Prvulović, Milica

Link to this page

Authority KeyName Variants
orcid::0000-0001-5921-4626
  • Prvulović, Milica (6)
Projects

Author's Bibliography

Hydrogen storage properties of MgH2–Tm: Ni-catalysis vs. mechanical milling

Babić, Bojana; Prvulović, Milica; Filipović, Nenad; Mravik, Željko; Sekulić, Zorana; Milošević Govedarović, Sanja S.; Milanović, Igor

(2023)

TY  - JOUR
AU  - Babić, Bojana
AU  - Prvulović, Milica
AU  - Filipović, Nenad
AU  - Mravik, Željko
AU  - Sekulić, Zorana
AU  - Milošević Govedarović, Sanja S.
AU  - Milanović, Igor
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10936
AB  - The influence of the addition of nickel on hydrogen desorption from the MgH2–Ni composite was investigated. The composite powder was ball-milled for 15, 30 and 45 min and characterized by XRD, SEM-EDS, PSD, DSC and TPD methods. It was observed that the uniform distribution of nickel decreases hydrogen desorption temperature by more than 100 °C. A kinetic model for the hydrogen desorption process was also determined. The hydrogen desorption reaction in catalyzed samples is described by the Avrami-Erofeev model with the value of parameter n = 4. The apparent activation energy of the hydrogen desorption reaction was decreased with the increase of milling time and the addition of nickel. It has been shown for the first time that two main processes (grinding and the catalytic effect) could be separately analyzed. It is concluded that for investigated short milling times, the catalytic effect of Ni is predominant.
T2  - International Journal of Hydrogen Energy
T1  - Hydrogen storage properties of MgH2–Tm: Ni-catalysis vs. mechanical milling
VL  - 54
SP  - 446
EP  - 456
DO  - 10.1016/j.ijhydene.2023.04.078
ER  - 
@article{
author = "Babić, Bojana and Prvulović, Milica and Filipović, Nenad and Mravik, Željko and Sekulić, Zorana and Milošević Govedarović, Sanja S. and Milanović, Igor",
year = "2023",
abstract = "The influence of the addition of nickel on hydrogen desorption from the MgH2–Ni composite was investigated. The composite powder was ball-milled for 15, 30 and 45 min and characterized by XRD, SEM-EDS, PSD, DSC and TPD methods. It was observed that the uniform distribution of nickel decreases hydrogen desorption temperature by more than 100 °C. A kinetic model for the hydrogen desorption process was also determined. The hydrogen desorption reaction in catalyzed samples is described by the Avrami-Erofeev model with the value of parameter n = 4. The apparent activation energy of the hydrogen desorption reaction was decreased with the increase of milling time and the addition of nickel. It has been shown for the first time that two main processes (grinding and the catalytic effect) could be separately analyzed. It is concluded that for investigated short milling times, the catalytic effect of Ni is predominant.",
journal = "International Journal of Hydrogen Energy",
title = "Hydrogen storage properties of MgH2–Tm: Ni-catalysis vs. mechanical milling",
volume = "54",
pages = "446-456",
doi = "10.1016/j.ijhydene.2023.04.078"
}
Babić, B., Prvulović, M., Filipović, N., Mravik, Ž., Sekulić, Z., Milošević Govedarović, S. S.,& Milanović, I.. (2023). Hydrogen storage properties of MgH2–Tm: Ni-catalysis vs. mechanical milling. in International Journal of Hydrogen Energy, 54, 446-456.
https://doi.org/10.1016/j.ijhydene.2023.04.078
Babić B, Prvulović M, Filipović N, Mravik Ž, Sekulić Z, Milošević Govedarović SS, Milanović I. Hydrogen storage properties of MgH2–Tm: Ni-catalysis vs. mechanical milling. in International Journal of Hydrogen Energy. 2023;54:446-456.
doi:10.1016/j.ijhydene.2023.04.078 .
Babić, Bojana, Prvulović, Milica, Filipović, Nenad, Mravik, Željko, Sekulić, Zorana, Milošević Govedarović, Sanja S., Milanović, Igor, "Hydrogen storage properties of MgH2–Tm: Ni-catalysis vs. mechanical milling" in International Journal of Hydrogen Energy, 54 (2023):446-456,
https://doi.org/10.1016/j.ijhydene.2023.04.078 . .
3
2

