Krstić, Jugoslav

Link to this page

Authority KeyName Variants
246ae86e-895d-4b2c-a28a-86c0051864a0
  • Krstić, Jugoslav (2)

Author's Bibliography

Environmental Potential of Carbonized MOF-5/PANI Composites for Pesticide, Dye, and Metal Cations—Can They Actually Retain Them All?

Jevremović, Anka; Savić, Marjetka; Janošević Ležaić, Aleksandra; Krstić, Jugoslav; Gavrilov, Nemanja; Bajuk-Bogdanović, Danica; Milojević-Rakić, Maja; Ćirić-Marjanović, Gordana

(2023)

TY  - JOUR
AU  - Jevremović, Anka
AU  - Savić, Marjetka
AU  - Janošević Ležaić, Aleksandra
AU  - Krstić, Jugoslav
AU  - Gavrilov, Nemanja
AU  - Bajuk-Bogdanović, Danica
AU  - Milojević-Rakić, Maja
AU  - Ćirić-Marjanović, Gordana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12211
AB  - The environmental application of the carbonized composites of the Zn-containing metal-organic framework MOF-5 and polyaniline (PANI) in its emeraldine salt and base forms (C-(MOF-5/PANI)) was investigated for the first time. Textural properties and particle size distributions revealed that composites are dominantly mesoporous and nanoscale in nature, while Raman spectroscopy revealed the ZnO phase beneath the carbon matrix. Adsorption of pesticide, dye, and metal cation on C-(MOF-5/PANI) composites in aqueous solutions was evaluated and compared with the behavior of the precursor components, carbonized MOF-5 (cMOF), and carbonized PANIs. A lower MOF-5 content in the precursor, a higher specific surface area, and the pore volume of the composites led to improved adsorption performance for acetamiprid (124 mg/g) and Methylene Blue (135 mg/g). The presence of O/N functional groups in composites is essential for the adsorption of nitrogen-rich pollutants through hydrogen bonding with an estimated monolayer capacity twice as high as that of cMOF. The proton exchange accompanying Cd2+ retention was associated with the Zn/Cd ion exchange, and the highest capacity (9.8 mg/g) was observed for the composite synthesized from the precursor with a high MOF-5 content. The multifunctionality of composites was evidenced in mixtures of pollutants where noticeably better performance for Cd2+ removal was found for the composite compared to cMOF. Competitive binding between three pollutants favored the adsorption of pesticide and dye, thereby hindering to some extent the ion exchange necessary for the removal of metal cations. The results emphasize the importance of the PANI form and MOF-5/PANI weight ratio in precursors for the development of surface, porosity, and active sites in C-(MOF-5/PANI) composites, thus guiding their environmental efficiency. The study also demonstrated that C-(MOF-5/PANI) composites retained studied pollutants much better than carbonized precursor PANIs and showed comparable or better adsorption ability than cMOF.
T2  - Polymers
T1  - Environmental Potential of Carbonized MOF-5/PANI Composites for Pesticide, Dye, and Metal Cations—Can They Actually Retain Them All?
VL  - 15
IS  - 22
SP  - 4349
DO  - 10.3390/polym15224349
ER  - 
@article{
author = "Jevremović, Anka and Savić, Marjetka and Janošević Ležaić, Aleksandra and Krstić, Jugoslav and Gavrilov, Nemanja and Bajuk-Bogdanović, Danica and Milojević-Rakić, Maja and Ćirić-Marjanović, Gordana",
year = "2023",
