Mimidis, Alexandros

Link to this page

Authority KeyName Variants
502624ab-2dd7-4f5f-9c93-4d50be3938ea
  • Mimidis, Alexandros (3)
Projects

Author's Bibliography

Effects of static and dynamic femtosecond laser modifications of Ti/Zr multilayer thin films

Petrović, Suzana; Tsibidis, George D.; Kovačević, Aleksander; Božinović, Nevena; Peruško, Davor; Mimidis, Alexandros; Manousaki, Alexandra; Stratakis, Emmanuel

(2021)

TY  - JOUR
AU  - Petrović, Suzana
AU  - Tsibidis, George D.
AU  - Kovačević, Aleksander
AU  - Božinović, Nevena
AU  - Peruško, Davor
AU  - Mimidis, Alexandros
AU  - Manousaki, Alexandra
AU  - Stratakis, Emmanuel
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10079
AB  - The experimental study of the static and dynamic femtosecond laser ablation of the multilayer 15x(Ti/Zr)/Si system is reported. The layer-by-layer selective laser ablation mechanism was studied by analysis of the surface morphology and elemental composition in static single pulse irradiation in a range of pulse energy from 10 to 17 $$\upmu $$J. The selective ablations, as number of concentric circles in modified spots are increased with the pulse energy. The boundary between the circles was shown a change in the depth, comparable to the thickness of the individual layers. Changes in the elemental composition at the edges are associated with the removal of the layer by layer. The dynamic multipulse irradiation was observed via the production of lines with laser-induced periodic surface structures (LIPSS) at different laser parameters (scan velocities and laser polarization). The spatial periodicity of the formed LIPSS depends on changes in the effective number of pulses and laser polarization, as well as the nature of the material. For better interpretation of the experimental results, simulations have been conducted to explore the thermal response of the multiple layered structure 15x(Ti/Zr) after static single pulse irradiation.
T2  - European Physical Journal D. Atoms, Molecules, Clusters and Optical Physics
T1  - Effects of static and dynamic femtosecond laser modifications of Ti/Zr multilayer thin films
VL  - 75
IS  - 12
SP  - 304
DO  - 10.1140/epjd/s10053-021-00291-5
ER  - 
@article{
author = "Petrović, Suzana and Tsibidis, George D. and Kovačević, Aleksander and Božinović, Nevena and Peruško, Davor and Mimidis, Alexandros and Manousaki, Alexandra and Stratakis, Emmanuel",
year = "2021",
abstract = "The experimental study of the static and dynamic femtosecond laser ablation of the multilayer 15x(Ti/Zr)/Si system is reported. The layer-by-layer selective laser ablation mechanism was studied by analysis of the surface morphology and elemental composition in static single pulse irradiation in a range of pulse energy from 10 to 17 $$\upmu $$J. The selective ablations, as number of concentric circles in modified spots are increased with the pulse energy. The boundary between the circles was shown a change in the depth, comparable to the thickness of the individual layers. Changes in the elemental composition at the edges are associated with the removal of the layer by layer. The dynamic multipulse irradiation was observed via the production of lines with laser-induced periodic surface structures (LIPSS) at different laser parameters (scan velocities and laser polarization). The spatial periodicity of the formed LIPSS depends on changes in the effective number of pulses and laser polarization, as well as the nature of the material. For better interpretation of the experimental results, simulations have been conducted to explore the thermal response of the multiple layered structure 15x(Ti/Zr) after static single pulse irradiation.",
journal = "European Physical Journal D. Atoms, Molecules, Clusters and Optical Physics",
title = "Effects of static and dynamic femtosecond laser modifications of Ti/Zr multilayer thin films",
volume = "75",
number = "12",
pages = "304",
doi = "10.1140/epjd/s10053-021-00291-5"
}
Petrović, S., Tsibidis, G. D., Kovačević, A., Božinović, N., Peruško, D., Mimidis, A., Manousaki, A.,& Stratakis, E.. (2021). Effects of static and dynamic femtosecond laser modifications of Ti/Zr multilayer thin films. in European Physical Journal D. Atoms, Molecules, Clusters and Optical Physics, 75(12), 304.
https://doi.org/10.1140/epjd/s10053-021-00291-5
Petrović S, Tsibidis GD, Kovačević A, Božinović N, Peruško D, Mimidis A, Manousaki A, Stratakis E. Effects of static and dynamic femtosecond laser modifications of Ti/Zr multilayer thin films. in European Physical Journal D. Atoms, Molecules, Clusters and Optical Physics. 2021;75(12):304.
doi:10.1140/epjd/s10053-021-00291-5 .
Petrović, Suzana, Tsibidis, George D., Kovačević, Aleksander, Božinović, Nevena, Peruško, Davor, Mimidis, Alexandros, Manousaki, Alexandra, Stratakis, Emmanuel, "Effects of static and dynamic femtosecond laser modifications of Ti/Zr multilayer thin films" in European Physical Journal D. Atoms, Molecules, Clusters and Optical Physics, 75, no. 12 (2021):304,
https://doi.org/10.1140/epjd/s10053-021-00291-5 . .
4
4