Hydrogen storage properties of MgH2-Ni system

Prvulović, Milica; Babić, Bojana; Filipović, Nenad; Mravik, Željko; Milošević Govedarović, Sanja; Sekulić, Zorana; Milanović, Igor

(Belgrade : Institute of Technical Sciences of SASA, 2023)

TY  - CONF
AU  - Prvulović, Milica
AU  - Babić, Bojana
AU  - Filipović, Nenad
AU  - Mravik, Željko
AU  - Milošević Govedarović, Sanja
AU  - Sekulić, Zorana
AU  - Milanović, Igor
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12313
AB  - The effect of pure Ni addition (5 wt.%) in MgH2 powder was investigated mechanochemically for short milling times (15, 30, and 45 min). Obtained MgH2-Ni system was characterized by XRD, SEM-EDS, PSD, DSC, and TPD. Compared to pure MgH2, uniform distribution of nickel reduces the temperature of H2 desorption by more than 100 °C. It is shown that influence of two important processes, grinding and catalysis, may be followed separately. We can conclude that the catalysis of H2 desorption by Ni particles on MgH2 matrix is the dominant effect for the investigated short milling times.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts
T1  - Hydrogen storage properties of MgH2-Ni system
SP  - 39
EP  - 39
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12313
ER  - 
@conference{
author = "Prvulović, Milica and Babić, Bojana and Filipović, Nenad and Mravik, Željko and Milošević Govedarović, Sanja and Sekulić, Zorana and Milanović, Igor",
year = "2023",
abstract = "The effect of pure Ni addition (5 wt.%) in MgH2 powder was investigated mechanochemically for short milling times (15, 30, and 45 min). Obtained MgH2-Ni system was characterized by XRD, SEM-EDS, PSD, DSC, and TPD. Compared to pure MgH2, uniform distribution of nickel reduces the temperature of H2 desorption by more than 100 °C. It is shown that influence of two important processes, grinding and catalysis, may be followed separately. We can conclude that the catalysis of H2 desorption by Ni particles on MgH2 matrix is the dominant effect for the investigated short milling times.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts",
title = "Hydrogen storage properties of MgH2-Ni system",
pages = "39-39",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12313"
}
Prvulović, M., Babić, B., Filipović, N., Mravik, Ž., Milošević Govedarović, S., Sekulić, Z.,& Milanović, I.. (2023). Hydrogen storage properties of MgH2-Ni system. in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts
Belgrade : Institute of Technical Sciences of SASA., 39-39.
https://hdl.handle.net/21.15107/rcub_vinar_12313
Prvulović M, Babić B, Filipović N, Mravik Ž, Milošević Govedarović S, Sekulić Z, Milanović I. Hydrogen storage properties of MgH2-Ni system. in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts. 2023;:39-39.
https://hdl.handle.net/21.15107/rcub_vinar_12313 .
Prvulović, Milica, Babić, Bojana, Filipović, Nenad, Mravik, Željko, Milošević Govedarović, Sanja, Sekulić, Zorana, Milanović, Igor, "Hydrogen storage properties of MgH2-Ni system" in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts (2023):39-39,
https://hdl.handle.net/21.15107/rcub_vinar_12313 .

Kinetic behavior of MgH2-transition metal composites: towards hydrogen storage

Sekulić, Zorana; Babić, Bojana; Prvulović, Milica; Milanović, Igor; Tošić, Katarina; Asanović, Vanja; Novaković, Nikola; Milošević Govedarović, Sanja; Grbović Novaković, Jasmina

(2023)