abstract = "The environmental application of the carbonized composites of the Zn-containing metal-organic framework MOF-5 and polyaniline (PANI) in its emeraldine salt and base forms (C-(MOF-5/PANI)) was investigated for the first time. Textural properties and particle size distributions revealed that composites are dominantly mesoporous and nanoscale in nature, while Raman spectroscopy revealed the ZnO phase beneath the carbon matrix. Adsorption of pesticide, dye, and metal cation on C-(MOF-5/PANI) composites in aqueous solutions was evaluated and compared with the behavior of the precursor components, carbonized MOF-5 (cMOF), and carbonized PANIs. A lower MOF-5 content in the precursor, a higher specific surface area, and the pore volume of the composites led to improved adsorption performance for acetamiprid (124 mg/g) and Methylene Blue (135 mg/g). The presence of O/N functional groups in composites is essential for the adsorption of nitrogen-rich pollutants through hydrogen bonding with an estimated monolayer capacity twice as high as that of cMOF. The proton exchange accompanying Cd2+ retention was associated with the Zn/Cd ion exchange, and the highest capacity (9.8 mg/g) was observed for the composite synthesized from the precursor with a high MOF-5 content. The multifunctionality of composites was evidenced in mixtures of pollutants where noticeably better performance for Cd2+ removal was found for the composite compared to cMOF. Competitive binding between three pollutants favored the adsorption of pesticide and dye, thereby hindering to some extent the ion exchange necessary for the removal of metal cations. The results emphasize the importance of the PANI form and MOF-5/PANI weight ratio in precursors for the development of surface, porosity, and active sites in C-(MOF-5/PANI) composites, thus guiding their environmental efficiency. The study also demonstrated that C-(MOF-5/PANI) composites retained studied pollutants much better than carbonized precursor PANIs and showed comparable or better adsorption ability than cMOF.",
journal = "Polymers",
title = "Environmental Potential of Carbonized MOF-5/PANI Composites for Pesticide, Dye, and Metal Cations—Can They Actually Retain Them All?",
volume = "15",
number = "22",
pages = "4349",
doi = "10.3390/polym15224349"
}
Jevremović, A., Savić, M., Janošević Ležaić, A., Krstić, J., Gavrilov, N., Bajuk-Bogdanović, D., Milojević-Rakić, M.,& Ćirić-Marjanović, G.. (2023). Environmental Potential of Carbonized MOF-5/PANI Composites for Pesticide, Dye, and Metal Cations—Can They Actually Retain Them All?. in Polymers, 15(22), 4349.
https://doi.org/10.3390/polym15224349
Jevremović A, Savić M, Janošević Ležaić A, Krstić J, Gavrilov N, Bajuk-Bogdanović D, Milojević-Rakić M, Ćirić-Marjanović G. Environmental Potential of Carbonized MOF-5/PANI Composites for Pesticide, Dye, and Metal Cations—Can They Actually Retain Them All?. in Polymers. 2023;15(22):4349.
doi:10.3390/polym15224349 .
Jevremović, Anka, Savić, Marjetka, Janošević Ležaić, Aleksandra, Krstić, Jugoslav, Gavrilov, Nemanja, Bajuk-Bogdanović, Danica, Milojević-Rakić, Maja, Ćirić-Marjanović, Gordana, "Environmental Potential of Carbonized MOF-5/PANI Composites for Pesticide, Dye, and Metal Cations—Can They Actually Retain Them All?" in Polymers, 15, no. 22 (2023):4349,
https://doi.org/10.3390/polym15224349 . .
1

