials Engineering Congress of South-East Europe : book of abstracts; June 7-10, Trebinje, Bosnia and Herzegovina
Association of Metallurgical Engineers of Serbia (AMES)., 76-76.
https://hdl.handle.net/21.15107/rcub_vinar_11679
Ognjanović M, Dojčinović B, Antić B, Stanković D. Nanoscale metal oxides as materials used for modification of carbon-based electrodes in electrochemical sensors. in MME SEE : 5th Metallurgical and Materials Engineering Congress of South-East Europe : book of abstracts; June 7-10, Trebinje, Bosnia and Herzegovina. 2023;:76-76.
https://hdl.handle.net/21.15107/rcub_vinar_11679 .
Ognjanović, Miloš, Dojčinović, Biljana, Antić, Bratislav, Stanković, Dalibor, "Nanoscale metal oxides as materials used for modification of carbon-based electrodes in electrochemical sensors" in MME SEE : 5th Metallurgical and Materials Engineering Congress of South-East Europe : book of abstracts; June 7-10, Trebinje, Bosnia and Herzegovina (2023):76-76,
https://hdl.handle.net/21.15107/rcub_vinar_11679 .

Organic-inorganic nanocomposites for biomedical applications

Pergal, Marija; Brkljačić, Jelena; Pešić, Ivan; Dević, Gordana; Dojičinović, Biljana P.; Antić, Bratislav; Tovilović-Kovačević, Gordana

(Niš : RAD Centre, 2023)

TY  - CONF
AU  - Pergal, Marija
AU  - Brkljačić, Jelena
AU  - Pešić, Ivan
AU  - Dević, Gordana
AU  - Dojičinović, Biljana P.
AU  - Antić, Bratislav
AU  - Tovilović-Kovačević, Gordana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12227
AB  - Polyurethane (PU) and PU nanocomposites with good biocompatibility and mechanical properties can be used as the biomedical matrix and tissue engineering biomaterials. Magnetic nanoparticles, especially ferrite nanoparticles have attracted much interest due to their specific physicochemical properties in various areas including magnetic recording, biosensing, catalyst, drug delivery systems, magnetic resonance imaging (MRI) and cancer therapy. Despite all these advantages, the nanoparticle agglomeration reduces the efficiency of the nanoparticles, so the nanoparticle incorporation into an appropriate polymeric matrix to prepare organic-inorganic nanocomposites is a right direction in the current scenario of biomedical nanotechnology. In this study, organic-inorganic PU nanocomposites based on zinc and copper ferrites and with the same composition of PU were prepared. The properties of PU nanocomposites were evaluated by nanoindentation, water contact angle and water absorption measurements. The presence of the nanoferrite nanoparticles affects properties of PU nanocomposites such as bulk morphology, mechanical, and biological properties. The biocompatibility of PU nanocomposites was investigated by MTT assay and cell attachment using endothelial cells. According to the results, the prepared PU nanocomposites with noncytotoxic chemistry could be a potential choice for vascular implants development.
PB  - Niš : RAD Centre
C3  - RAD 2023 : 11th International Conference on Radiation Natural Sciences, Medicine, Engineering, Technology and Ecology : Book of Abstracts
T1  - Organic-inorganic nanocomposites for biomedical applications
SP  - 99
EP  - 99
DO  - 10.21175/rad.abstr.book.2023.19.20
ER  - 
@conference{
author = "Pergal, Marija and Brkljačić, Jelena and Pešić, Ivan and Dević, Gordana and Dojičinović, Biljana P. and Antić, Bratislav and Tovilović-Kovačević, Gordana",
year = "2023",
abstract = "Polyurethane (PU) and PU nanocomposites with good biocompatibility and mechanical properties can be used as the biomedical matrix and tissue engineering biomaterials. Magnetic nanoparticles, especially ferrite nanoparticles have attracted much interest due to their specific physicochemical properties in various areas including magnetic recording, biosensing, catalyst, drug delivery systems, magnetic resonance imaging (MRI) and cancer therapy. Despite all these advantages, the nanoparticle agglomeration reduces the efficiency of the nanoparticles, so the nanoparticle incorporation into an appropriate polymeric matrix to prepare organic-inorganic nanocomposites is a right direction in the current scenario of biomedical nanotechnology. In this study, organic-inorganic PU nanocomposites based on zinc and copper ferrites and with the same composition of PU were prepared. The properties of PU nanocomposites were evaluated by nanoindentation, water contact angle and water absorption measurements. The presence of the nanoferrite nanoparticles affects properties of PU nanocomposites such as bulk morphology, mechanical, and biological properties. The biocompatibility of PU nanocomposites was investigated by MTT assay and cell attachment using endothelial cells. According to the results, the prepared PU nanocomposites with noncytotoxic chemistry could be a potential choice for vascular implants development.",
publisher = "Niš : RAD Centre",
journal = "RAD 2023 : 11th International Conference on Radiation Natural Sciences, Medicine, Engineering, Technology and Ecology : Book of Abstracts",
title = "Organic-inorganic nanocomposites for biomedical applications",
pages = "99-99",
doi = "10.21175/rad.abstr.book.2023.19.20"
}
Pergal, M., Brkljačić, J., Pešić, I., Dević, G., Dojičinović, B. P., Antić, B.,& Tovilović-Kovačević, G.. (2023). Organic-inorganic nanocomposites for biomedical applications. in RAD 2023 : 11th International Conference on Radiation Natural Sciences, Medicine, Engineering, Technology and Ecology : Book of Abstracts
Niš : RAD Centre., 99-99.
https://doi.org/10.21175/rad.abstr.book.2023.19.20
Pergal M, Brkljačić J, Pešić I, Dević G, Dojičinović BP, Antić B, Tovilović-Kovačević G. Organic-inorganic nanocomposites for biomedical applications. in RAD 2023 : 11th International Conference on Radiation Natural Sciences, Medicine, Engineering, Technology and Ecology : Book of Abstracts. 2023;:99-99.
doi:10.21175/rad.abstr.book.2023.19.20 .
Pergal, Marija, Brkljačić, Jelena, Pešić, Ivan, Dević, Gordana, Dojičinović, Biljana P., Antić, Bratislav, Tovilović-Kovačević, Gordana, "Organic-inorganic nanocomposites for biomedical applications" in RAD 2023 : 11th International Conference on Radiation Natural Sciences, Medicine, Engineering, Technology and Ecology : Book of Abstracts (2023):99-99,
https://doi.org/10.21175/rad.abstr.book.2023.19.20 . .

Voltammetric immunoassay based on MWCNTs@Nd(OH)3-BSA-antibody platform for sensitive BSA detection

Đurđić, Slađana; Ognjanović, Miloš; Krstić Ristivojević, Maja; Antić, Bratislav; Ćirković Veličković, Tanja; Mutić, Jelena; Kónya, Zoltán; Stanković, Dalibor M.

(2022)

TY  - JOUR
AU  - Đurđić, Slađana
AU  - Ognjanović, Miloš
AU  - Krstić Ristivojević, Maja
AU  - Antić, Bratislav
AU  - Ćirković Veličković, Tanja
AU  - Mutić, Jelena
AU  - Kónya, Zoltán
AU  - Stanković, Dalibor M.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10471
AB  - An electrochemical approach is presented based on multiwall carbon nanotubes (MWCNTs) and neodymium(III) hydroxide (Nd(OH)3) nanoflakes for detection of bovine serum albumin (BSA). The materials were characterized morphologically (XRPD, SEM, and HR-TEM) and electrochemically (DPV, EIS). The MWCNTs@Nd(OH)3 composite was used as support for bovine serum albumin polyclonal antibody (anti-BSA). After the antibody immobilization on the electrochemical platform and antigen/antibody binding time (optimum 60 min), the proposed approach shows a linear voltammetric response toward BSA concentration in the range 0.066 to 6.010 ng mL−1 at maximum peak potential of 0.13 V (vs. Ag/AgCl). Limit of detection (LOD) and limit of quantification (LOQ) were 18 pg mL−1 and 61 pg mL−1, respectively. The precision of the method calculated as relative standard deviation (RSD) of five independent measurements was better 3%. The selectivity of the optimized method regarding structurally similar proteins (human serum albumin and human hemoglobin), ions (Na+, K+, Ca2+, and NO2−), or compounds (glucose, ascorbic acid, dopamine, uric acid, paracetamol, and glycine) was found to be satisfactory, with the current changes of less than 5% in the presence of up to 1 × 105 times higher concentrations (depending on the compound) of the listed potential interfering compounds. Practical applicability of immunosensor for BSA determination in cow whey sample, with recovery values in the range 97 to 103%, shows that the developed method has high potential for precise and accurate detection of BSA, as well as exceptional miniaturization possibilities for on-site and equipment-free sensing.
T2  - Microchimica Acta
T1  - Voltammetric immunoassay based on MWCNTs@Nd(OH)3-BSA-antibody platform for sensitive BSA detection
VL  - 189
IS  - 11
SP  - 422
DO  - 10.1007/s00604-022-05514-z
ER  - 
@article{
author = "Đurđić, Slađana and Ognjanović, Miloš and Krstić Ristivojević, Maja and Antić, Bratislav and Ćirković Veličković, Tanja and Mutić, Jelena and Kónya, Zoltán and Stanković, Dalibor M.",
year = "2022",
abstract = "An electrochemical approach is presented based on multiwall carbon nanotubes (MWCNTs) and neodymium(III) hydroxide (Nd(OH)3) nanoflakes for detection of bovine serum albumin (BSA). The materials were characterized morphologically (XRPD, SEM, and HR-TEM) and electrochemically (DPV, EIS). The MWCNTs@Nd(OH)3 composite was used as support for bovine serum albumin polyclonal antibody (anti-BSA). After the antibody immobilization on the electrochemical platform and antigen/antibody binding time (optimum 60 min), the proposed approach shows a linear voltammetric response toward BSA concentration in the range 0.066 to 6.010 ng mL−1 at maximum peak potential of 0.13 V (vs. Ag/AgCl). Limit of detection (LOD) and limit of quantification (LOQ) were 18 pg mL−1 and 61 pg mL−1, respectively. The precision of the method calculated as relative standard deviation (RSD) of five independent measurements was better 3%. The selectivity of the optimized method regarding structurally similar proteins (human serum albumin and human hemoglobin), ions (Na+, K+, Ca2+, and NO2−), or compounds (glucose, ascorbic acid, dopamine, uric acid, paracetamol, and glycine) was found to be satisfactory, with the current changes of less than 5% in the presence of up to 1 × 105 times higher concentrations (depending on the compound) of the listed potential interfering compounds. Practical applicability of immunosensor for BSA determination in cow whey sample, with recovery values in the range 97 to 103%, shows that the developed method has high potential for precise and accurate detection of BSA, as well as exceptional miniaturization possibilities for on-site and equipment-free sensing.",
journal = "Microchimica Acta",
title = "Voltammetric immunoassay based on MWCNTs@Nd(OH)3-BSA-antibody platform for sensitive BSA detection",
volume = "189",
number = "11",
pages = "422",
doi = "10.1007/s00604-022-05514-z"
}
Đurđić, S., Ognjanović, M., Krstić Ristivojević, M., Antić, B., Ćirković Veličković, T., Mutić, J., Kónya, Z.,& Stanković, D. M.. (2022). Voltammetric immunoassay based on MWCNTs@Nd(OH)3-BSA-antibody platform for sensitive BSA detection. in Microchimica Acta, 189(11), 422.
https://doi.org/10.1007/s00604-022-05514-z
Đurđić S, Ognjanović M, Krstić Ristivojević M, Antić B, Ćirković Veličković T, Mutić J, Kónya Z, Stanković DM. Voltammetric immunoassay based on MWCNTs@Nd(OH)3-BSA-antibody platform for sensitive BSA detection. in Microchimica Acta. 2022;189(11):422.
doi:10.1007/s00604-022-05514-z .
Đurđić, Slađana, Ognjanović, Miloš, Krstić Ristivojević, Maja, Antić, Bratislav, Ćirković Veličković, Tanja, Mutić, Jelena, Kónya, Zoltán, Stanković, Dalibor M., "Voltammetric immunoassay based on MWCNTs@Nd(OH)3-BSA-antibody platform for sensitive BSA detection" in Microchimica Acta, 189, no. 11 (2022):422,
https://doi.org/10.1007/s00604-022-05514-z . .
3
2

