Vasiljević, Branka

Link to this page

Authority KeyName Variants
orcid::0000-0002-2315-3590
  • Vasiljević, Branka (2)
Projects

Author's Bibliography

Biofilm-forming ability and infection potential of Pseudomonas aeruginosa strains isolated from animals and humans

Milivojević, Dušan; Šumonja, Neven; Medić, Strahinja; Pavić, Aleksandar B.; Morić, Ivana; Vasiljević, Branka; Senerović, Lidija; Nikodinović-Runić, Jasmina

(2018)

TY  - JOUR
AU  - Milivojević, Dušan
AU  - Šumonja, Neven
AU  - Medić, Strahinja
AU  - Pavić, Aleksandar B.
AU  - Morić, Ivana
AU  - Vasiljević, Branka
AU  - Senerović, Lidija
AU  - Nikodinović-Runić, Jasmina
PY  - 2018
UR  - https://academic.oup.com/femspd/article/doi/10.1093/femspd/fty041/4978417
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7822
AB  - Pseudomonas aeruginosa has been amongst the top 10 'superbugs' worldwide and is causing infections with poor outcomes in both humans and animals. From 202 P. aeruginosa isolates (n = 121 animal and n = 81 human), 40 were selected on the basis of biofilm-forming ability and were comparatively characterized in terms of virulence determinants to the type strain P. aeruginosa PAO1. Biofilm formation, pyocyanin and hemolysin production, and bacterial motility patterns were compared with the ability to kill human cell line A549 in vitro. On average, there was no significant difference between levels of animal and human cytotoxicity, while human isolates produced higher amounts of pyocyanin, hemolysins and showed increased swimming ability. Non-parametric statistical analysis identified the highest positive correlation between hemolysis and the swarming ability. For the first time an ensemble machine learning approach used on the in vitro virulence data determined the highest relative predictive importance of the submerged biofilm formation for the cytotoxicity, as an indicator of the infection ability. The findings from the in vitro study were validated in vivo using zebrafish (Danio rerio) embryos. This study highlighted no major differences between P. aeruginosa species isolated from animal and human infections and the importance of pyocyanin production in cytotoxicity and infection ability. © FEMS 2018.
T2  - Pathogens and Disease
T1  - Biofilm-forming ability and infection potential of Pseudomonas aeruginosa strains isolated from animals and humans
VL  - 76
IS  - 4
SP  - fty041
DO  - 10.1093/femspd/fty041
ER  - 
@article{
author = "Milivojević, Dušan and Šumonja, Neven and Medić, Strahinja and Pavić, Aleksandar B. and Morić, Ivana and Vasiljević, Branka and Senerović, Lidija and Nikodinović-Runić, Jasmina",
year = "2018",
abstract = "Pseudomonas aeruginosa has been amongst the top 10 'superbugs' worldwide and is causing infections with poor outcomes in both humans and animals. From 202 P. aeruginosa isolates (n = 121 animal and n = 81 human), 40 were selected on the basis of biofilm-forming ability and were comparatively characterized in terms of virulence determinants to the type strain P. aeruginosa PAO1. Biofilm formation, pyocyanin and hemolysin production, and bacterial motility patterns were compared with the ability to kill human cell line A549 in vitro. On average, there was no significant difference between levels of animal and human cytotoxicity, while human isolates produced higher amounts of pyocyanin, hemolysins and showed increased swimming ability. Non-parametric statistical analysis identified the highest positive correlation between hemolysis and the swarming ability. For the first time an ensemble machine learning approach used on the in vitro virulence data determined the highest relative predictive importance of the submerged biofilm formation for the cytotoxicity, as an indicator of the infection ability. The findings from the in vitro study were validated in vivo using zebrafish (Danio rerio) embryos. This study highlighted no major differences between P. aeruginosa species isolated from animal and human infections and the importance of pyocyanin production in cytotoxicity and infection ability. © FEMS 2018.",
journal = "Pathogens and Disease",
title = "Biofilm-forming ability and infection potential of Pseudomonas aeruginosa strains isolated from animals and humans",
volume = "76",
number = "4",
pages = "fty041",
doi = "10.1093/femspd/fty041"
}
Milivojević, D., Šumonja, N., Medić, S., Pavić, A. B., Morić, I., Vasiljević, B., Senerović, L.,& Nikodinović-Runić, J.. (2018). Biofilm-forming ability and infection potential of Pseudomonas aeruginosa strains isolated from animals and humans. in Pathogens and Disease, 76(4), fty041.
https://doi.org/10.1093/femspd/fty041
Milivojević D, Šumonja N, Medić S, Pavić AB, Morić I, Vasiljević B, Senerović L, Nikodinović-Runić J. Biofilm-forming ability and infection potential of Pseudomonas aeruginosa strains isolated from animals and humans. in Pathogens and Disease. 2018;76(4):fty041.
doi:10.1093/femspd/fty041 .
Milivojević, Dušan, Šumonja, Neven, Medić, Strahinja, Pavić, Aleksandar B., Morić, Ivana, Vasiljević, Branka, Senerović, Lidija, Nikodinović-Runić, Jasmina, "Biofilm-forming ability and infection potential of Pseudomonas aeruginosa strains isolated from animals and humans" in Pathogens and Disease, 76, no. 4 (2018):fty041,
https://doi.org/10.1093/femspd/fty041 . .
1
33
15
32

Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments

Jeremić, Sanja; Beškoski, Vladimir P.; Đokić, Lidija; Vasiljević, Branka; Vrvić, Miroslav M.; Avdalović, Jelena; Gojgić-Cvijović, Gordana; Slavković-Beškoski, Latinka J.; Nikodinović-Runić, Jasmina