TY  - CONF
AU  - Sekulić, Zorana
AU  - Babić, Bojana
AU  - Prvulović, Milica
AU  - Milanović, Igor
AU  - Tošić, Katarina
AU  - Asanović, Vanja
AU  - Novaković, Nikola
AU  - Milošević Govedarović, Sanja
AU  - Grbović Novaković, Jasmina
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12737
AB  - Hydrogen as an energy vector represents great potential, due to its high gravimetric density and low mass, as well as the fact that combustion does not emit harmful chemical byproducts. Hydrogen has the highest energy density per unit mass compared to any other fuel but a rather low energy density per unit volume. Further, hydrogen storage is a key technology for developing a hydrogen and fuel cell-based economy [1]. Metal hydrides as alternative hydrogen carriers have a wide range of performance parameters such as operating temperature, sorption kinetics, activation conditions, cyclic options, and equilibrium hydrogen pressure. These parameters can be improved or adjusted to meet the technical requirements of different applications. The most commonly used method for hydride destabilization is nanostructuring by mechanical milling which leads to a reduction in the particle and crystallite size of the MgH2 powder. Nanostructuring is often combined with catalyst addition and composite formation [2,3]. The most of research is focused on the morphological, structural, and thermodynamic effects typical for long milling times, while in this work we have followed the changes taking place under short milling times. The thermal stability of magnesium hydride is related to - changes in the crystallites and powder particle size. The analysis also considered the changes in activation energy. MgH2-M composites were prepared by mechanical milling of the as-received MgH2 powder (Alfa Aesar, 98% purity) with the addition of 2 and 5 wt.% of M (M= V, W, Mo). Mechanical milling was performed in s SPEX 5100 Mixer Mill using 8mm diameter milling ball. Samples were milled for 15-45 minutes under the inert atmosphere of argon and a ball-to-powder ratio 10:1 Figure 1. shows the kinetic curves obtained for composites with 5wt% of vanadium. To investigate the desorption process in detail, different models of solid-state kinetics were used as implemented in the code developed in our group. The ratelimiting step of the desorption reaction was determined using the iso-conversional kinetic method due to better accuracy of obtained apparent activation energies. As shown in Table 1 a decrease in apparent activation energies has been observed. It is obvious that the sorption kinetics is affected by material preparation because the reactivity of magnesium with hydrogen is strongly modified by changes in several surface parameters that govern the chemisorption, the dissociation of molecular hydrogen, and hydride nucleation
C3  - 7th MESC-IS 2023 : International Symposium on Materials for Energy Storage and Conversion
T1  - Kinetic behavior of MgH2-transition metal composites: towards hydrogen storage
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12737
ER  - 
@conference{
author = "Sekulić, Zorana and Babić, Bojana and Prvulović, Milica and Milanović, Igor and Tošić, Katarina and Asanović, Vanja and Novaković, Nikola and Milošević Govedarović, Sanja and Grbović Novaković, Jasmina",
year = "2023",
abstract = "Hydrogen as an energy vector represents great potential, due to its high gravimetric density and low mass, as well as the fact that combustion does not emit harmful chemical byproducts. Hydrogen has the highest energy density per unit mass compared to any other fuel but a rather low energy density per unit volume. Further, hydrogen storage is a key technology for developing a hydrogen and fuel cell-based economy [1]. Metal hydrides as alternative hydrogen carriers have a wide range of performance parameters such as operating temperature, sorption kinetics, activation conditions, cyclic options, and equilibrium hydrogen pressure. These parameters can be improved or adjusted to meet the technical requirements of different applications. The most commonly used method for hydride destabilization is nanostructuring by mechanical milling which leads to a reduction in the particle and crystallite size of the MgH2 powder. Nanostructuring is often combined with catalyst addition and composite formation [2,3]. The most of research is focused on the morphological, structural, and thermodynamic effects typical for long milling times, while in this work we have followed the changes taking place under short milling times. The thermal stability of magnesium hydride is related to - changes in the crystallites and powder particle size. The analysis also considered the changes in activation energy. MgH2-M composites were prepared by mechanical milling of the as-received MgH2 powder (Alfa Aesar, 98% purity) with the addition of 2 and 5 wt.% of M (M= V, W, Mo). Mechanical milling was performed in s SPEX 5100 Mixer Mill using 8mm diameter milling ball. Samples were milled for 15-45 minutes under the inert atmosphere of argon and a ball-to-powder ratio 10:1 Figure 1. shows the kinetic curves obtained for composites with 5wt% of vanadium. To investigate the desorption process in detail, different models of solid-state kinetics were used as implemented in the code developed in our group. The ratelimiting step of the desorption reaction was determined using the iso-conversional kinetic method due to better accuracy of obtained apparent activation energies. As shown in Table 1 a decrease in apparent activation energies has been observed. It is obvious that the sorption kinetics is affected by material preparation because the reactivity of magnesium with hydrogen is strongly modified by changes in several surface parameters that govern the chemisorption, the dissociation of molecular hydrogen, and hydride nucleation",
journal = "7th MESC-IS 2023 : International Symposium on Materials for Energy Storage and Conversion",
title = "Kinetic behavior of MgH2-transition metal composites: towards hydrogen storage",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12737"
}
Sekulić, Z., Babić, B., Prvulović, M., Milanović, I., Tošić, K., Asanović, V., Novaković, N., Milošević Govedarović, S.,& Grbović Novaković, J.. (2023). Kinetic behavior of MgH2-transition metal composites: towards hydrogen storage. in 7th MESC-IS 2023 : International Symposium on Materials for Energy Storage and Conversion.
https://hdl.handle.net/21.15107/rcub_vinar_12737
Sekulić Z, Babić B, Prvulović M, Milanović I, Tošić K, Asanović V, Novaković N, Milošević Govedarović S, Grbović Novaković J. Kinetic behavior of MgH2-transition metal composites: towards hydrogen storage. in 7th MESC-IS 2023 : International Symposium on Materials for Energy Storage and Conversion. 2023;.
https://hdl.handle.net/21.15107/rcub_vinar_12737 .
Sekulić, Zorana, Babić, Bojana, Prvulović, Milica, Milanović, Igor, Tošić, Katarina, Asanović, Vanja, Novaković, Nikola, Milošević Govedarović, Sanja, Grbović Novaković, Jasmina, "Kinetic behavior of MgH2-transition metal composites: towards hydrogen storage" in 7th MESC-IS 2023 : International Symposium on Materials for Energy Storage and Conversion (2023),
https://hdl.handle.net/21.15107/rcub_vinar_12737 .