Design of nanoplatforms for electrochemical sensing of biomolecules

Ognjanović, Miloš; Dojčinović, Biljana; Jaćimović, Željko; Stanković, Dalibor; Antić, Bratislav

(University in Banjaluka : Faculty of Technology, 2022)

TY  - CONF
AU  - Ognjanović, Miloš
AU  - Dojčinović, Biljana
AU  - Jaćimović, Željko
AU  - Stanković, Dalibor
AU  - Antić, Bratislav
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11663
AB  - Nanomaterials exhibit unique chemical, physical and electronic properties that are different from their bulk counterparts, due to their small size, high surface area and specifically arranged architecture. Nanoscale metal oxides in combination with carbonaceous or other nanomaterials, utilized as modifiers of various types of working electrodes, serve as the basis for the development of electroanalytical procedures for the detection of various compounds. Electrochemical sensors that we are being developed are distinguished by high selectivity, sensitivity, low detection limit and thorough real-world sample analysis. Three types of biosensors: non-enzymatic, enzymatic and immuno-biosensors, were developed. Here we present synthesis nanoplatforms and their applications in electrochemical sensing of various biomolecules: a) (Zn,Fe)3O4 for glucose detections, b) amidase/CeO2/GNR for paracetamol monitoring, c) dandelion-like MnO2 for determination of L-dopa and d) citric acid-capped gallium oxyhydroxide for homocysteine impedimetric immunosensing. The design of these materials was analysed by complementary technics (XRPD, SEM, TEM, SQUID, DLS) to determine their (micro)structural properties and correlate them with electroanalytical performance. During the development, sensors’ overall output had to be assessed in detail, especially real-world sample performance and the capability of potential commercialization. Unique electrochemical sensors based on nanomaterials, developed in our group, open new avenues for the design and fabrication of high-performance sensors with great sensitivity to different biomolecules.
PB  - University in Banjaluka : Faculty of Technology
C3  - 14th Conference of chemists, technologists and environmentalists of Republic of Srpska : the book of abstracts; Oct 21-22, Banja Luka, Republic of Srpska
T1  - Design of nanoplatforms for electrochemical sensing of biomolecules
SP  - 38
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11663
ER  - 
@conference{
author = "Ognjanović, Miloš and Dojčinović, Biljana and Jaćimović, Željko and Stanković, Dalibor and Antić, Bratislav",
year = "2022",
abstract = "Nanomaterials exhibit unique chemical, physical and electronic properties that are different from their bulk counterparts, due to their small size, high surface area and specifically arranged architecture. Nanoscale metal oxides in combination with carbonaceous or other nanomaterials, utilized as modifiers of various types of working electrodes, serve as the basis for the development of electroanalytical procedures for the detection of various compounds. Electrochemical sensors that we are being developed are distinguished by high selectivity, sensitivity, low detection limit and thorough real-world sample analysis. Three types of biosensors: non-enzymatic, enzymatic and immuno-biosensors, were developed. Here we present synthesis nanoplatforms and their applications in electrochemical sensing of various biomolecules: a) (Zn,Fe)3O4 for glucose detections, b) amidase/CeO2/GNR for paracetamol monitoring, c) dandelion-like MnO2 for determination of L-dopa and d) citric acid-capped gallium oxyhydroxide for homocysteine impedimetric immunosensing. The design of these materials was analysed by complementary technics (XRPD, SEM, TEM, SQUID, DLS) to determine their (micro)structural properties and correlate them with electroanalytical performance. During the development, sensors’ overall output had to be assessed in detail, especially real-world sample performance and the capability of potential commercialization. Unique electrochemical sensors based on nanomaterials, developed in our group, open new avenues for the design and fabrication of high-performance sensors with great sensitivity to different biomolecules.",
publisher = "University in Banjaluka : Faculty of Technology",
journal = "14th Conference of chemists, technologists and environmentalists of Republic of Srpska : the book of abstracts; Oct 21-22, Banja Luka, Republic of Srpska",
title = "Design of nanoplatforms for electrochemical sensing of biomolecules",
pages = "38",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11663"
}
Ognjanović, M., Dojčinović, B., Jaćimović, Ž., Stanković, D.,& Antić, B.. (2022). Design of nanoplatforms for electrochemical sensing of biomolecules. in 14th Conference of chemists, technologists and environmentalists of Republic of Srpska : the book of abstracts; Oct 21-22, Banja Luka, Republic of Srpska
University in Banjaluka : Faculty of Technology., 38.
https://hdl.handle.net/21.15107/rcub_vinar_11663
Ognjanović M, Dojčinović B, Jaćimović Ž, Stanković D, Antić B. Design of nanoplatforms for electrochemical sensing of biomolecules. in 14th Conference of chemists, technologists and environmentalists of Republic of Srpska : the book of abstracts; Oct 21-22, Banja Luka, Republic of Srpska. 2022;:38.
https://hdl.handle.net/21.15107/rcub_vinar_11663 .
Ognjanović, Miloš, Dojčinović, Biljana, Jaćimović, Željko, Stanković, Dalibor, Antić, Bratislav, "Design of nanoplatforms for electrochemical sensing of biomolecules" in 14th Conference of chemists, technologists and environmentalists of Republic of Srpska : the book of abstracts; Oct 21-22, Banja Luka, Republic of Srpska (2022):38,
https://hdl.handle.net/21.15107/rcub_vinar_11663 .

Construction of Sensor for Submicromolar Detection of Riboflavin by Surface Modification of SPCE with Thermal Degradation Products of Nickel Acetate Tetrahydrate

Ognjanović, Miloš; Stanković, Dalibor M.; Jaćimović, Željko K.; Kosović-Perutović, Milica; Mariano, José F. M. L.; Krehula, Stjepko; Musić, Svetozar; Antić, Bratislav

(2022)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Stanković, Dalibor M.
AU  - Jaćimović, Željko K.
AU  - Kosović-Perutović, Milica
AU  - Mariano, José F. M. L.
AU  - Krehula, Stjepko
AU  - Musić, Svetozar
AU  - Antić, Bratislav
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10215
AB  - Nickel acetate tetrahydrate (NAT) sample series were used to modify screen-printed carbon electrodes (SPCE). The samples were hybrid Ni/NiO nanocomposites, where the NiO phase increased with an applied treatment temperature. Results of electrochemical measurements pointed that the Ni/NiO550/SPCE-modified electrode had the best analytical performance toward the detection of riboflavin (RF). The Ni/NiO550/SPCE-based sensor showed linear response with RF in the concentration range of 0.5–75 μM and 0.15 μM LOD in BRBS. Sensor offered fast response time, good repeatability, and selectivity with an RSD of 1.4 %. Our results show that the Ni:NiO nanocomposite ratio strongly influenced the electroanalytical performance of SPCE.
T2  - Electroanalysis
T1  - Construction of Sensor for Submicromolar Detection of Riboflavin by Surface Modification of SPCE with Thermal Degradation Products of Nickel Acetate Tetrahydrate
VL  - 34
IS  - 9
SP  - 1431
EP  - 1440
DO  - 10.1002/elan.202100602
ER  - 
@article{
author = "Ognjanović, Miloš and Stanković, Dalibor M. and Jaćimović, Željko K. and Kosović-Perutović, Milica and Mariano, José F. M. L. and Krehula, Stjepko and Musić, Svetozar and Antić, Bratislav",
year = "2022",
abstract = "Nickel acetate tetrahydrate (NAT) sample series were used to modify screen-printed carbon electrodes (SPCE). The samples were hybrid Ni/NiO nanocomposites, where the NiO phase increased with an applied treatment temperature. Results of electrochemical measurements pointed that the Ni/NiO550/SPCE-modified electrode had the best analytical performance toward the detection of riboflavin (RF). The Ni/NiO550/SPCE-based sensor showed linear response with RF in the concentration range of 0.5–75 μM and 0.15 μM LOD in BRBS. Sensor offered fast response time, good repeatability, and selectivity with an RSD of 1.4 %. Our results show that the Ni:NiO nanocomposite ratio strongly influenced the electroanalytical performance of SPCE.",
journal = "Electroanalysis",
title = "Construction of Sensor for Submicromolar Detection of Riboflavin by Surface Modification of SPCE with Thermal Degradation Products of Nickel Acetate Tetrahydrate",
volume = "34",
number = "9",
pages = "1431-1440",
doi = "10.1002/elan.202100602"
}
Ognjanović, M., Stanković, D. M., Jaćimović, Ž. K., Kosović-Perutović, M., Mariano, J. F. M. L., Krehula, S., Musić, S.,& Antić, B.. (2022). Construction of Sensor for Submicromolar Detection of Riboflavin by Surface Modification of SPCE with Thermal Degradation Products of Nickel Acetate Tetrahydrate. in Electroanalysis, 34(9), 1431-1440.
https://doi.org/10.1002/elan.202100602
Ognjanović M, Stanković DM, Jaćimović ŽK, Kosović-Perutović M, Mariano JFML, Krehula S, Musić S, Antić B. Construction of Sensor for Submicromolar Detection of Riboflavin by Surface Modification of SPCE with Thermal Degradation Products of Nickel Acetate Tetrahydrate. in Electroanalysis. 2022;34(9):1431-1440.
doi:10.1002/elan.202100602 .
Ognjanović, Miloš, Stanković, Dalibor M., Jaćimović, Željko K., Kosović-Perutović, Milica, Mariano, José F. M. L., Krehula, Stjepko, Musić, Svetozar, Antić, Bratislav, "Construction of Sensor for Submicromolar Detection of Riboflavin by Surface Modification of SPCE with Thermal Degradation Products of Nickel Acetate Tetrahydrate" in Electroanalysis, 34, no. 9 (2022):1431-1440,
https://doi.org/10.1002/elan.202100602 . .
1
4
4

90Y-CA/SPIONs for dual magnetic hyperthermia-radionuclide nanobrachytherapy of solid tumours

Vukadinović, Aleksandar; Milanović, Zorana; Ognjanović, Miloš; Janković, Drina; Radović, Magdalena; Mirković, Marija D.; Karageorgou, Maria-Argyro; Bouziotis, Penelope; Erić, Slavica; Vranješ-Đurić, Sanja; Antić, Bratislav; Prijović, Željko

(2022)