(Elsevier, 2016)

TY  - JOUR
AU  - Jeremić, Sanja
AU  - Beškoski, Vladimir P.
AU  - Đokić, Lidija
AU  - Vasiljević, Branka
AU  - Vrvić, Miroslav M.
AU  - Avdalović, Jelena
AU  - Gojgić-Cvijović, Gordana
AU  - Slavković-Beškoski, Latinka J.
AU  - Nikodinović-Runić, Jasmina
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1017
AB  - Iron and sulfur oxidizing chemolithoautotrophic acidophilic bacteria, such as Acidithiobacillus species, hold the dominant role in mine environments characterized by low pH values and high concentrations of reduced sulfur and iron compounds, such as ores, rocks and acid drainage waters from mines. On the other hand, heterotrophic microorganisms, especially their biofilms, from these specific niches are receiving increased attention, but their potential eco-physiological roles have not been fully understood. Biofilms are considered a threat to human health, but biofilms also have beneficial properties as they are deployed in waste recycling and bioremediation systems. We have analyzed interactions of the metal tolerant heterotrophic microorganisms in biofilms with iron oxidizing autotrophic bacteria both from the sulphidic mine environment (copper mine Bor, Serbia). High tolerance to Cu2+, Cd2+ and Cr6+ and the presence of genetic determinants for the respective metal tolerance and biofilm-forming ability was shown for indigenous heterotrophic bacteria that included strains of Staphylococcus and Rhodococcus. Two well characterized bacteria-Pseudomonas aeruginosa PAO1 (known biofilm former) and Cupriavidus metallidurans CH34 (known metal resistant representative) were also included in the study. The interaction and survivability of autotrophic iron oxidizing Acidithiobacillus bacteria and biofilms of heterotrophic bacteria during co-cultivation was revealed. Finally, the effect of heterotrophic biofilms on bioleaching process with indigenous iron oxidizing Acidithiobacillus species was shown not to be inhibitory under in vitro conditions. (C) 2016 Elsevier Ltd. All rights reserved.
PB  - Elsevier
T2  - Journal of Environmental Management
T1  - Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments
VL  - 172
SP  - 151
EP  - 161
DO  - 10.1016/j.jenvman.2016.02.041
ER  - 
@article{
author = "Jeremić, Sanja and Beškoski, Vladimir P. and Đokić, Lidija and Vasiljević, Branka and Vrvić, Miroslav M. and Avdalović, Jelena and Gojgić-Cvijović, Gordana and Slavković-Beškoski, Latinka J. and Nikodinović-Runić, Jasmina",
year = "2016",
abstract = "Iron and sulfur oxidizing chemolithoautotrophic acidophilic bacteria, such as Acidithiobacillus species, hold the dominant role in mine environments characterized by low pH values and high concentrations of reduced sulfur and iron compounds, such as ores, rocks and acid drainage waters from mines. On the other hand, heterotrophic microorganisms, especially their biofilms, from these specific niches are receiving increased attention, but their potential eco-physiological roles have not been fully understood. Biofilms are considered a threat to human health, but biofilms also have beneficial properties as they are deployed in waste recycling and bioremediation systems. We have analyzed interactions of the metal tolerant heterotrophic microorganisms in biofilms with iron oxidizing autotrophic bacteria both from the sulphidic mine environment (copper mine Bor, Serbia). High tolerance to Cu2+, Cd2+ and Cr6+ and the presence of genetic determinants for the respective metal tolerance and biofilm-forming ability was shown for indigenous heterotrophic bacteria that included strains of Staphylococcus and Rhodococcus. Two well characterized bacteria-Pseudomonas aeruginosa PAO1 (known biofilm former) and Cupriavidus metallidurans CH34 (known metal resistant representative) were also included in the study. The interaction and survivability of autotrophic iron oxidizing Acidithiobacillus bacteria and biofilms of heterotrophic bacteria during co-cultivation was revealed. Finally, the effect of heterotrophic biofilms on bioleaching process with indigenous iron oxidizing Acidithiobacillus species was shown not to be inhibitory under in vitro conditions. (C) 2016 Elsevier Ltd. All rights reserved.",
publisher = "Elsevier",
journal = "Journal of Environmental Management",
title = "Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments",
volume = "172",
pages = "151-161",
doi = "10.1016/j.jenvman.2016.02.041"
}
Jeremić, S., Beškoski, V. P., Đokić, L., Vasiljević, B., Vrvić, M. M., Avdalović, J., Gojgić-Cvijović, G., Slavković-Beškoski, L. J.,& Nikodinović-Runić, J.. (2016). Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments. in Journal of Environmental Management
Elsevier., 172, 151-161.
https://doi.org/10.1016/j.jenvman.2016.02.041
Jeremić S, Beškoski VP, Đokić L, Vasiljević B, Vrvić MM, Avdalović J, Gojgić-Cvijović G, Slavković-Beškoski LJ, Nikodinović-Runić J. Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments. in Journal of Environmental Management. 2016;172:151-161.
doi:10.1016/j.jenvman.2016.02.041 .
Jeremić, Sanja, Beškoski, Vladimir P., Đokić, Lidija, Vasiljević, Branka, Vrvić, Miroslav M., Avdalović, Jelena, Gojgić-Cvijović, Gordana, Slavković-Beškoski, Latinka J., Nikodinović-Runić, Jasmina, "Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments" in Journal of Environmental Management, 172 (2016):151-161,
https://doi.org/10.1016/j.jenvman.2016.02.041 . .
1
13
8
14