The Catalytic Effect of Vanadium on Sorption Properties of MgH2-Based Nanocomposites Obtained Using Low Milling Time

Sekulić, Zorana; Grbović Novaković, Jasmina; Babić, Bojana; Prvulović, Milica; Milanović, Igor; Novaković, Nikola; Rajnović, Dragan; Filipović, Nenad; Asanović, Vanja

(2023)

TY  - JOUR
AU  - Sekulić, Zorana
AU  - Grbović Novaković, Jasmina
AU  - Babić, Bojana
AU  - Prvulović, Milica
AU  - Milanović, Igor
AU  - Novaković, Nikola
AU  - Rajnović, Dragan
AU  - Filipović, Nenad
AU  - Asanović, Vanja
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11436
AB  - The effects of catalysis using vanadium as an additive (2 and 5 wt.%) in a high-energy ball mill on composite desorption properties were examined. The influence of microstructure on the dehydration temperature and hydrogen desorption kinetics was monitored. Morphological and microstructural studies of the synthesized sample were performed by X-ray diffraction (XRD), laser particle size distribution (PSD), and scanning electron microscopy (SEM) methods, while differential scanning calorimetry (DSC) determined thermal properties. To further access amorph species in the milling blend, the absorption spectra were obtained by FTIR-ATR analysis (Fourier transform infrared spectroscopy attenuated total reflection). The results show lower apparent activation energy (Eapp) and H2 desorption temperature are obtained for milling bland with 5 wt.% added vanadium. The best explanation of hydrogen desorption reaction shows the Avrami-Erofeev model for parameter n = 4. Since the obtained value of apparent activation energy is close to the Mg-H bond-breaking energy, one can conclude that breaking this bond would be the rate-limiting step of the process.
T2  - Materials
T1  - The Catalytic Effect of Vanadium on Sorption Properties of MgH2-Based Nanocomposites Obtained Using Low Milling Time
VL  - 16
IS  - 15
SP  - 5480
DO  - 10.3390/ma16155480
ER  - 
@article{
author = "Sekulić, Zorana and Grbović Novaković, Jasmina and Babić, Bojana and Prvulović, Milica and Milanović, Igor and Novaković, Nikola and Rajnović, Dragan and Filipović, Nenad and Asanović, Vanja",
year = "2023",
abstract = "The effects of catalysis using vanadium as an additive (2 and 5 wt.%) in a high-energy ball mill on composite desorption properties were examined. The influence of microstructure on the dehydration temperature and hydrogen desorption kinetics was monitored. Morphological and microstructural studies of the synthesized sample were performed by X-ray diffraction (XRD), laser particle size distribution (PSD), and scanning electron microscopy (SEM) methods, while differential scanning calorimetry (DSC) determined thermal properties. To further access amorph species in the milling blend, the absorption spectra were obtained by FTIR-ATR analysis (Fourier transform infrared spectroscopy attenuated total reflection). The results show lower apparent activation energy (Eapp) and H2 desorption temperature are obtained for milling bland with 5 wt.% added vanadium. The best explanation of hydrogen desorption reaction shows the Avrami-Erofeev model for parameter n = 4. Since the obtained value of apparent activation energy is close to the Mg-H bond-breaking energy, one can conclude that breaking this bond would be the rate-limiting step of the process.",
journal = "Materials",
title = "The Catalytic Effect of Vanadium on Sorption Properties of MgH2-Based Nanocomposites Obtained Using Low Milling Time",
volume = "16",
number = "15",
pages = "5480",
doi = "10.3390/ma16155480"
}
Sekulić, Z., Grbović Novaković, J., Babić, B., Prvulović, M., Milanović, I., Novaković, N., Rajnović, D., Filipović, N.,& Asanović, V.. (2023). The Catalytic Effect of Vanadium on Sorption Properties of MgH2-Based Nanocomposites Obtained Using Low Milling Time. in Materials, 16(15), 5480.
https://doi.org/10.3390/ma16155480
Sekulić Z, Grbović Novaković J, Babić B, Prvulović M, Milanović I, Novaković N, Rajnović D, Filipović N, Asanović V. The Catalytic Effect of Vanadium on Sorption Properties of MgH2-Based Nanocomposites Obtained Using Low Milling Time. in Materials. 2023;16(15):5480.
doi:10.3390/ma16155480 .
Sekulić, Zorana, Grbović Novaković, Jasmina, Babić, Bojana, Prvulović, Milica, Milanović, Igor, Novaković, Nikola, Rajnović, Dragan, Filipović, Nenad, Asanović, Vanja, "The Catalytic Effect of Vanadium on Sorption Properties of MgH2-Based Nanocomposites Obtained Using Low Milling Time" in Materials, 16, no. 15 (2023):5480,
https://doi.org/10.3390/ma16155480 . .