TY  - JOUR
AU  - Vukadinović, Aleksandar
AU  - Milanović, Zorana
AU  - Ognjanović, Miloš
AU  - Janković, Drina
AU  - Radović, Magdalena
AU  - Mirković, Marija D.
AU  - Karageorgou, Maria-Argyro
AU  - Bouziotis, Penelope
AU  - Erić, Slavica
AU  - Vranješ-Đurić, Sanja
AU  - Antić, Bratislav
AU  - Prijović, Željko
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10368
AB  - Radiolabelled superparamagnetic iron oxide nanoparticles (SPIONs) are a promising nanomaterial for the development of dual radiation/hyperthermia cancer therapy. To that purpose, flower-shaped SPIONs with an exceptional heating capability were synthesised and coated with citrate, dextran or (3-aminopropyl)triethoxysilane. Both non-coated and coated SPIONs were nontoxic to CT-26 mouse colon cancer cells up to 1.0 mg ml−1 in vitro. In an oscillating magnetic field, citrate-coated SPIONs (CA/SPIONs) displayed the highest heating rate (SAR ∼ 253 W g−1) and the strongest hyperthermia effects against CT-26 cells. Labelling of the CA/SPIONs by the 90Y radionuclide, emitting β− radiation with an average/maximum energy of 0.94/2.23 MeV, and deep tissue penetration generated 90Y-CA/SPIONs intended for the therapy of solid tumours. However, intravenous injection of 90Y-CA/SPIONs in CT-26 xenograft-bearing mice resulted in low tumour accumulation. On the contrary, intratumoural injection resulted in long-term retention at the injection site. A single intratumoural injection of 0.25 mg CA/SPIONs followed by 30-min courses of magnetic hyperthermia for four consecutive days caused a moderate antitumour effect against CT-26 and 4T1 mouse tumour xenografts. Intratumoural application of 1.85 MBq/0.25 mg 90Y-CA/SPIONs, alone or combined with hyperthermia, caused a significant (P ≤ 0.01) antitumour effect without signs of systemic toxicity. The results confirm the suitability of 90Y-CA/SPIONs for monotherapy or dual magnetic hyperthermia-radionuclide nanobrachytherapy (NBT) of solid tumours.
T2  - Nanotechnology
T1  - 90Y-CA/SPIONs for dual magnetic hyperthermia-radionuclide nanobrachytherapy of solid tumours
VL  - 33
IS  - 40
SP  - 405102
DO  - 10.1088/1361-6528/ac7ac0
ER  - 
@article{
author = "Vukadinović, Aleksandar and Milanović, Zorana and Ognjanović, Miloš and Janković, Drina and Radović, Magdalena and Mirković, Marija D. and Karageorgou, Maria-Argyro and Bouziotis, Penelope and Erić, Slavica and Vranješ-Đurić, Sanja and Antić, Bratislav and Prijović, Željko",
year = "2022",
abstract = "Radiolabelled superparamagnetic iron oxide nanoparticles (SPIONs) are a promising nanomaterial for the development of dual radiation/hyperthermia cancer therapy. To that purpose, flower-shaped SPIONs with an exceptional heating capability were synthesised and coated with citrate, dextran or (3-aminopropyl)triethoxysilane. Both non-coated and coated SPIONs were nontoxic to CT-26 mouse colon cancer cells up to 1.0 mg ml−1 in vitro. In an oscillating magnetic field, citrate-coated SPIONs (CA/SPIONs) displayed the highest heating rate (SAR ∼ 253 W g−1) and the strongest hyperthermia effects against CT-26 cells. Labelling of the CA/SPIONs by the 90Y radionuclide, emitting β− radiation with an average/maximum energy of 0.94/2.23 MeV, and deep tissue penetration generated 90Y-CA/SPIONs intended for the therapy of solid tumours. However, intravenous injection of 90Y-CA/SPIONs in CT-26 xenograft-bearing mice resulted in low tumour accumulation. On the contrary, intratumoural injection resulted in long-term retention at the injection site. A single intratumoural injection of 0.25 mg CA/SPIONs followed by 30-min courses of magnetic hyperthermia for four consecutive days caused a moderate antitumour effect against CT-26 and 4T1 mouse tumour xenografts. Intratumoural application of 1.85 MBq/0.25 mg 90Y-CA/SPIONs, alone or combined with hyperthermia, caused a significant (P ≤ 0.01) antitumour effect without signs of systemic toxicity. The results confirm the suitability of 90Y-CA/SPIONs for monotherapy or dual magnetic hyperthermia-radionuclide nanobrachytherapy (NBT) of solid tumours.",
journal = "Nanotechnology",
title = "90Y-CA/SPIONs for dual magnetic hyperthermia-radionuclide nanobrachytherapy of solid tumours",
volume = "33",
number = "40",
pages = "405102",
doi = "10.1088/1361-6528/ac7ac0"
}
Vukadinović, A., Milanović, Z., Ognjanović, M., Janković, D., Radović, M., Mirković, M. D., Karageorgou, M., Bouziotis, P., Erić, S., Vranješ-Đurić, S., Antić, B.,& Prijović, Ž.. (2022). 90Y-CA/SPIONs for dual magnetic hyperthermia-radionuclide nanobrachytherapy of solid tumours. in Nanotechnology, 33(40), 405102.
https://doi.org/10.1088/1361-6528/ac7ac0
Vukadinović A, Milanović Z, Ognjanović M, Janković D, Radović M, Mirković MD, Karageorgou M, Bouziotis P, Erić S, Vranješ-Đurić S, Antić B, Prijović Ž. 90Y-CA/SPIONs for dual magnetic hyperthermia-radionuclide nanobrachytherapy of solid tumours. in Nanotechnology. 2022;33(40):405102.
doi:10.1088/1361-6528/ac7ac0 .
Vukadinović, Aleksandar, Milanović, Zorana, Ognjanović, Miloš, Janković, Drina, Radović, Magdalena, Mirković, Marija D., Karageorgou, Maria-Argyro, Bouziotis, Penelope, Erić, Slavica, Vranješ-Đurić, Sanja, Antić, Bratislav, Prijović, Željko, "90Y-CA/SPIONs for dual magnetic hyperthermia-radionuclide nanobrachytherapy of solid tumours" in Nanotechnology, 33, no. 40 (2022):405102,
https://doi.org/10.1088/1361-6528/ac7ac0 . .
8
1
5

Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor

Ognjanović, Miloš; Nikolić, Katarina; Bošković, Marko; Pastor, Ferenc; Popov, Nina; Marciuš, Marijan; Krehula, Stjepko; Antić, Bratislav; Stanković, Dalibor M.

(2022)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Nikolić, Katarina
AU  - Bošković, Marko
AU  - Pastor, Ferenc
AU  - Popov, Nina
AU  - Marciuš, Marijan
AU  - Krehula, Stjepko
AU  - Antić, Bratislav
AU  - Stanković, Dalibor M.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10510
AB  - Morphine (MORPH) is natural alkaloid and mainly used as a pain reliever. Its monitoring in human body fluids is crucial for modern medicine. In this paper, we have developed an electrochemical sensor for submicromolar detection of MORPH. The sensor is based on modified carbon paste electrode (CPE) by investigating the FexW1-xO4 ratio in iron tungstate (FeWO4), as well as the ratio of this material in CPE. For the first time, the effect of the iron–tungsten ratio in terms of achieving the best possible electrochemical characteristics for the detection of an important molecule for humans was examined. Morphological and electrochemical characteristics of materials were studied. The best results were obtained using Fe1W3 and 7.5% of modifier in CPE. For MORPH detection, square wave voltammetry (SWV) was optimized. Under the optimized conditions, Fe1W3@CPE resulted in limit of detection (LOD) of the method of 0.58 µM and limit of quantification (LOQ) of 1.94 µM. The linear operating range between 5 and 85 µM of MORPH in the Britton–Robinson buffer solution (BRBS) at pH 8 as supporting electrolyte was obtained. The Fe1W3@CPE sensor resulted in good selectivity and excellent repeatability with relative standard deviation (RSD) and was applied in real-world samples of human urine. Application for direct MORPH detection, without tedious sample pretreatment procedures, suggests that developed electrochemical sensor has appeared to be a suitable competitor for efficient, precise, and accurate monitoring of the MORPH in biological fluids.
T2  - Biosensors
T1  - Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor
VL  - 12
IS  - 11
SP  - 932
DO  - 10.3390/bios12110932
ER  - 
@article{
author = "Ognjanović, Miloš and Nikolić, Katarina and Bošković, Marko and Pastor, Ferenc and Popov, Nina and Marciuš, Marijan and Krehula, Stjepko and Antić, Bratislav and Stanković, Dalibor M.",
year = "2022",
abstract = "Morphine (MORPH) is natural alkaloid and mainly used as a pain reliever. Its monitoring in human body fluids is crucial for modern medicine. In this paper, we have developed an electrochemical sensor for submicromolar detection of MORPH. The sensor is based on modified carbon paste electrode (CPE) by investigating the FexW1-xO4 ratio in iron tungstate (FeWO4), as well as the ratio of this material in CPE. For the first time, the effect of the iron–tungsten ratio in terms of achieving the best possible electrochemical characteristics for the detection of an important molecule for humans was examined. Morphological and electrochemical characteristics of materials were studied. The best results were obtained using Fe1W3 and 7.5% of modifier in CPE. For MORPH detection, square wave voltammetry (SWV) was optimized. Under the optimized conditions, Fe1W3@CPE resulted in limit of detection (LOD) of the method of 0.58 µM and limit of quantification (LOQ) of 1.94 µM. The linear operating range between 5 and 85 µM of MORPH in the Britton–Robinson buffer solution (BRBS) at pH 8 as supporting electrolyte was obtained. The Fe1W3@CPE sensor resulted in good selectivity and excellent repeatability with relative standard deviation (RSD) and was applied in real-world samples of human urine. Application for direct MORPH detection, without tedious sample pretreatment procedures, suggests that developed electrochemical sensor has appeared to be a suitable competitor for efficient, precise, and accurate monitoring of the MORPH in biological fluids.",
journal = "Biosensors",
title = "Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor",
volume = "12",
number = "11",
pages = "932",
doi = "10.3390/bios12110932"
}
Ognjanović, M., Nikolić, K., Bošković, M., Pastor, F., Popov, N., Marciuš, M., Krehula, S., Antić, B.,& Stanković, D. M.. (2022). Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor. in Biosensors, 12(11), 932.
https://doi.org/10.3390/bios12110932
Ognjanović M, Nikolić K, Bošković M, Pastor F, Popov N, Marciuš M, Krehula S, Antić B, Stanković DM. Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor. in Biosensors. 2022;12(11):932.
doi:10.3390/bios12110932 .
Ognjanović, Miloš, Nikolić, Katarina, Bošković, Marko, Pastor, Ferenc, Popov, Nina, Marciuš, Marijan, Krehula, Stjepko, Antić, Bratislav, Stanković, Dalibor M., "Electrochemical Determination of Morphine in Urine Samples by Tailoring FeWO4/CPE Sensor" in Biosensors, 12, no. 11 (2022):932,
https://doi.org/10.3390/bios12110932 . .
1
10
8

Design and preparation of proline, tryptophan and poly-l-lysine functionalized magnetic nanoparticles and their radiolabeling with 131I and 177Lu for potential theranostic use

Mirković, Marija D.; Milanović, Zorana; Perić, Marko R.; Vranješ-Đurić, Sanja; Ognjanović, Miloš; Antić, Bratislav; Kuraica, Milorad; Krstić, Ivan; Kubovcikova, Martina; Antal, Iryna; Sobotova, Radka; Zavisova, Vlasta; Jurikova, Alena; Fabian, Martin; Koneracka, Martina

(2022)