Natural Cyanobacteria Removers Obtained from Bio-Waste Date-Palm Leaf Stalks and Black Alder Cone-Like Flowers

Kandić, Irina; Kragović, Milan; Krstić, Jugoslav; Gulicovski, Jelena J.; Popović, Jasmina; Rosić, Milena; Karadžić, Vesna; Stojmenović, Marija

(2022)

TY  - JOUR
AU  - Kandić, Irina
AU  - Kragović, Milan
AU  - Krstić, Jugoslav
AU  - Gulicovski, Jelena J.
AU  - Popović, Jasmina
AU  - Rosić, Milena
AU  - Karadžić, Vesna
AU  - Stojmenović, Marija
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11980
AB  - The impact of urbanization and modern agricultural practice has led to accelerated eutrophication of aquatic ecosystems, which has resulted in the massive development of cyanobacteria. Very often, in response to various environmental influences, cyanobacteria produce potentially car-cinogenic cyanotoxins. Long-term human exposure to cyanotoxins, through drinking water as well as recreational water (i.e., rivers or lakes), can cause serious health consequences. In order to overcome this problem, this paper presents the synthesis of completely new activated carbons and their potential application in contaminated water treatment. The synthesis and characterization of new active carbon materials obtained from waste biomass, date-palm leaf stalks (P_AC) and black alder cone-like flowers (A_AC) of reliable physical and chemical characteristics were presented in this article. The commercial activated carbon (C_AC) was also examined for the purpose of comparisons with the obtained materials. The detailed characterization of materials was carried out by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), low-temperature N2 physisorption, and Field emission scanning electron microscopy (FESEM). Preliminary analyzes of the adsorption capacities of all activated carbon materials were conducted on water samples from Aleksandrovac Lake (Southern part of Serbia), as a eutrophic lake, in order to remove Cyanobacteria from water. The results after 24 h of filtration showed removal efficiencies for P_AC, A_AC, and C_AC of 99.99%, 99.99% and 89.79%, respectively.
T2  - International Journal of Environmental Research and Public Health
T1  - Natural Cyanobacteria Removers Obtained from Bio-Waste Date-Palm Leaf Stalks and Black Alder Cone-Like Flowers
VL  - 19
IS  - 11
SP  - 6639
DO  - 10.3390/ijerph19116639
ER  - 
@article{
author = "Kandić, Irina and Kragović, Milan and Krstić, Jugoslav and Gulicovski, Jelena J. and Popović, Jasmina and Rosić, Milena and Karadžić, Vesna and Stojmenović, Marija",
year = "2022",
abstract = "The impact of urbanization and modern agricultural practice has led to accelerated eutrophication of aquatic ecosystems, which has resulted in the massive development of cyanobacteria. Very often, in response to various environmental influences, cyanobacteria produce potentially car-cinogenic cyanotoxins. Long-term human exposure to cyanotoxins, through drinking water as well as recreational water (i.e., rivers or lakes), can cause serious health consequences. In order to overcome this problem, this paper presents the synthesis of completely new activated carbons and their potential application in contaminated water treatment. The synthesis and characterization of new active carbon materials obtained from waste biomass, date-palm leaf stalks (P_AC) and black alder cone-like flowers (A_AC) of reliable physical and chemical characteristics were presented in this article. The commercial activated carbon (C_AC) was also examined for the purpose of comparisons with the obtained materials. The detailed characterization of materials was carried out by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), low-temperature N2 physisorption, and Field emission scanning electron microscopy (FESEM). Preliminary analyzes of the adsorption capacities of all activated carbon materials were conducted on water samples from Aleksandrovac Lake (Southern part of Serbia), as a eutrophic lake, in order to remove Cyanobacteria from water. The results after 24 h of filtration showed removal efficiencies for P_AC, A_AC, and C_AC of 99.99%, 99.99% and 89.79%, respectively.",
journal = "International Journal of Environmental Research and Public Health",
title = "Natural Cyanobacteria Removers Obtained from Bio-Waste Date-Palm Leaf Stalks and Black Alder Cone-Like Flowers",
volume = "19",
number = "11",
pages = "6639",
doi = "10.3390/ijerph19116639"
}
Kandić, I., Kragović, M., Krstić, J., Gulicovski, J. J., Popović, J., Rosić, M., Karadžić, V.,& Stojmenović, M.. (2022). Natural Cyanobacteria Removers Obtained from Bio-Waste Date-Palm Leaf Stalks and Black Alder Cone-Like Flowers. in International Journal of Environmental Research and Public Health, 19(11), 6639.
https://doi.org/10.3390/ijerph19116639
Kandić I, Kragović M, Krstić J, Gulicovski JJ, Popović J, Rosić M, Karadžić V, Stojmenović M. Natural Cyanobacteria Removers Obtained from Bio-Waste Date-Palm Leaf Stalks and Black Alder Cone-Like Flowers. in International Journal of Environmental Research and Public Health. 2022;19(11):6639.
doi:10.3390/ijerph19116639 .
Kandić, Irina, Kragović, Milan, Krstić, Jugoslav, Gulicovski, Jelena J., Popović, Jasmina, Rosić, Milena, Karadžić, Vesna, Stojmenović, Marija, "Natural Cyanobacteria Removers Obtained from Bio-Waste Date-Palm Leaf Stalks and Black Alder Cone-Like Flowers" in International Journal of Environmental Research and Public Health, 19, no. 11 (2022):6639,
https://doi.org/10.3390/ijerph19116639 . .
1
3
2