Effect of metalic and metal-oxide catalysts on LiAlH4 decomposition

Babić, Bojana; Prvulović, Milica; Rmuš, Jelena; Mitrović Rajić, Anđela; Milošević Govedarović, Sanja; Milanović, Igor; Kurko, Sandra

(Split : University of Split, 2022)

TY  - CONF
AU  - Babić, Bojana
AU  - Prvulović, Milica
AU  - Rmuš, Jelena
AU  - Mitrović Rajić, Anđela
AU  - Milošević Govedarović, Sanja
AU  - Milanović, Igor
AU  - Kurko, Sandra
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12765
AB  - Metal and complex light hydrides are the best fitted materials for hydrogen storage within the concept of hydrogen based economy [1]. They meet the basic application requirements: low-cost, safety and they are environmentally friendly. Beside their benefits, as relatively stable compounds, these materials exhibit also some undesirable properties like sluggish kinetics and high temperature of hydrogen desorption. LiAlH4 has emerged as a potential material for solid-state hydrogen storage because of its high hydrogen gravimetric capacity (10.5 wt%). It decomposes in three steps, according to the reactions [2]: 3LiAlH4 → Li3AlH6 + 2Al + H2                             (R1) Li3AlH6 → 3LiH + Al + 3/2H2               (R2) 3LiH+3Al → 3LiAl + 3/2H2                              (R3) The temperature of the first reaction is between 150-175°C, of the second between 180-220°C and the third between 400420°C. The first two reactions (R1 and R2) are very important from the hydrogen storage point of view: (i) both take place at a reasonable low temperatures and (ii) overall sum of theirs gravimetric hydrogen capacity is 7.8 wt.%, so the reactions (R1) and (R2) are accessible for practical hydrogen storage. However, the slow dehydrogenation kinetics and irreversibility under moderate condition hinder its imminent application.  Particle refinement and catalyst or additive introduction by mechanical milling led to the significant improvement of LiAlH4 hydrogen storage properties [2].  However, during the milling process, the temperature in the milling chamber can significantly increase reaching the temperature of R1 or even R2 leading to the degradation of hydride, change in the hydrogen desorption mechanism (figure 1) and decrease in the hydrogen storage capacity of material [3]. So, in this work the impact of metallic (V, Mn an Cr) and metal oxide (Fe2O3 and Nb2O5) additives on the LiAlH4 hydrogen desorption properties with the emphasis on the hydride degradation process during milling and a consequent hydrogen desorption reaction mechanism was studied. The aim was to improve the hydrogen desorption kinetics without hydrogen capacity deterioration.
PB  - Split : University of Split
C3  - mESC-IS 2022 : 6th International Symposium on Materials for Energy Storage and Conversion : Book of abstracts
T1  - Effect of metalic and metal-oxide catalysts on LiAlH4 decomposition
SP  - 23
EP  - 23
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12765
ER  - 
@conference{
author = "Babić, Bojana and Prvulović, Milica and Rmuš, Jelena and Mitrović Rajić, Anđela and Milošević Govedarović, Sanja and Milanović, Igor and Kurko, Sandra",
year = "2022",