TY  - JOUR
AU  - Mirković, Marija D.
AU  - Milanović, Zorana
AU  - Perić, Marko R.
AU  - Vranješ-Đurić, Sanja
AU  - Ognjanović, Miloš
AU  - Antić, Bratislav
AU  - Kuraica, Milorad
AU  - Krstić, Ivan
AU  - Kubovcikova, Martina
AU  - Antal, Iryna
AU  - Sobotova, Radka
AU  - Zavisova, Vlasta
AU  - Jurikova, Alena
AU  - Fabian, Martin
AU  - Koneracka, Martina
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10696
AB  - Surface modification of magnetic nanoparticles with poly-L-lysine, proline, and tryptophan was used to design potential theranostic agents for the application in cancer diagnosis and radionuclide-hyperthermia therapy. Characterization of bare and functionalized magnetic nanoparticles was performed in detail. The transparency of the examined magnetic nanoparticles was measured in the non-alternating magnetic field for a complete and better understanding of hyperthermia. For the first time amino acid-functionalized magnetic nanoparticles were labeled with theranostic radionuclides 131I and 177Lu. The specific absorption rate (SAR) procured for poly-L-lysine functionalized magnetic nanoparticles (SAR values of 99.7 W/g at H0 = 15.9 kA/m and resonant frequency of 252 kHz) demonstrated their possible application in magnetic hyperthermia. Poly-L-lysine functionalized magnetic nanoparticles labeled with 177Lu showed the highest radiochemical purity (>99.00 %) and in vitro stability in saline and serum (>98.00 % up to 96 h). The in vivo analysis performed after their intravenous administration in healthy Wistar rats presented good in vivo stability for several days. Encouraging results as well as magnetic and radiochemical properties of 177Lu–PLL-MNPs (80 °C) justify their further testing toward the potential use as theranostic agents for diagnostic and combined radionuclide-hyperthermia therapeutic applications.
T2  - International Journal of Pharmaceutics
T1  - Design and preparation of proline, tryptophan and poly-l-lysine functionalized magnetic nanoparticles and their radiolabeling with 131I and 177Lu for potential theranostic use
VL  - 628
SP  - 122288
DO  - 10.1016/j.ijpharm.2022.122288
ER  - 
@article{
author = "Mirković, Marija D. and Milanović, Zorana and Perić, Marko R. and Vranješ-Đurić, Sanja and Ognjanović, Miloš and Antić, Bratislav and Kuraica, Milorad and Krstić, Ivan and Kubovcikova, Martina and Antal, Iryna and Sobotova, Radka and Zavisova, Vlasta and Jurikova, Alena and Fabian, Martin and Koneracka, Martina",
year = "2022",
abstract = "Surface modification of magnetic nanoparticles with poly-L-lysine, proline, and tryptophan was used to design potential theranostic agents for the application in cancer diagnosis and radionuclide-hyperthermia therapy. Characterization of bare and functionalized magnetic nanoparticles was performed in detail. The transparency of the examined magnetic nanoparticles was measured in the non-alternating magnetic field for a complete and better understanding of hyperthermia. For the first time amino acid-functionalized magnetic nanoparticles were labeled with theranostic radionuclides 131I and 177Lu. The specific absorption rate (SAR) procured for poly-L-lysine functionalized magnetic nanoparticles (SAR values of 99.7 W/g at H0 = 15.9 kA/m and resonant frequency of 252 kHz) demonstrated their possible application in magnetic hyperthermia. Poly-L-lysine functionalized magnetic nanoparticles labeled with 177Lu showed the highest radiochemical purity (>99.00 %) and in vitro stability in saline and serum (>98.00 % up to 96 h). The in vivo analysis performed after their intravenous administration in healthy Wistar rats presented good in vivo stability for several days. Encouraging results as well as magnetic and radiochemical properties of 177Lu–PLL-MNPs (80 °C) justify their further testing toward the potential use as theranostic agents for diagnostic and combined radionuclide-hyperthermia therapeutic applications.",
journal = "International Journal of Pharmaceutics",
title = "Design and preparation of proline, tryptophan and poly-l-lysine functionalized magnetic nanoparticles and their radiolabeling with 131I and 177Lu for potential theranostic use",
volume = "628",
pages = "122288",
doi = "10.1016/j.ijpharm.2022.122288"
}
Mirković, M. D., Milanović, Z., Perić, M. R., Vranješ-Đurić, S., Ognjanović, M., Antić, B., Kuraica, M., Krstić, I., Kubovcikova, M., Antal, I., Sobotova, R., Zavisova, V., Jurikova, A., Fabian, M.,& Koneracka, M.. (2022). Design and preparation of proline, tryptophan and poly-l-lysine functionalized magnetic nanoparticles and their radiolabeling with 131I and 177Lu for potential theranostic use. in International Journal of Pharmaceutics, 628, 122288.
https://doi.org/10.1016/j.ijpharm.2022.122288
Mirković MD, Milanović Z, Perić MR, Vranješ-Đurić S, Ognjanović M, Antić B, Kuraica M, Krstić I, Kubovcikova M, Antal I, Sobotova R, Zavisova V, Jurikova A, Fabian M, Koneracka M. Design and preparation of proline, tryptophan and poly-l-lysine functionalized magnetic nanoparticles and their radiolabeling with 131I and 177Lu for potential theranostic use. in International Journal of Pharmaceutics. 2022;628:122288.
doi:10.1016/j.ijpharm.2022.122288 .
Mirković, Marija D., Milanović, Zorana, Perić, Marko R., Vranješ-Đurić, Sanja, Ognjanović, Miloš, Antić, Bratislav, Kuraica, Milorad, Krstić, Ivan, Kubovcikova, Martina, Antal, Iryna, Sobotova, Radka, Zavisova, Vlasta, Jurikova, Alena, Fabian, Martin, Koneracka, Martina, "Design and preparation of proline, tryptophan and poly-l-lysine functionalized magnetic nanoparticles and their radiolabeling with 131I and 177Lu for potential theranostic use" in International Journal of Pharmaceutics, 628 (2022):122288,
https://doi.org/10.1016/j.ijpharm.2022.122288 . .
5
5

Polyurethane/nanoferrite composite materials: antifungal and nanomechanical properties

Pergal, Marija; Kodranov, Igor; Nikodinović-Runić, Jasmina; Ostojić, Sanja; Dojičinović, Biljana P.; Antić, Bratislav

(Belgrade : Serbian Ceramic Society, 2022)

TY  - CONF
AU  - Pergal, Marija
AU  - Kodranov, Igor
AU  - Nikodinović-Runić, Jasmina
AU  - Ostojić, Sanja
AU  - Dojičinović, Biljana P.
AU  - Antić, Bratislav
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10806
AB  - Crosslinked polyurethanes (PUs) based on hyperbranched polyester and poly(dimethylsiloxane) (PDMS), which are thermosetting polymers, are one of the most representative products in the coating applications. To enhance the biomedical properties of PUs, we have attempted to incorporate PDMS as soft segments and silver-ferrite as nanoparticles in order to prepared PU nanocomposites (PU NCs). Silver ferrite nanoparticles were incorporated into crosslinked polyurethanes (PU NCs) with different soft poly(dimethylsiloxane) segments, via in situ polymerization. Herein, we report the nanomechanical properties, hydrophobicity and antifungal activities of PU NCs based on poly(dimethylsiloxane), 4,4’-methylenediphenyl diisocyanate and hyperbranched polyester of the second pseudogeneration, with different soft (PDMS) segment content. The nanomechanical properties of PU NCs were investigated by nanoindentation measurements, while the hydrophobicity of PU NCs was measured by water absorption properties. The fungicidal activities of PU NCs were evaluated against Candida albicans and Candida parapsilosis. PU NCs with lower soft segment content exhibited selective and good antifungal activity toward the tested fungi due to higher hydrophilicity and higher amount of Ag+ ion released. The selective fungicidal activity and low cytotoxicity of PU NCs with good nanomechanical properties ensure it is a candidate as coatings for medical devices.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application : 10th Serbian Ceramic Society Conference : program and the book of abstracts; September 26-27, 2022; Belgrade
T1  - Polyurethane/nanoferrite composite materials: antifungal and nanomechanical properties
SP  - 75
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10806
ER  - 
@conference{
author = "Pergal, Marija and Kodranov, Igor and Nikodinović-Runić, Jasmina and Ostojić, Sanja and Dojičinović, Biljana P. and Antić, Bratislav",
year = "2022",
abstract = "Crosslinked polyurethanes (PUs) based on hyperbranched polyester and poly(dimethylsiloxane) (PDMS), which are thermosetting polymers, are one of the most representative products in the coating applications. To enhance the biomedical properties of PUs, we have attempted to incorporate PDMS as soft segments and silver-ferrite as nanoparticles in order to prepared PU nanocomposites (PU NCs). Silver ferrite nanoparticles were incorporated into crosslinked polyurethanes (PU NCs) with different soft poly(dimethylsiloxane) segments, via in situ polymerization. Herein, we report the nanomechanical properties, hydrophobicity and antifungal activities of PU NCs based on poly(dimethylsiloxane), 4,4’-methylenediphenyl diisocyanate and hyperbranched polyester of the second pseudogeneration, with different soft (PDMS) segment content. The nanomechanical properties of PU NCs were investigated by nanoindentation measurements, while the hydrophobicity of PU NCs was measured by water absorption properties. The fungicidal activities of PU NCs were evaluated against Candida albicans and Candida parapsilosis. PU NCs with lower soft segment content exhibited selective and good antifungal activity toward the tested fungi due to higher hydrophilicity and higher amount of Ag+ ion released. The selective fungicidal activity and low cytotoxicity of PU NCs with good nanomechanical properties ensure it is a candidate as coatings for medical devices.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application : 10th Serbian Ceramic Society Conference : program and the book of abstracts; September 26-27, 2022; Belgrade",
title = "Polyurethane/nanoferrite composite materials: antifungal and nanomechanical properties",
pages = "75",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10806"
}
Pergal, M., Kodranov, I., Nikodinović-Runić, J., Ostojić, S., Dojičinović, B. P.,& Antić, B.. (2022). Polyurethane/nanoferrite composite materials: antifungal and nanomechanical properties. in Advanced Ceramics and Application : 10th Serbian Ceramic Society Conference : program and the book of abstracts; September 26-27, 2022; Belgrade
Belgrade : Serbian Ceramic Society., 75.
https://hdl.handle.net/21.15107/rcub_vinar_10806
Pergal M, Kodranov I, Nikodinović-Runić J, Ostojić S, Dojičinović BP, Antić B. Polyurethane/nanoferrite composite materials: antifungal and nanomechanical properties. in Advanced Ceramics and Application : 10th Serbian Ceramic Society Conference : program and the book of abstracts; September 26-27, 2022; Belgrade. 2022;:75.
https://hdl.handle.net/21.15107/rcub_vinar_10806 .
Pergal, Marija, Kodranov, Igor, Nikodinović-Runić, Jasmina, Ostojić, Sanja, Dojičinović, Biljana P., Antić, Bratislav, "Polyurethane/nanoferrite composite materials: antifungal and nanomechanical properties" in Advanced Ceramics and Application : 10th Serbian Ceramic Society Conference : program and the book of abstracts; September 26-27, 2022; Belgrade (2022):75,
https://hdl.handle.net/21.15107/rcub_vinar_10806 .

Polyurethane/ferrites composite materials: A study on antimicrobial activity

Pergal, Marija; Kodranov, Igor; Vasiljević Radović, Dana; Nikodinović-Runić, Jasmina; Dojčinović, Biljana; Manojlović, Dragan; Antić, Bratislav

(RAD Centre, Niš, Serbia, 2022)

TY  - CONF
AU  - Pergal, Marija
AU  - Kodranov, Igor
AU  - Vasiljević Radović, Dana
AU  - Nikodinović-Runić, Jasmina
AU  - Dojčinović, Biljana
AU  - Manojlović, Dragan
AU  - Antić, Bratislav
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11105
AB  - Polyurethane (PU) nanocomposites are highly utilized in biomedical devices/implants due to their excellent mechanical properties, good biocompatibility, and low cytotoxicity. These PU nanocomposites with silver nanoparticles are well known potent antimicrobial agents. Biocompatible magnetic nanoparticles such as ferrites has also gained attention especially in various fields of drug delivery, biosensing and magnetic resonance imaging which requires highly specific magnetic nanoparticle (MNP) properties such as uniform size distribution, less agglomeration and stability in the biological medium. Among MNP, copper and zinc ferrites have been broadly applicable in biomedical, optoelectronic, catalysis and drug delivery. With a view to design PU/ferrites nanocomposites and to explore their antimicrobial potential, the present preliminary study reports the preparation of PU nanocomposites with copper ferrite and zinc ferrite (1 wt.%) and with the same composition. The nanocomposites were characterized using water absorption and swelling measurements. The antimicrobial activity of these composites was investigated against four bacterial strains: Staphylococcus aureus, Enterococcus faecium, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and one Candida strain, C. albicans and compared with those of PU nanocomposites with silver ferrite nanoparticles. PU nanocomposites based on zinc and copper ferrites did not show antimicrobial activity, on the contrary they supported microbial attachment and growth. However, PU nanocomposites with silver ferrite did not show significant antibacterial activity but show antifungal activity and it is related with hydrophilicity of the prepared materials.
PB  - RAD Centre, Niš, Serbia
C3  - RAD 2022 : 10th Jubilee International Conference on Radiation in Various Fields of Research : book of abstracts; July 25-29; Herceg Novi, Montenegro
T1  - Polyurethane/ferrites composite materials:
A study on antimicrobial activity
DO  - 10.21175/rad.sum.abstr.book.2022.11.14
ER  - 
@conference{
author = "Pergal, Marija and Kodranov, Igor and Vasiljević Radović, Dana and Nikodinović-Runić, Jasmina and Dojčinović, Biljana and Manojlović, Dragan and Antić, Bratislav",
year = "2022",
abstract = "Polyurethane (PU) nanocomposites are highly utilized in biomedical devices/implants due to their excellent mechanical properties, good biocompatibility, and low cytotoxicity. These PU nanocomposites with silver nanoparticles are well known potent antimicrobial agents. Biocompatible magnetic nanoparticles such as ferrites has also gained attention especially in various fields of drug delivery, biosensing and magnetic resonance imaging which requires highly specific magnetic nanoparticle (MNP) properties such as uniform size distribution, less agglomeration and stability in the biological medium. Among MNP, copper and zinc ferrites have been broadly applicable in biomedical, optoelectronic, catalysis and drug delivery. With a view to design PU/ferrites nanocomposites and to explore their antimicrobial potential, the present preliminary study reports the preparation of PU nanocomposites with copper ferrite and zinc ferrite (1 wt.%) and with the same composition. The nanocomposites were characterized using water absorption and swelling measurements. The antimicrobial activity of these composites was investigated against four bacterial strains: Staphylococcus aureus, Enterococcus faecium, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and one Candida strain, C. albicans and compared with those of PU nanocomposites with silver ferrite nanoparticles. PU nanocomposites based on zinc and copper ferrites did not show antimicrobial activity, on the contrary they supported microbial attachment and growth. However, PU nanocomposites with silver ferrite did not show significant antibacterial activity but show antifungal activity and it is related with hydrophilicity of the prepared materials.",
publisher = "RAD Centre, Niš, Serbia",
journal = "RAD 2022 : 10th Jubilee International Conference on Radiation in Various Fields of Research : book of abstracts; July 25-29; Herceg Novi, Montenegro",
title = "Polyurethane/ferrites composite materials:
A study on antimicrobial activity",
doi = "10.21175/rad.sum.abstr.book.2022.11.14"
}
Pergal, M., Kodranov, I., Vasiljević Radović, D., Nikodinović-Runić, J., Dojčinović, B., Manojlović, D.,& Antić, B.. (2022). Polyurethane/ferrites composite materials:
A study on antimicrobial activity. in RAD 2022 : 10th Jubilee International Conference on Radiation in Various Fields of Research : book of abstracts; July 25-29; Herceg Novi, Montenegro
RAD Centre, Niš, Serbia..
https://doi.org/10.21175/rad.sum.abstr.book.2022.11.14
Pergal M, Kodranov I, Vasiljević Radović D, Nikodinović-Runić J, Dojčinović B, Manojlović D, Antić B. Polyurethane/ferrites composite materials:
A study on antimicrobial activity. in RAD 2022 : 10th Jubilee International Conference on Radiation in Various Fields of Research : book of abstracts; July 25-29; Herceg Novi, Montenegro. 2022;.
doi:10.21175/rad.sum.abstr.book.2022.11.14 .
Pergal, Marija, Kodranov, Igor, Vasiljević Radović, Dana, Nikodinović-Runić, Jasmina, Dojčinović, Biljana, Manojlović, Dragan, Antić, Bratislav, "Polyurethane/ferrites composite materials:
A study on antimicrobial activity" in RAD 2022 : 10th Jubilee International Conference on Radiation in Various Fields of Research : book of abstracts; July 25-29; Herceg Novi, Montenegro (2022),
https://doi.org/10.21175/rad.sum.abstr.book.2022.11.14 . .