Response of NIH 3T3 fibroblast cells on laser-induced periodic surface structures on a 15×(Ti/Zr)/Si multilayer system

Petrović, Suzana; Peruško, Davor; Mimidis, Alexandros; Kavatzikidou, Paraskevi; Kovač, Janez; Ranella, Anthi; Novaković, Mirjana M.; Popović, Maja; Stratakis, Emmanuel

(2020)

TY  - JOUR
AU  - Petrović, Suzana
AU  - Peruško, Davor
AU  - Mimidis, Alexandros
AU  - Kavatzikidou, Paraskevi
AU  - Kovač, Janez
AU  - Ranella, Anthi
AU  - Novaković, Mirjana M.
AU  - Popović, Maja
AU  - Stratakis, Emmanuel
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9785
AB  - Ultrafast laser processing with the formation of periodic surface nanostructures on the 15×(Ti/Zr)/Si multilayers is studied in order to the improve cell response. A novel nanocomposite structure in the form of 15x(Ti/Zr)/Si multilayer thin films, with satisfying mechanical properties and moderate biocompatibility, was deposited by ion sputtering on an Si substrate. The multilayer 15×(Ti/Zr)/Si thin films were modified by femtosecond laser pulses in air to induce the following modifications: (i) mixing of components inside of the multilayer structures, (ii) the formation of an ultrathin oxide layer at the surfaces, and (iii) surface nano-texturing with the creation of laser-induced periodic surface structure (LIPSS). The focus of this study was an examination of the novel Ti/Zr multilayer thin films in order to create a surface texture with suitable composition and structure for cell integration. Using the SEM and confocal microscopies of the laser-modified Ti/Zr surfaces with seeded cell culture (NIH 3T3 fibroblasts), it was found that cell adhesion and growth depend on the surface composition and morphological patterns. These results indicated a good proliferation of cells after two and four days with some tendency of the cell orientation along the LIPSSs. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
T2  - Nanomaterials
T1  - Response of NIH 3T3 fibroblast cells on laser-induced periodic surface structures on a 15×(Ti/Zr)/Si multilayer system
VL  - 10
IS  - 12
SP  - 1
EP  - 14
DO  - 10.3390/nano10122531
ER  - 
@article{
author = "Petrović, Suzana and Peruško, Davor and Mimidis, Alexandros and Kavatzikidou, Paraskevi and Kovač, Janez and Ranella, Anthi and Novaković, Mirjana M. and Popović, Maja and Stratakis, Emmanuel",
year = "2020",
abstract = "Ultrafast laser processing with the formation of periodic surface nanostructures on the 15×(Ti/Zr)/Si multilayers is studied in order to the improve cell response. A novel nanocomposite structure in the form of 15x(Ti/Zr)/Si multilayer thin films, with satisfying mechanical properties and moderate biocompatibility, was deposited by ion sputtering on an Si substrate. The multilayer 15×(Ti/Zr)/Si thin films were modified by femtosecond laser pulses in air to induce the following modifications: (i) mixing of components inside of the multilayer structures, (ii) the formation of an ultrathin oxide layer at the surfaces, and (iii) surface nano-texturing with the creation of laser-induced periodic surface structure (LIPSS). The focus of this study was an examination of the novel Ti/Zr multilayer thin films in order to create a surface texture with suitable composition and structure for cell integration. Using the SEM and confocal microscopies of the laser-modified Ti/Zr surfaces with seeded cell culture (NIH 3T3 fibroblasts), it was found that cell adhesion and growth depend on the surface composition and morphological patterns. These results indicated a good proliferation of cells after two and four days with some tendency of the cell orientation along the LIPSSs. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.",
journal = "Nanomaterials",
title = "Response of NIH 3T3 fibroblast cells on laser-induced periodic surface structures on a 15×(Ti/Zr)/Si multilayer system",
volume = "10",
number = "12",
pages = "1-14",
doi = "10.3390/nano10122531"
}
Petrović, S., Peruško, D., Mimidis, A., Kavatzikidou, P., Kovač, J., Ranella, A., Novaković, M. M., Popović, M.,& Stratakis, E.. (2020). Response of NIH 3T3 fibroblast cells on laser-induced periodic surface structures on a 15×(Ti/Zr)/Si multilayer system. in Nanomaterials, 10(12), 1-14.
https://doi.org/10.3390/nano10122531
Petrović S, Peruško D, Mimidis A, Kavatzikidou P, Kovač J, Ranella A, Novaković MM, Popović M, Stratakis E. Response of NIH 3T3 fibroblast cells on laser-induced periodic surface structures on a 15×(Ti/Zr)/Si multilayer system. in Nanomaterials. 2020;10(12):1-14.
doi:10.3390/nano10122531 .
Petrović, Suzana, Peruško, Davor, Mimidis, Alexandros, Kavatzikidou, Paraskevi, Kovač, Janez, Ranella, Anthi, Novaković, Mirjana M., Popović, Maja, Stratakis, Emmanuel, "Response of NIH 3T3 fibroblast cells on laser-induced periodic surface structures on a 15×(Ti/Zr)/Si multilayer system" in Nanomaterials, 10, no. 12 (2020):1-14,
https://doi.org/10.3390/nano10122531 . .
7
1
6