abstract = "Metal and complex light hydrides are the best fitted materials for hydrogen storage within the concept of hydrogen based economy [1]. They meet the basic application requirements: low-cost, safety and they are environmentally friendly. Beside their benefits, as relatively stable compounds, these materials exhibit also some undesirable properties like sluggish kinetics and high temperature of hydrogen desorption. LiAlH4 has emerged as a potential material for solid-state hydrogen storage because of its high hydrogen gravimetric capacity (10.5 wt%). It decomposes in three steps, according to the reactions [2]: 3LiAlH4 → Li3AlH6 + 2Al + H2                             (R1) Li3AlH6 → 3LiH + Al + 3/2H2               (R2) 3LiH+3Al → 3LiAl + 3/2H2                              (R3) The temperature of the first reaction is between 150-175°C, of the second between 180-220°C and the third between 400420°C. The first two reactions (R1 and R2) are very important from the hydrogen storage point of view: (i) both take place at a reasonable low temperatures and (ii) overall sum of theirs gravimetric hydrogen capacity is 7.8 wt.%, so the reactions (R1) and (R2) are accessible for practical hydrogen storage. However, the slow dehydrogenation kinetics and irreversibility under moderate condition hinder its imminent application.  Particle refinement and catalyst or additive introduction by mechanical milling led to the significant improvement of LiAlH4 hydrogen storage properties [2].  However, during the milling process, the temperature in the milling chamber can significantly increase reaching the temperature of R1 or even R2 leading to the degradation of hydride, change in the hydrogen desorption mechanism (figure 1) and decrease in the hydrogen storage capacity of material [3]. So, in this work the impact of metallic (V, Mn an Cr) and metal oxide (Fe2O3 and Nb2O5) additives on the LiAlH4 hydrogen desorption properties with the emphasis on the hydride degradation process during milling and a consequent hydrogen desorption reaction mechanism was studied. The aim was to improve the hydrogen desorption kinetics without hydrogen capacity deterioration.",
publisher = "Split : University of Split",
journal = "mESC-IS 2022 : 6th International Symposium on Materials for Energy Storage and Conversion : Book of abstracts",
title = "Effect of metalic and metal-oxide catalysts on LiAlH4 decomposition",
pages = "23-23",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12765"
}
Babić, B., Prvulović, M., Rmuš, J., Mitrović Rajić, A., Milošević Govedarović, S., Milanović, I.,& Kurko, S.. (2022). Effect of metalic and metal-oxide catalysts on LiAlH4 decomposition. in mESC-IS 2022 : 6th International Symposium on Materials for Energy Storage and Conversion : Book of abstracts
Split : University of Split., 23-23.
https://hdl.handle.net/21.15107/rcub_vinar_12765
Babić B, Prvulović M, Rmuš J, Mitrović Rajić A, Milošević Govedarović S, Milanović I, Kurko S. Effect of metalic and metal-oxide catalysts on LiAlH4 decomposition. in mESC-IS 2022 : 6th International Symposium on Materials for Energy Storage and Conversion : Book of abstracts. 2022;:23-23.
https://hdl.handle.net/21.15107/rcub_vinar_12765 .
Babić, Bojana, Prvulović, Milica, Rmuš, Jelena, Mitrović Rajić, Anđela, Milošević Govedarović, Sanja, Milanović, Igor, Kurko, Sandra, "Effect of metalic and metal-oxide catalysts on LiAlH4 decomposition" in mESC-IS 2022 : 6th International Symposium on Materials for Energy Storage and Conversion : Book of abstracts (2022):23-23,
https://hdl.handle.net/21.15107/rcub_vinar_12765 .