Flower-shaped magnetic nanoparticles for theranostic applications

Ognjanović, Miloš; Mirković, Marija; Prijović, Željko; Vranješ-Đurić, Sanja; Antić, Bratislav

(University in Banjaluka : Faculty of Technology, 2022)

TY  - CONF
AU  - Ognjanović, Miloš
AU  - Mirković, Marija
AU  - Prijović, Željko
AU  - Vranješ-Đurić, Sanja
AU  - Antić, Bratislav
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11669
AB  - Iron oxide-based magnetic nanoparticles (MNPs) are promising candidates for dual radiation and magnetic hyperthermia cancer therapy (MHT). Although iron oxide nanoparticles are currently approved by FDA for imaging purposes and for the treatment of anaemia, magnetic nanoparticles designed for the efficient magnetic hyperthermia cancer treatment must respond to specific physicochemical properties in terms of magneto-energy conversion, heat dose production, surface chemistry and aggregation state. In the past few decades, these requirements have boosted the development of a new generation of MNPs specifically aimed for MHT. Between various synthesis pathways, specific assembly of small nanoparticles into flower-shaped structures, achieved in polyol-mediated synthesis opened new avenues for MNPs hyperthermia cancer treatment. High heat generation in MHT was most-probably a consequence of the specific organization and agglomeration of individual cores inside each particle and their interaction in external alternating magnetic field. When we add to that, low cytotoxicity, the possibility of surface modification and further functionalization, then polyol-prepared MNPs emerge as one of the best candidates for combined cancer therapy. In our recent studies, we have coated magnetic nanoflowers prepared by polyol-mediated synthesis with various organic ligands (citric acid, polyethylene glycol, (3- aminopropyl)triethoxysilane) and successfully radiolabelled them with high-energy beta emitters 90Y, 177Lu and 131I, as well as gamma emitter 99mTc, which can be used both as therapeutic and diagnostic agents. Finally, we have successfully applied these magnetic nanoconstructs in combined magnetic hyperthermia-radionuclide nanobrachytherapy of CT-26 mouse colon and 4T1 metastatic mouse breast tumours.
PB  - University in Banjaluka : Faculty of Technology
C3  - 14th Conference of chemists, technologists and environmentalists of Republic of Srpska : the book of abstracts; Oct 21-22, Banja Luka, Republic of Srpska
T1  - Flower-shaped magnetic nanoparticles for theranostic applications
SP  - 197
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11669
ER  - 
@conference{
author = "Ognjanović, Miloš and Mirković, Marija and Prijović, Željko and Vranješ-Đurić, Sanja and Antić, Bratislav",
year = "2022",
abstract = "Iron oxide-based magnetic nanoparticles (MNPs) are promising candidates for dual radiation and magnetic hyperthermia cancer therapy (MHT). Although iron oxide nanoparticles are currently approved by FDA for imaging purposes and for the treatment of anaemia, magnetic nanoparticles designed for the efficient magnetic hyperthermia cancer treatment must respond to specific physicochemical properties in terms of magneto-energy conversion, heat dose production, surface chemistry and aggregation state. In the past few decades, these requirements have boosted the development of a new generation of MNPs specifically aimed for MHT. Between various synthesis pathways, specific assembly of small nanoparticles into flower-shaped structures, achieved in polyol-mediated synthesis opened new avenues for MNPs hyperthermia cancer treatment. High heat generation in MHT was most-probably a consequence of the specific organization and agglomeration of individual cores inside each particle and their interaction in external alternating magnetic field. When we add to that, low cytotoxicity, the possibility of surface modification and further functionalization, then polyol-prepared MNPs emerge as one of the best candidates for combined cancer therapy. In our recent studies, we have coated magnetic nanoflowers prepared by polyol-mediated synthesis with various organic ligands (citric acid, polyethylene glycol, (3- aminopropyl)triethoxysilane) and successfully radiolabelled them with high-energy beta emitters 90Y, 177Lu and 131I, as well as gamma emitter 99mTc, which can be used both as therapeutic and diagnostic agents. Finally, we have successfully applied these magnetic nanoconstructs in combined magnetic hyperthermia-radionuclide nanobrachytherapy of CT-26 mouse colon and 4T1 metastatic mouse breast tumours.",
publisher = "University in Banjaluka : Faculty of Technology",
journal = "14th Conference of chemists, technologists and environmentalists of Republic of Srpska : the book of abstracts; Oct 21-22, Banja Luka, Republic of Srpska",
title = "Flower-shaped magnetic nanoparticles for theranostic applications",
pages = "197",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11669"
}
Ognjanović, M., Mirković, M., Prijović, Ž., Vranješ-Đurić, S.,& Antić, B.. (2022). Flower-shaped magnetic nanoparticles for theranostic applications. in 14th Conference of chemists, technologists and environmentalists of Republic of Srpska : the book of abstracts; Oct 21-22, Banja Luka, Republic of Srpska
University in Banjaluka : Faculty of Technology., 197.
https://hdl.handle.net/21.15107/rcub_vinar_11669
Ognjanović M, Mirković M, Prijović Ž, Vranješ-Đurić S, Antić B. Flower-shaped magnetic nanoparticles for theranostic applications. in 14th Conference of chemists, technologists and environmentalists of Republic of Srpska : the book of abstracts; Oct 21-22, Banja Luka, Republic of Srpska. 2022;:197.
https://hdl.handle.net/21.15107/rcub_vinar_11669 .
Ognjanović, Miloš, Mirković, Marija, Prijović, Željko, Vranješ-Đurić, Sanja, Antić, Bratislav, "Flower-shaped magnetic nanoparticles for theranostic applications" in 14th Conference of chemists, technologists and environmentalists of Republic of Srpska : the book of abstracts; Oct 21-22, Banja Luka, Republic of Srpska (2022):197,
https://hdl.handle.net/21.15107/rcub_vinar_11669 .

Ternary flower-structured nanoferrites with polyvalent cations for potential applications in electrochemical sensors and magnetic hyperthermia

Jaćimović, Željko; Ognjanović, Miloš; Kosović-Perutović, Milica; Dojčinović, Biljana; Stanković, Dalibor; Antić, Bratislav

(Sociedade Portuguesa de Química, 2022)