Molding Wetting by Laser-Induced Nanostructures

Kovačević, Aleksander; Petrović, Suzana; Mimidis, Alexandros; Stratakis, Emmanuel; Pantelić, Dejan; Kolarić, Branko

(2020)

TY  - JOUR
AU  - Kovačević, Aleksander
AU  - Petrović, Suzana
AU  - Mimidis, Alexandros
AU  - Stratakis, Emmanuel
AU  - Pantelić, Dejan
AU  - Kolarić, Branko
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9632
AB  - The influence of material characteristics—i.e., type or surface texture—to wetting properties is nowadays increased by the implementation of ultrafast lasers for nanostructuring. In this account, we exposed multilayer thin metal film samples of different materials to a femtosecond laser beam at a 1030 nm wavelength. The interaction generated high-quality laser-induced periodic surface structures (LIPSS) of spatial periods between 740 and 790 nm and with maximal average corrugation height below 100 nm. The contact angle (CA) values of the water droplets on the surface were estimated and the values between unmodified and modified samples were compared. Even though the laser interaction changed both the surface morphology and the chemical composition, the wetting properties were predominantly influenced by the small change in morphology causing the increase in the contact angle of ~80%, which could not be explained classically. The influence of both surface corrugation and chemical composition to the wetting properties has been thoroughly investigated, discussed and explained. The presented results clearly confirm that femtosecond patterning can be used to mold wetting properties.
T2  - Applied Sciences
T1  - Molding Wetting by Laser-Induced Nanostructures
VL  - 10
IS  - 17
SP  - 6008
DO  - 10.3390/app10176008
ER  - 
@article{
author = "Kovačević, Aleksander and Petrović, Suzana and Mimidis, Alexandros and Stratakis, Emmanuel and Pantelić, Dejan and Kolarić, Branko",
year = "2020",
abstract = "The influence of material characteristics—i.e., type or surface texture—to wetting properties is nowadays increased by the implementation of ultrafast lasers for nanostructuring. In this account, we exposed multilayer thin metal film samples of different materials to a femtosecond laser beam at a 1030 nm wavelength. The interaction generated high-quality laser-induced periodic surface structures (LIPSS) of spatial periods between 740 and 790 nm and with maximal average corrugation height below 100 nm. The contact angle (CA) values of the water droplets on the surface were estimated and the values between unmodified and modified samples were compared. Even though the laser interaction changed both the surface morphology and the chemical composition, the wetting properties were predominantly influenced by the small change in morphology causing the increase in the contact angle of ~80%, which could not be explained classically. The influence of both surface corrugation and chemical composition to the wetting properties has been thoroughly investigated, discussed and explained. The presented results clearly confirm that femtosecond patterning can be used to mold wetting properties.",
journal = "Applied Sciences",
title = "Molding Wetting by Laser-Induced Nanostructures",
volume = "10",
number = "17",
pages = "6008",
doi = "10.3390/app10176008"
}
Kovačević, A., Petrović, S., Mimidis, A., Stratakis, E., Pantelić, D.,& Kolarić, B.. (2020). Molding Wetting by Laser-Induced Nanostructures. in Applied Sciences, 10(17), 6008.
https://doi.org/10.3390/app10176008
Kovačević A, Petrović S, Mimidis A, Stratakis E, Pantelić D, Kolarić B. Molding Wetting by Laser-Induced Nanostructures. in Applied Sciences. 2020;10(17):6008.
doi:10.3390/app10176008 .
Kovačević, Aleksander, Petrović, Suzana, Mimidis, Alexandros, Stratakis, Emmanuel, Pantelić, Dejan, Kolarić, Branko, "Molding Wetting by Laser-Induced Nanostructures" in Applied Sciences, 10, no. 17 (2020):6008,
https://doi.org/10.3390/app10176008 . .
1
4
4