Mechanochemical activation of LiAlH4-Fe2O3 composites-a method to enhance kinetics of hydrogen desorption

Kurko, Sandra; Milošević Govedarović, Sanja; Rmuš, Jelena; Batalović, Katarina; Pantić, Tijana; Prvulović, Milica; Milanović, Igor

(Zagreb : "Ruđer Bošković" Institute, 2021)

TY  - CONF
AU  - Kurko, Sandra
AU  - Milošević Govedarović, Sanja
AU  - Rmuš, Jelena
AU  - Batalović, Katarina
AU  - Pantić, Tijana
AU  - Prvulović, Milica
AU  - Milanović, Igor
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11245
AB  - Mechanical milling of pure lithium alanate (LiAlH4) was done with addition of 5 weigh percent of Fe2O3 using different milling time ranging from 1 to 15 minutes [1]. Mechanical milling of composites causes destabilization of LiAlH4 structure as it observed by XRD measurements. Particle size distribution results reveals that composite particle size decrease with milling time up to 3 minutes, and then increase almost to the original size, for 15 min sample. Mechanical mailing cause phase transformation from AlH4- to AlH63-. As a consequence of structural and chemical changes, desorption properties of composites are change kinetic of desorption is improved in comparison to unmilled LiAlH4. The shifting of hydrogen desorption temperature to lower temperatures is observed together with change from multi-step desorption to one-step hydrogen desorption is also observed. This caused decrease in activation energy of composites from Ea = 665 kJ/mol for unmilled LiAlH4, Ea = 279 kJ/mol for 3 min milled composite.
PB  - Zagreb : "Ruđer Bošković" Institute
C3  - Solid-State Science & Research 2021 : Book of Abstracts and Program
T1  - Mechanochemical activation of LiAlH4-Fe2O3 composites-a method to enhance kinetics of hydrogen desorption
SP  - 49
EP  - 49
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11245
ER  - 
@conference{
author = "Kurko, Sandra and Milošević Govedarović, Sanja and Rmuš, Jelena and Batalović, Katarina and Pantić, Tijana and Prvulović, Milica and Milanović, Igor",
year = "2021",
abstract = "Mechanical milling of pure lithium alanate (LiAlH4) was done with addition of 5 weigh percent of Fe2O3 using different milling time ranging from 1 to 15 minutes [1]. Mechanical milling of composites causes destabilization of LiAlH4 structure as it observed by XRD measurements. Particle size distribution results reveals that composite particle size decrease with milling time up to 3 minutes, and then increase almost to the original size, for 15 min sample. Mechanical mailing cause phase transformation from AlH4- to AlH63-. As a consequence of structural and chemical changes, desorption properties of composites are change kinetic of desorption is improved in comparison to unmilled LiAlH4. The shifting of hydrogen desorption temperature to lower temperatures is observed together with change from multi-step desorption to one-step hydrogen desorption is also observed. This caused decrease in activation energy of composites from Ea = 665 kJ/mol for unmilled LiAlH4, Ea = 279 kJ/mol for 3 min milled composite.",
publisher = "Zagreb : "Ruđer Bošković" Institute",
journal = "Solid-State Science & Research 2021 : Book of Abstracts and Program",
title = "Mechanochemical activation of LiAlH4-Fe2O3 composites-a method to enhance kinetics of hydrogen desorption",
pages = "49-49",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11245"
}
Kurko, S., Milošević Govedarović, S., Rmuš, J., Batalović, K., Pantić, T., Prvulović, M.,& Milanović, I.. (2021). Mechanochemical activation of LiAlH4-Fe2O3 composites-a method to enhance kinetics of hydrogen desorption. in Solid-State Science & Research 2021 : Book of Abstracts and Program
Zagreb : "Ruđer Bošković" Institute., 49-49.
https://hdl.handle.net/21.15107/rcub_vinar_11245
Kurko S, Milošević Govedarović S, Rmuš J, Batalović K, Pantić T, Prvulović M, Milanović I. Mechanochemical activation of LiAlH4-Fe2O3 composites-a method to enhance kinetics of hydrogen desorption. in Solid-State Science & Research 2021 : Book of Abstracts and Program. 2021;:49-49.
https://hdl.handle.net/21.15107/rcub_vinar_11245 .
Kurko, Sandra, Milošević Govedarović, Sanja, Rmuš, Jelena, Batalović, Katarina, Pantić, Tijana, Prvulović, Milica, Milanović, Igor, "Mechanochemical activation of LiAlH4-Fe2O3 composites-a method to enhance kinetics of hydrogen desorption" in Solid-State Science & Research 2021 : Book of Abstracts and Program (2021):49-49,
https://hdl.handle.net/21.15107/rcub_vinar_11245 .