TY  - CONF
AU  - Jaćimović, Željko
AU  - Ognjanović, Miloš
AU  - Kosović-Perutović, Milica
AU  - Dojčinović, Biljana
AU  - Stanković, Dalibor
AU  - Antić, Bratislav
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11680
AB  - Nanoferrites have been intensively studied because of the possibility of their use in the fields such as medicine, sensors, environmental, agriculture, weather, battery, etc. Often, they are used as modal systems in fundamental science to study physical and chemical phenomena at the nanoscale. Various pathways were applied for the synthesis of nanoferrites with the same composition were led to different microstructure and structure properties, which further influenced magnetic, electric, catalytic and other properties. Consequently, with a controlled synthesis, it is possible to tune the properties of nanoferrites important for applications. On the other side, properties can be controlled by changing chemical composition. In ternary nanoferrites often deviation of stoichiometry accompanied with cation polyvalence was found [1]. The main idea of our work was the application of the polyol-modified method developed for the synthesis of flower-structured iron oxides nanoparticles in the preparation of ternary ZnxMnyFezO4 samples to seek a correlation among chemical composition and microstructure with magnetic hyperthermia efficiency and electrochemical properties. A series of the samples ZnxMnyFezO4 was prepared by polyol process using a slightly modified procedure described in ref [2]. By elemental analysis performed using the ICP technique, the content of cations in the formula unit was determined as follow: Zn0.640Fe2.360O4, Zn0.394Mn0.138Fe2.468O4, Zn0.309Mn0.240Fe2.451O4, Zn0.182Mn0.344Fe2.474O4, Zn0.098Mn0.447Fe2.455O4, Mn0.624Fe2.376O4. The ICP results pointed to the presence of multivalent cations, Mn2+/Mn3+ and Fe3+/Fe2+. Zn has stable valence +2, while the oxidation state of +4 for Mn couldn’t be excluded. Different oxidation states of Mn and Fe and possible deviation of stoichiometry, can create physical effects [3] and make ZnxMnyFezO4 suitable material in practical applications, used for modification of working electrodesin electrochemical sensors. Consequently, we have performed basic electrochemical characterisation of nanoferrites. Cyclic voltammetry of 5 mM K3[Fe(CN)]6/K4[Fe(CN)]6 (1:1) in 0.1 M KCl at bare SPCE and ZnxMnyFezO4-modified SPCE showed that the highest peak current (Ip) was achieved using a Zn0.098Mn0.447Fe2.455O4/SPCE. The Ip was about 22% higher than the bare electrode. X-ray diffraction pattern showed the samples were single-phase crystallising in spinel structure type. Morphology and particle size of the samples were analysed from TEM micrographs. Particles (or crystallites) were agglomerated in a flower-like structure (Figure 1). The diameter of the flowers was around 50-60 nm. Superparamagnetic behaviour of the samples was found from magnetization versus field measurements (hysteresis loops). Prepared samples were in the form of stable colloids with hydrodynamic diameter in the range of 50-120 nm. The heating properties of the samples were analysed from the data of specific absorption rate (SAR), Figure 1b. The highest SAR value was found for Zn0.098Mn0.447Fe2.455O4. The best heating efficiency and electrochemical properties had the same sample. To correlate ZnxMnyFezO4 different efficiency in magnetic hyperthermia and electrochemical sensor applications with parameters like cation distribution in two non-equivalent spinel crystallographic sites (space group, Fd-3m), local distortion on cationic sites, crystallite size and defects, an integrated study of samples structure and microstructure is in progress.
PB  - Sociedade Portuguesa de Química
C3  - ECC8 : 8th EuChemS Chemistry Congress : programme and the book of abstracts; Aug 28 - Sep 1, Lisbon, Portugal
T1  - Ternary flower-structured nanoferrites with polyvalent cations for potential applications in electrochemical sensors and magnetic hyperthermia
SP  - 850
EP  - 850
DO  - 10.52590/E.ECC8
ER  - 
@conference{
author = "Jaćimović, Željko and Ognjanović, Miloš and Kosović-Perutović, Milica and Dojčinović, Biljana and Stanković, Dalibor and Antić, Bratislav",
year = "2022",
abstract = "Nanoferrites have been intensively studied because of the possibility of their use in the fields such as medicine, sensors, environmental, agriculture, weather, battery, etc. Often, they are used as modal systems in fundamental science to study physical and chemical phenomena at the nanoscale. Various pathways were applied for the synthesis of nanoferrites with the same composition were led to different microstructure and structure properties, which further influenced magnetic, electric, catalytic and other properties. Consequently, with a controlled synthesis, it is possible to tune the properties of nanoferrites important for applications. On the other side, properties can be controlled by changing chemical composition. In ternary nanoferrites often deviation of stoichiometry accompanied with cation polyvalence was found [1]. The main idea of our work was the application of the polyol-modified method developed for the synthesis of flower-structured iron oxides nanoparticles in the preparation of ternary ZnxMnyFezO4 samples to seek a correlation among chemical composition and microstructure with magnetic hyperthermia efficiency and electrochemical properties. A series of the samples ZnxMnyFezO4 was prepared by polyol process using a slightly modified procedure described in ref [2]. By elemental analysis performed using the ICP technique, the content of cations in the formula unit was determined as follow: Zn0.640Fe2.360O4, Zn0.394Mn0.138Fe2.468O4, Zn0.309Mn0.240Fe2.451O4, Zn0.182Mn0.344Fe2.474O4, Zn0.098Mn0.447Fe2.455O4, Mn0.624Fe2.376O4. The ICP results pointed to the presence of multivalent cations, Mn2+/Mn3+ and Fe3+/Fe2+. Zn has stable valence +2, while the oxidation state of +4 for Mn couldn’t be excluded. Different oxidation states of Mn and Fe and possible deviation of stoichiometry, can create physical effects [3] and make ZnxMnyFezO4 suitable material in practical applications, used for modification of working electrodesin electrochemical sensors. Consequently, we have performed basic electrochemical characterisation of nanoferrites. Cyclic voltammetry of 5 mM K3[Fe(CN)]6/K4[Fe(CN)]6 (1:1) in 0.1 M KCl at bare SPCE and ZnxMnyFezO4-modified SPCE showed that the highest peak current (Ip) was achieved using a Zn0.098Mn0.447Fe2.455O4/SPCE. The Ip was about 22% higher than the bare electrode. X-ray diffraction pattern showed the samples were single-phase crystallising in spinel structure type. Morphology and particle size of the samples were analysed from TEM micrographs. Particles (or crystallites) were agglomerated in a flower-like structure (Figure 1). The diameter of the flowers was around 50-60 nm. Superparamagnetic behaviour of the samples was found from magnetization versus field measurements (hysteresis loops). Prepared samples were in the form of stable colloids with hydrodynamic diameter in the range of 50-120 nm. The heating properties of the samples were analysed from the data of specific absorption rate (SAR), Figure 1b. The highest SAR value was found for Zn0.098Mn0.447Fe2.455O4. The best heating efficiency and electrochemical properties had the same sample. To correlate ZnxMnyFezO4 different efficiency in magnetic hyperthermia and electrochemical sensor applications with parameters like cation distribution in two non-equivalent spinel crystallographic sites (space group, Fd-3m), local distortion on cationic sites, crystallite size and defects, an integrated study of samples structure and microstructure is in progress.",
publisher = "Sociedade Portuguesa de Química",
journal = "ECC8 : 8th EuChemS Chemistry Congress : programme and the book of abstracts; Aug 28 - Sep 1, Lisbon, Portugal",
title = "Ternary flower-structured nanoferrites with polyvalent cations for potential applications in electrochemical sensors and magnetic hyperthermia",
pages = "850-850",
doi = "10.52590/E.ECC8"
}
Jaćimović, Ž., Ognjanović, M., Kosović-Perutović, M., Dojčinović, B., Stanković, D.,& Antić, B.. (2022). Ternary flower-structured nanoferrites with polyvalent cations for potential applications in electrochemical sensors and magnetic hyperthermia. in ECC8 : 8th EuChemS Chemistry Congress : programme and the book of abstracts; Aug 28 - Sep 1, Lisbon, Portugal
Sociedade Portuguesa de Química., 850-850.
https://doi.org/10.52590/E.ECC8
Jaćimović Ž, Ognjanović M, Kosović-Perutović M, Dojčinović B, Stanković D, Antić B. Ternary flower-structured nanoferrites with polyvalent cations for potential applications in electrochemical sensors and magnetic hyperthermia. in ECC8 : 8th EuChemS Chemistry Congress : programme and the book of abstracts; Aug 28 - Sep 1, Lisbon, Portugal. 2022;:850-850.
doi:10.52590/E.ECC8 .
Jaćimović, Željko, Ognjanović, Miloš, Kosović-Perutović, Milica, Dojčinović, Biljana, Stanković, Dalibor, Antić, Bratislav, "Ternary flower-structured nanoferrites with polyvalent cations for potential applications in electrochemical sensors and magnetic hyperthermia" in ECC8 : 8th EuChemS Chemistry Congress : programme and the book of abstracts; Aug 28 - Sep 1, Lisbon, Portugal (2022):850-850,
https://doi.org/10.52590/E.ECC8 . .

Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation

Stanković, Dalibor M.; Kukuruzar, Andrej; Savić, Slađana; Ognjanović, Miloš; Janković-Častvan, Ivona; Roglić, Goran; Antić, Bratislav; Manojlović, Dragan; Dojčinović, Biljana

(2021)

TY  - JOUR
AU  - Stanković, Dalibor M.
AU  - Kukuruzar, Andrej
AU  - Savić, Slađana
AU  - Ognjanović, Miloš
AU  - Janković-Častvan, Ivona
AU  - Roglić, Goran
AU  - Antić, Bratislav
AU  - Manojlović, Dragan
AU  - Dojčinović, Biljana
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9902
AB  - The textile industry is one of the major pollutants of waterbodies with effluents high in biochemical and chemical oxygen demand values, high values of total dissolved solids, total suspended solids, and low dissolved oxygen values along with strong color. The existence of a successful method for its decontamination would be beneficial. In this work, we synthesized sponge-like europium oxide (Eu2O3) using a template-directed route from carbon hollow spheres, obtained from glucose as a carbon source. The material synthesis method was done in an aqueous environment, without using any organic solvents. Electrochemical properties of the synthesized material were investigated using cyclic voltammetry and electrical impedance spectroscopy, while morphological characterization was done using scanning electron microscopy and X-ray powder diffraction analysis. Eu2O3 were successfully immobilized at the surface of a screen-printed carbon electrode (Eu2O3/SPCE) using the drop-casting method. Finally, the prepared electrodes were tested toward the removal of Reactive Blue 52 (RB52) using electrochemical advanced oxidation processes (EAOPs). Important parameters, that is, the supporting electrolyte, its concentration, pH value, and the applied voltage, were optimized for RB52 degradation. The rate of removal was monitored spectrophotometrically and by high-performance liquid chromatography with a diode array detector (HPLC-DAD). It was found that the proposed approach reaches complete decolorization of the RB52 solution after a 60-min treatment, at pH 5.6 of KCl supporting electrolyte at a concentration of 0.05 M. Under optimal parameters, after 3 h of treatment, total organic carbon (TOC) was lowered by ~40%. The obtained results indicate that the proposed method may find potential application in EAOPs, considering electrode stability, durability, and efficiency and simplicity of the method.
T2  - Materials Chemistry and Physics
T1  - Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation
VL  - 273
SP  - 125154
DO  - 10.1016/j.matchemphys.2021.125154
ER  - 
@article{
author = "Stanković, Dalibor M. and Kukuruzar, Andrej and Savić, Slađana and Ognjanović, Miloš and Janković-Častvan, Ivona and Roglić, Goran and Antić, Bratislav and Manojlović, Dragan and Dojčinović, Biljana",
year = "2021",
abstract = "The textile industry is one of the major pollutants of waterbodies with effluents high in biochemical and chemical oxygen demand values, high values of total dissolved solids, total suspended solids, and low dissolved oxygen values along with strong color. The existence of a successful method for its decontamination would be beneficial. In this work, we synthesized sponge-like europium oxide (Eu2O3) using a template-directed route from carbon hollow spheres, obtained from glucose as a carbon source. The material synthesis method was done in an aqueous environment, without using any organic solvents. Electrochemical properties of the synthesized material were investigated using cyclic voltammetry and electrical impedance spectroscopy, while morphological characterization was done using scanning electron microscopy and X-ray powder diffraction analysis. Eu2O3 were successfully immobilized at the surface of a screen-printed carbon electrode (Eu2O3/SPCE) using the drop-casting method. Finally, the prepared electrodes were tested toward the removal of Reactive Blue 52 (RB52) using electrochemical advanced oxidation processes (EAOPs). Important parameters, that is, the supporting electrolyte, its concentration, pH value, and the applied voltage, were optimized for RB52 degradation. The rate of removal was monitored spectrophotometrically and by high-performance liquid chromatography with a diode array detector (HPLC-DAD). It was found that the proposed approach reaches complete decolorization of the RB52 solution after a 60-min treatment, at pH 5.6 of KCl supporting electrolyte at a concentration of 0.05 M. Under optimal parameters, after 3 h of treatment, total organic carbon (TOC) was lowered by ~40%. The obtained results indicate that the proposed method may find potential application in EAOPs, considering electrode stability, durability, and efficiency and simplicity of the method.",
journal = "Materials Chemistry and Physics",
title = "Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation",
volume = "273",
pages = "125154",
doi = "10.1016/j.matchemphys.2021.125154"
}
Stanković, D. M., Kukuruzar, A., Savić, S., Ognjanović, M., Janković-Častvan, I., Roglić, G., Antić, B., Manojlović, D.,& Dojčinović, B.. (2021). Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation. in Materials Chemistry and Physics, 273, 125154.
https://doi.org/10.1016/j.matchemphys.2021.125154
Stanković DM, Kukuruzar A, Savić S, Ognjanović M, Janković-Častvan I, Roglić G, Antić B, Manojlović D, Dojčinović B. Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation. in Materials Chemistry and Physics. 2021;273:125154.
doi:10.1016/j.matchemphys.2021.125154 .
Stanković, Dalibor M., Kukuruzar, Andrej, Savić, Slađana, Ognjanović, Miloš, Janković-Častvan, Ivona, Roglić, Goran, Antić, Bratislav, Manojlović, Dragan, Dojčinović, Biljana, "Sponge-like europium oxide from hollow carbon sphere as a template for an anode material for Reactive Blue 52 electrochemical degradation" in Materials Chemistry and Physics, 273 (2021):125154,
https://doi.org/10.1016/j.matchemphys.2021.125154 . .
1
3
2
3

Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid

Petković, Branka B.; Ognjanović, Miloš; Antić, Bratislav; Viktorovich Avdin, Vyacheslav; Manojlović, Dragan D.; Vranješ-Đurić, Sanja; Stanković, Dalibor M.

(2021)

TY  - JOUR
AU  - Petković, Branka B.
AU  - Ognjanović, Miloš
AU  - Antić, Bratislav
AU  - Viktorovich Avdin, Vyacheslav
AU  - Manojlović, Dragan D.
AU  - Vranješ-Đurić, Sanja
AU  - Stanković, Dalibor M.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9672
AB  - The homemade, porous carbon material, thermolysis prepared from Novolac phenol-formaldehyde resin, in situ modified with Co3O4 nanoparticles and mixed with single-wall carbon nanotubes, was used in selective sensing of prominent antioxidant α-lipoic acid (LA). XRD, SEM and EIS measurements were used for characterization of material composition, structure, morphology and improved conductivity. The quantification of LA at TPCo3O4&SWCNTCPE was done by a square-wave voltammetric technique in BR buffer solution at pH 6. The linear working range was recorded from 2 to 100 μM of LA and the proposed electrode material was successfully applied in the determination of LA in dietary supplements.
T2  - Electroanalysis
T2  - Electroanalysis
T1  - Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid
VL  - 33
IS  - 2
SP  - 446
EP  - 454
DO  - 10.1002/elan.202060290
ER  - 
@article{
author = "Petković, Branka B. and Ognjanović, Miloš and Antić, Bratislav and Viktorovich Avdin, Vyacheslav and Manojlović, Dragan D. and Vranješ-Đurić, Sanja and Stanković, Dalibor M.",
year = "2021",
abstract = "The homemade, porous carbon material, thermolysis prepared from Novolac phenol-formaldehyde resin, in situ modified with Co3O4 nanoparticles and mixed with single-wall carbon nanotubes, was used in selective sensing of prominent antioxidant α-lipoic acid (LA). XRD, SEM and EIS measurements were used for characterization of material composition, structure, morphology and improved conductivity. The quantification of LA at TPCo3O4&SWCNTCPE was done by a square-wave voltammetric technique in BR buffer solution at pH 6. The linear working range was recorded from 2 to 100 μM of LA and the proposed electrode material was successfully applied in the determination of LA in dietary supplements.",
journal = "Electroanalysis, Electroanalysis",
title = "Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid",
volume = "33",
number = "2",
pages = "446-454",
doi = "10.1002/elan.202060290"
}
Petković, B. B., Ognjanović, M., Antić, B., Viktorovich Avdin, V., Manojlović, D. D., Vranješ-Đurić, S.,& Stanković, D. M.. (2021). Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid. in Electroanalysis, 33(2), 446-454.
https://doi.org/10.1002/elan.202060290
Petković BB, Ognjanović M, Antić B, Viktorovich Avdin V, Manojlović DD, Vranješ-Đurić S, Stanković DM. Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid. in Electroanalysis. 2021;33(2):446-454.
doi:10.1002/elan.202060290 .
Petković, Branka B., Ognjanović, Miloš, Antić, Bratislav, Viktorovich Avdin, Vyacheslav, Manojlović, Dragan D., Vranješ-Đurić, Sanja, Stanković, Dalibor M., "Easily Prepared Co3O4 Doped Porous Carbon Material Decorated with Single-wall Carbon Nanotubes Applied in Voltammetric Sensing of Antioxidant α-lipoic Acid" in Electroanalysis, 33, no. 2 (2021):446-454,
https://doi.org/10.1002/elan.202060290 . .
9
5
7

Magnetic nano- and micro-particles based on Gd-substituted magnetite with improved colloidal stability

Bošković, Marko; Fabián, Martin; Vranješ-Đurić, Sanja; Antić, Bratislav

(2021)

TY  - JOUR
AU  - Bošković, Marko
AU  - Fabián, Martin
AU  - Vranješ-Đurić, Sanja
AU  - Antić, Bratislav
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9699
AB  - A series of Fe3-xGdxO4 (x = 0, 0.1, 0.2) nanoparticles with an average diameter of around 8 nm were prepared by the coprecipitation method and coated by citric acid (CA). The nanoparticles show superparamagnetic behavior at room temperature and transition to a blocked state, at a temperature from ~ 89 K to ~ 213 K, depending on Gd concentration. The saturation magnetization of Fe3-xGdxO4 tended to drop for samples with a higher content of Gd. High colloidal stability is mandatory in medical applications of magnetic nanoparticles, and here we demonstrate a new procedure for its improvement. A colloidal sample of Fe3O4@CA was mechanically milled, after which dynamic light scattering and zeta potential measurements were used to monitor the hydrodynamic size and colloidal stability of the acquired suspensions. After 90 min of milling, the average hydrodynamic diameter decreased by 40%, and size distribution changed from polymodal to monomodal, while the negative zeta potential increased from − 30.5 mV to − 52.8 mV. Additionally, Fe2.80Gd0.20O4@CA nanoparticles were embedded in human serum albumin to produce magnetic microspheres (MMS), which could be used as a drug delivery platform. FE-SEM images showed that magnetic nanoparticles form clusters within MMS. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.
T2  - Applied Physics. A: Materials Science and Processing
T1  - Magnetic nano- and micro-particles based on Gd-substituted magnetite with improved colloidal stability
VL  - 127
IS  - 5
SP  - 372
DO  - 10.1007/s00339-021-04509-6
ER  - 
@article{
author = "Bošković, Marko and Fabián, Martin and Vranješ-Đurić, Sanja and Antić, Bratislav",
year = "2021",
abstract = "A series of Fe3-xGdxO4 (x = 0, 0.1, 0.2) nanoparticles with an average diameter of around 8 nm were prepared by the coprecipitation method and coated by citric acid (CA). The nanoparticles show superparamagnetic behavior at room temperature and transition to a blocked state, at a temperature from ~ 89 K to ~ 213 K, depending on Gd concentration. The saturation magnetization of Fe3-xGdxO4 tended to drop for samples with a higher content of Gd. High colloidal stability is mandatory in medical applications of magnetic nanoparticles, and here we demonstrate a new procedure for its improvement. A colloidal sample of Fe3O4@CA was mechanically milled, after which dynamic light scattering and zeta potential measurements were used to monitor the hydrodynamic size and colloidal stability of the acquired suspensions. After 90 min of milling, the average hydrodynamic diameter decreased by 40%, and size distribution changed from polymodal to monomodal, while the negative zeta potential increased from − 30.5 mV to − 52.8 mV. Additionally, Fe2.80Gd0.20O4@CA nanoparticles were embedded in human serum albumin to produce magnetic microspheres (MMS), which could be used as a drug delivery platform. FE-SEM images showed that magnetic nanoparticles form clusters within MMS. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.",
journal = "Applied Physics. A: Materials Science and Processing",
title = "Magnetic nano- and micro-particles based on Gd-substituted magnetite with improved colloidal stability",
volume = "127",
number = "5",
pages = "372",
doi = "10.1007/s00339-021-04509-6"
}
Bošković, M., Fabián, M., Vranješ-Đurić, S.,& Antić, B.. (2021). Magnetic nano- and micro-particles based on Gd-substituted magnetite with improved colloidal stability. in Applied Physics. A: Materials Science and Processing, 127(5), 372.
https://doi.org/10.1007/s00339-021-04509-6
Bošković M, Fabián M, Vranješ-Đurić S, Antić B. Magnetic nano- and micro-particles based on Gd-substituted magnetite with improved colloidal stability. in Applied Physics. A: Materials Science and Processing. 2021;127(5):372.
doi:10.1007/s00339-021-04509-6 .
Bošković, Marko, Fabián, Martin, Vranješ-Đurić, Sanja, Antić, Bratislav, "Magnetic nano- and micro-particles based on Gd-substituted magnetite with improved colloidal stability" in Applied Physics. A: Materials Science and Processing, 127, no. 5 (2021):372,
https://doi.org/10.1007/s00339-021-04509-6 . .
3
3

Sensing Platform Based on Carbon Paste Electrode Modified with Bismuth Oxide Nanoparticles and SWCNT for Submicromolar Quantification of Honokiol

Knežević, Sara; Ognjanović, Miloš; Dojčinović, Biljana; Antić, Bratislav; Vraneš-Đurić, Sanja; Manojlović, Dragan; Stanković, Dalibor M.

(2021)

TY  - JOUR
AU  - Knežević, Sara
AU  - Ognjanović, Miloš
AU  - Dojčinović, Biljana
AU  - Antić, Bratislav
AU  - Vraneš-Đurić, Sanja
AU  - Manojlović, Dragan
AU  - Stanković, Dalibor M.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10055
AB  - Honokiol is neolignan present in the magnolia bark. It displays versatile pharmacological properties—neuroprotective and anxiolytic effect, anti-cancer activity and antimicrobial effect being the most important. This paper aims to develop a voltammetric non-enzymatic biosensor for honokiol detection, quantification and monitoring in drugs and cosmetic products. The materials used in this study were synthesized and characterized by HR-XRPD, SEM, ATR-FTIR and electrochemical methods. Bi2O3, being a p-type semiconductor, was used as an electrode material. Both its semiconductivity and electrocatalytic properties result from lattice structure defects, which differ on the surface and in the bulk of the bismuth oxide crystal, and therefore are crystal size dependent. The influence of the particle size of Bi2O3 on its electrocatalytic properties was studied, and it was confirmed that Bi2O3 nanoparticles have better overall conductive/resistive and catalytic characteristics than microribbons and that the optimal electrode modification for sensing application was obtained by Bi2O3@SWCNT composite material preparation. Here, we established a sensitive electrochemical sensing platform for honokiol detection based on CP electrode modified with bismuth oxide nanoparticles and SWCNT with the 0.17 μM limit of detection, and linear operating range from 0.1 to 50 μM. The effect of potential interferents on honokiol detection was explored. Obtained results in the interference tests and the real sample analysis suggest that the developed approach is selective, accurate and reproducible. Due to the low detection limit and a wide working range, the proposed sensing platform opens great opportunities for further construction of sensors for honokiol detection and monitoring in the pharmaceutical industry and medicinal chemistry.
T2  - Food Analytical Methods
T1  - Sensing Platform Based on Carbon Paste Electrode Modified with Bismuth Oxide Nanoparticles and SWCNT for Submicromolar Quantification of Honokiol
DO  - 10.1007/s12161-021-02174-2
ER  - 
@article{
author = "Knežević, Sara and Ognjanović, Miloš and Dojčinović, Biljana and Antić, Bratislav and Vraneš-Đurić, Sanja and Manojlović, Dragan and Stanković, Dalibor M.",
year = "2021",
abstract = "Honokiol is neolignan present in the magnolia bark. It displays versatile pharmacological properties—neuroprotective and anxiolytic effect, anti-cancer activity and antimicrobial effect being the most important. This paper aims to develop a voltammetric non-enzymatic biosensor for honokiol detection, quantification and monitoring in drugs and cosmetic products. The materials used in this study were synthesized and characterized by HR-XRPD, SEM, ATR-FTIR and electrochemical methods. Bi2O3, being a p-type semiconductor, was used as an electrode material. Both its semiconductivity and electrocatalytic properties result from lattice structure defects, which differ on the surface and in the bulk of the bismuth oxide crystal, and therefore are crystal size dependent. The influence of the particle size of Bi2O3 on its electrocatalytic properties was studied, and it was confirmed that Bi2O3 nanoparticles have better overall conductive/resistive and catalytic characteristics than microribbons and that the optimal electrode modification for sensing application was obtained by Bi2O3@SWCNT composite material preparation. Here, we established a sensitive electrochemical sensing platform for honokiol detection based on CP electrode modified with bismuth oxide nanoparticles and SWCNT with the 0.17 μM limit of detection, and linear operating range from 0.1 to 50 μM. The effect of potential interferents on honokiol detection was explored. Obtained results in the interference tests and the real sample analysis suggest that the developed approach is selective, accurate and reproducible. Due to the low detection limit and a wide working range, the proposed sensing platform opens great opportunities for further construction of sensors for honokiol detection and monitoring in the pharmaceutical industry and medicinal chemistry.",
journal = "Food Analytical Methods",
title = "Sensing Platform Based on Carbon Paste Electrode Modified with Bismuth Oxide Nanoparticles and SWCNT for Submicromolar Quantification of Honokiol",
doi = "10.1007/s12161-021-02174-2"
}
Knežević, S., Ognjanović, M., Dojčinović, B., Antić, B., Vraneš-Đurić, S., Manojlović, D.,& Stanković, D. M.. (2021). Sensing Platform Based on Carbon Paste Electrode Modified with Bismuth Oxide Nanoparticles and SWCNT for Submicromolar Quantification of Honokiol. in Food Analytical Methods.
https://doi.org/10.1007/s12161-021-02174-2
Knežević S, Ognjanović M, Dojčinović B, Antić B, Vraneš-Đurić S, Manojlović D, Stanković DM. Sensing Platform Based on Carbon Paste Electrode Modified with Bismuth Oxide Nanoparticles and SWCNT for Submicromolar Quantification of Honokiol. in Food Analytical Methods. 2021;.
doi:10.1007/s12161-021-02174-2 .
Knežević, Sara, Ognjanović, Miloš, Dojčinović, Biljana, Antić, Bratislav, Vraneš-Đurić, Sanja, Manojlović, Dragan, Stanković, Dalibor M., "Sensing Platform Based on Carbon Paste Electrode Modified with Bismuth Oxide Nanoparticles and SWCNT for Submicromolar Quantification of Honokiol" in Food Analytical Methods (2021),
https://doi.org/10.1007/s12161-021-02174-2 . .
5
5

Thermal characterization of polyurethane/silver ferrite nanocomposites

Pergal, Marija; Dojčinović, Biljana; Kodranov, Igor; Ostojić, Sanja; Ognjanović, Miloš; Stanković, Dalibor; Antić, Bratislav

(The Society of Physical Chemists of Serbia, 2021)

TY  - CONF
AU  - Pergal, Marija
AU  - Dojčinović, Biljana
AU  - Kodranov, Igor
AU  - Ostojić, Sanja
AU  - Ognjanović, Miloš
AU  - Stanković, Dalibor
AU  - Antić, Bratislav
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11682
AB  - The novel polyurethane composite films were prepared using in situ polymerization method in the
presence of silver ferrite nanoparticles (1 wt.%). Preparation, structure, and thermal characterization
of polyurethane/silver ferrite nanocomposites (PUFNCs) were investigated. The study of the effect
of soft segment content (from 30 to 60 wt.%) on the structure and thermal properties was performed
using FTIR, DSC, TGA and TEM analyses. The higher thermal stability was detected for PUFNCs
with higher soft segment content. The glass transition of the hard segment (TgHS) of PUFNCs
increased with decreasing soft segment content due to higher crosslinking density.
PB  - The Society of Physical Chemists of Serbia
C3  - 15th International Conference on Fundamental and Applied Aspects of Physical Chemistry - Physical Chemistry 2021 : proceedings, Volume II, September 20-24
T1  - Thermal characterization of polyurethane/silver ferrite nanocomposites
SP  - 483
EP  - 486
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11682
ER  - 
@conference{
author = "Pergal, Marija and Dojčinović, Biljana and Kodranov, Igor and Ostojić, Sanja and Ognjanović, Miloš and Stanković, Dalibor and Antić, Bratislav",
year = "2021",
abstract = "The novel polyurethane composite films were prepared using in situ polymerization method in the
presence of silver ferrite nanoparticles (1 wt.%). Preparation, structure, and thermal characterization
of polyurethane/silver ferrite nanocomposites (PUFNCs) were investigated. The study of the effect
of soft segment content (from 30 to 60 wt.%) on the structure and thermal properties was performed
using FTIR, DSC, TGA and TEM analyses. The higher thermal stability was detected for PUFNCs
with higher soft segment content. The glass transition of the hard segment (TgHS) of PUFNCs
increased with decreasing soft segment content due to higher crosslinking density.",
publisher = "The Society of Physical Chemists of Serbia",
journal = "15th International Conference on Fundamental and Applied Aspects of Physical Chemistry - Physical Chemistry 2021 : proceedings, Volume II, September 20-24",
title = "Thermal characterization of polyurethane/silver ferrite nanocomposites",
pages = "483-486",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11682"
}
Pergal, M., Dojčinović, B., Kodranov, I., Ostojić, S., Ognjanović, M., Stanković, D.,& Antić, B.. (2021). Thermal characterization of polyurethane/silver ferrite nanocomposites. in 15th International Conference on Fundamental and Applied Aspects of Physical Chemistry - Physical Chemistry 2021 : proceedings, Volume II, September 20-24
The Society of Physical Chemists of Serbia., 483-486.
https://hdl.handle.net/21.15107/rcub_vinar_11682
Pergal M, Dojčinović B, Kodranov I, Ostojić S, Ognjanović M, Stanković D, Antić B. Thermal characterization of polyurethane/silver ferrite nanocomposites. in 15th International Conference on Fundamental and Applied Aspects of Physical Chemistry - Physical Chemistry 2021 : proceedings, Volume II, September 20-24. 2021;:483-486.
https://hdl.handle.net/21.15107/rcub_vinar_11682 .
Pergal, Marija, Dojčinović, Biljana, Kodranov, Igor, Ostojić, Sanja, Ognjanović, Miloš, Stanković, Dalibor, Antić, Bratislav, "Thermal characterization of polyurethane/silver ferrite nanocomposites" in 15th International Conference on Fundamental and Applied Aspects of Physical Chemistry - Physical Chemistry 2021 : proceedings, Volume II, September 20-24 (2021):483-486,
https://hdl.handle.net/21.15107/rcub_vinar_11682 .

Tailoring IONP shape and designing nanocomposite IONS@GN toward modification of SPCE to enhance electrochemical degradation of organic dye

Ognjanović, Miloš; Stanković, Dalibor M.; Fabian, Martin; Vranješ-Đurić, Sanja; Antić, Bratislav; Dojčinović, Biljana P.

(2020)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Stanković, Dalibor M.
AU  - Fabian, Martin
AU  - Vranješ-Đurić, Sanja
AU  - Antić, Bratislav
AU  - Dojčinović, Biljana P.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8810
AB  - Iron oxide nanoparticles (IONP) with different distinctive morphologies (spherical, cubic, flower-like and needles) were utilized for modification of screen-printed carbon electrodes (SPCE) to be used for synthetic organic dye degradation by an electrochemical approach. This platform was implemented for removal of the synthetic organic dye, Reactive Black 5 (RB5) in aqueous solution. Modified SPCE with spherically shaped IONP (IONS) had the highest dye removal efficiency. Thus, IONS were then used for surface decoration of the most common carbon-based materials (graphene, graphene oxide, carboxylated graphene, graphene nanoribbons, graphene nanoplatelets, single- and multi-wall carbon nanotubes), and the nanocomposites formed were deposited on the electrode surfaces. Using IONS/graphene composite (IONS@GN) for electrode modification resulted in the best effect. Removal of RB5 with this electrode was 51% better in comparison with bare SPCE, reducing the time required for complete dye degradation from 61 to 30 min Using IONS-modified SPCE, total RB5 removal occurred in 51 min, improving the performance by 16% over that of bare SPCE. The effects determined, i.e., the best IONP morphology and best type of carbon-based material for nanocomposite formation to enhance RB5 removal will provide guidelines for further modifications of SPCE with nanomaterials and nanocomposites, for application of this electrochemical approach in the degradation of organic pollutants. © 2020 The Author(s). Published by IOP Publishing Ltd.
T2  - Materials Research Express
T1  - Tailoring IONP shape and designing nanocomposite IONS@GN toward modification of SPCE to enhance electrochemical degradation of organic dye
VL  - 7
IS  - 1
SP  - 015509
DO  - 10.1088/2053-1591/ab6490
ER  - 
@article{
author = "Ognjanović, Miloš and Stanković, Dalibor M. and Fabian, Martin and Vranješ-Đurić, Sanja and Antić, Bratislav and Dojčinović, Biljana P.",
year = "2020",
abstract = "Iron oxide nanoparticles (IONP) with different distinctive morphologies (spherical, cubic, flower-like and needles) were utilized for modification of screen-printed carbon electrodes (SPCE) to be used for synthetic organic dye degradation by an electrochemical approach. This platform was implemented for removal of the synthetic organic dye, Reactive Black 5 (RB5) in aqueous solution. Modified SPCE with spherically shaped IONP (IONS) had the highest dye removal efficiency. Thus, IONS were then used for surface decoration of the most common carbon-based materials (graphene, graphene oxide, carboxylated graphene, graphene nanoribbons, graphene nanoplatelets, single- and multi-wall carbon nanotubes), and the nanocomposites formed were deposited on the electrode surfaces. Using IONS/graphene composite (IONS@GN) for electrode modification resulted in the best effect. Removal of RB5 with this electrode was 51% better in comparison with bare SPCE, reducing the time required for complete dye degradation from 61 to 30 min Using IONS-modified SPCE, total RB5 removal occurred in 51 min, improving the performance by 16% over that of bare SPCE. The effects determined, i.e., the best IONP morphology and best type of carbon-based material for nanocomposite formation to enhance RB5 removal will provide guidelines for further modifications of SPCE with nanomaterials and nanocomposites, for application of this electrochemical approach in the degradation of organic pollutants. © 2020 The Author(s). Published by IOP Publishing Ltd.",
journal = "Materials Research Express",
title = "Tailoring IONP shape and designing nanocomposite IONS@GN toward modification of SPCE to enhance electrochemical degradation of organic dye",
volume = "7",
number = "1",
pages = "015509",
doi = "10.1088/2053-1591/ab6490"
}
Ognjanović, M., Stanković, D. M., Fabian, M., Vranješ-Đurić, S., Antić, B.,& Dojčinović, B. P.. (2020). Tailoring IONP shape and designing nanocomposite IONS@GN toward modification of SPCE to enhance electrochemical degradation of organic dye. in Materials Research Express, 7(1), 015509.
https://doi.org/10.1088/2053-1591/ab6490
Ognjanović M, Stanković DM, Fabian M, Vranješ-Đurić S, Antić B, Dojčinović BP. Tailoring IONP shape and designing nanocomposite IONS@GN toward modification of SPCE to enhance electrochemical degradation of organic dye. in Materials Research Express. 2020;7(1):015509.
doi:10.1088/2053-1591/ab6490 .
Ognjanović, Miloš, Stanković, Dalibor M., Fabian, Martin, Vranješ-Đurić, Sanja, Antić, Bratislav, Dojčinović, Biljana P., "Tailoring IONP shape and designing nanocomposite IONS@GN toward modification of SPCE to enhance electrochemical degradation of organic dye" in Materials Research Express, 7, no. 1 (2020):015509,
https://doi.org/10.1088/2053-1591/ab6490 . .
2
1
2

Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor

Stanković, Vesna; Đurđić, Slađana; Ognjanović, Miloš; Antić, Bratislav; Kalcher, Kurt; Mutić, Jelena J.; Stanković, Dalibor M.

(2020)

TY  - JOUR
AU  - Stanković, Vesna
AU  - Đurđić, Slađana
AU  - Ognjanović, Miloš
AU  - Antić, Bratislav
AU  - Kalcher, Kurt
AU  - Mutić, Jelena J.
AU  - Stanković, Dalibor M.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8819
AB  - Diagnosis and treatment of some important diseased and metabolic disorders is based on successful detection of albumin. In this work, we aim to develop a simple immunosensor for the detection of human serum albumin in biological fluids. Anti-human albumin antibody was covalently attached to the activated surface of screen-printed carbon electrodes enriched with carboxyl graphene/gold nanoparticles composite. Microstructure (TEM, FE-SEM, XRD) and electrochemical (CV, EIS) characterization methods were used to investigate composite properties and to confirm the successful modification of the electrodes. Under the optimal conditions, linear working range and limit of detection were 2.5–500 μg/mL and 1.55 μg/mL, respectively. Additionally, the effect of some possibly interfering compounds was investigated and the immunosensor was used for real sample analysis. The results showed that the sensor exhibited accurate, precise and sensitive characteristics and can be promising replacement to the convention methods for albumin detection in clinical practice.
T2  - Journal of Electroanalytical Chemistry
T1  - Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor
VL  - 860
SP  - 113928
DO  - 10.1016/j.jelechem.2020.113928
ER  - 
@article{
author = "Stanković, Vesna and Đurđić, Slađana and Ognjanović, Miloš and Antić, Bratislav and Kalcher, Kurt and Mutić, Jelena J. and Stanković, Dalibor M.",
year = "2020",
abstract = "Diagnosis and treatment of some important diseased and metabolic disorders is based on successful detection of albumin. In this work, we aim to develop a simple immunosensor for the detection of human serum albumin in biological fluids. Anti-human albumin antibody was covalently attached to the activated surface of screen-printed carbon electrodes enriched with carboxyl graphene/gold nanoparticles composite. Microstructure (TEM, FE-SEM, XRD) and electrochemical (CV, EIS) characterization methods were used to investigate composite properties and to confirm the successful modification of the electrodes. Under the optimal conditions, linear working range and limit of detection were 2.5–500 μg/mL and 1.55 μg/mL, respectively. Additionally, the effect of some possibly interfering compounds was investigated and the immunosensor was used for real sample analysis. The results showed that the sensor exhibited accurate, precise and sensitive characteristics and can be promising replacement to the convention methods for albumin detection in clinical practice.",
journal = "Journal of Electroanalytical Chemistry",
title = "Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor",
volume = "860",
pages = "113928",
doi = "10.1016/j.jelechem.2020.113928"
}
Stanković, V., Đurđić, S., Ognjanović, M., Antić, B., Kalcher, K., Mutić, J. J.,& Stanković, D. M.. (2020). Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor. in Journal of Electroanalytical Chemistry, 860, 113928.
https://doi.org/10.1016/j.jelechem.2020.113928
Stanković V, Đurđić S, Ognjanović M, Antić B, Kalcher K, Mutić JJ, Stanković DM. Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor. in Journal of Electroanalytical Chemistry. 2020;860:113928.
doi:10.1016/j.jelechem.2020.113928 .
Stanković, Vesna, Đurđić, Slađana, Ognjanović, Miloš, Antić, Bratislav, Kalcher, Kurt, Mutić, Jelena J., Stanković, Dalibor M., "Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor" in Journal of Electroanalytical Chemistry, 860 (2020):113928,
https://doi.org/10.1016/j.jelechem.2020.113928 . .
39
15
35