Bajuk-Bogdanović, Danica V.

Link to this page

Authority KeyName Variants
orcid::0000-0003-2443-376X
  • Bajuk-Bogdanović, Danica V. (42)
  • Bajuk Bogdanović, Danica (1)
  • Bajuk Bogdanović, Danica V. (1)
Projects
Lithium-ion batteries and fuel cells - research and development Electroconducting and redox-active polymers and oligomers: synthesis, structure, properties and applications
Physics and Chemistry with Ion Beams Thin films of single wall carbon nanotubes and graphene for electronic application
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200146 (University of Belgrade, Faculty of Physical Chemistry) Synthesis, processing and characterization of nanostructured materials for application in the field of energy, mechanical engineering, environmental protection and biomedicine
Nanostructured multifunctional materials and nanocomposites Strengthening of the MagBioVin Research and Innovation Team for Development of Novel Approaches for Tumour Therapy based on Nanostructured Materials
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM)
COST Action [CM1206] SASPRO - Mobility Programme of Slovak Academy of Sciences: Supportive Fund for Excellent Scientists
Physics of nanostructured oxide materials and strongly correlated systems Modulation of antioxidative metabolism in plants for improvement of plant abiotic stress tolerance and identification of new biomarkers for application in remediation and monitoring of degraded biotopes
Nanostructured Functional and Composite Materials in Catalytic and Sorption Processes Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing
Magnetic and radionuclide labeled nanostructured materials for medical applications [RS13MO11]
Serbian Academy of Sciences and Arts ("Electrocatalysis in the contemporary processes of energy conversion") ATeN Center [project “Mediterranean Center for Human Health Advanced Biotechnologies (CHAB)”, PON R&C 2007–2013]
A. von Humboldt Foundation Bilateral project Serbia-Montenegro
Bilateral project Serbia-Slovenia COST [CA15107]
ERDF through COMPETE - Programa Operacional Competitividade e Internacionalizacao (POCI) - POCI-01-0145-FEDER-006984 ERDF through COMPETE - Programa Operacional Competitividade e Internacionalizacao (POCI) [POCI-01-0145-FEDER-006984]
European Community [228637 NIM NIL] FCT - Fundacao para a Ciencia e a Tecnologia
FCT - Fundacao para a Ciencia e a Tecnologia [SFRH/BD/95411/2013] FCT - SFRH/BD/95411/2013

Author's Bibliography

What role does carbonized tannic acid play in energy storage composites?

Janošević-Ležaić, Aleksandra; Bajuk-Bogdanović, Danica V.; Krstić, Jugoslav B.; Jovanović, Zoran; Mravik, Željko; Kovač, Janez; Gavrilov, Nemanja

(2022)

TY  - JOUR
AU  - Janošević-Ležaić, Aleksandra
AU  - Bajuk-Bogdanović, Danica V.
AU  - Krstić, Jugoslav B.
AU  - Jovanović, Zoran
AU  - Mravik, Željko
AU  - Kovač, Janez
AU  - Gavrilov, Nemanja
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10213
AB  - Transformation of tannic acid (TA), a cheap, abundant and environmentally friendly (by)product, upon carbonization at various temperatures was examined as it is extensively being used in energy storing devices. In addition of reviling what is happening with TA upon carbonization, a step further has been taken to scrutinize the role of carbonized TA (CTA) playing in energy storage composites. Increasing the carbonization temperature from 500 ◦C to 800 ◦C led to a nine orders of magnitude increase in conductivity, from 9⋅10–9 S cm
T2  - Fuel
T1  - What role does carbonized tannic acid play in energy storage composites?
VL  - 312
DO  - 10.1016/j.fuel.2021.122930
ER  - 
@article{
author = "Janošević-Ležaić, Aleksandra and Bajuk-Bogdanović, Danica V. and Krstić, Jugoslav B. and Jovanović, Zoran and Mravik, Željko and Kovač, Janez and Gavrilov, Nemanja",
year = "2022",
abstract = "Transformation of tannic acid (TA), a cheap, abundant and environmentally friendly (by)product, upon carbonization at various temperatures was examined as it is extensively being used in energy storing devices. In addition of reviling what is happening with TA upon carbonization, a step further has been taken to scrutinize the role of carbonized TA (CTA) playing in energy storage composites. Increasing the carbonization temperature from 500 ◦C to 800 ◦C led to a nine orders of magnitude increase in conductivity, from 9⋅10–9 S cm",
journal = "Fuel",
title = "What role does carbonized tannic acid play in energy storage composites?",
volume = "312",
doi = "10.1016/j.fuel.2021.122930"
}
Janošević-Ležaić, A., Bajuk-Bogdanović, D. V., Krstić, J. B., Jovanović, Z., Mravik, Ž., Kovač, J.,& Gavrilov, N.. (2022). What role does carbonized tannic acid play in energy storage composites?. in Fuel, 312.
https://doi.org/10.1016/j.fuel.2021.122930
Janošević-Ležaić A, Bajuk-Bogdanović DV, Krstić JB, Jovanović Z, Mravik Ž, Kovač J, Gavrilov N. What role does carbonized tannic acid play in energy storage composites?. in Fuel. 2022;312.
doi:10.1016/j.fuel.2021.122930 .
Janošević-Ležaić, Aleksandra, Bajuk-Bogdanović, Danica V., Krstić, Jugoslav B., Jovanović, Zoran, Mravik, Željko, Kovač, Janez, Gavrilov, Nemanja, "What role does carbonized tannic acid play in energy storage composites?" in Fuel, 312 (2022),
https://doi.org/10.1016/j.fuel.2021.122930 . .
1
1

Mechanistic insights into ion-beam induced reduction of graphene oxide: An experimental and theoretical study

Jovanović, Zoran; Gloginjić, Marko; Mravik, Željko; Olejniczak, Andrzej; Bajuk-Bogdanović, Danica V.; Jovanović, Sonja; Pašti, Igor A.; Skuratov, Vladimir A.

(2022)

TY  - JOUR
AU  - Jovanović, Zoran
AU  - Gloginjić, Marko
AU  - Mravik, Željko
AU  - Olejniczak, Andrzej
AU  - Bajuk-Bogdanović, Danica V.
AU  - Jovanović, Sonja
AU  - Pašti, Igor A.
AU  - Skuratov, Vladimir A.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10345
AB  - Interest in graphene oxide (GO) due to its controllable and adjustable properties has been increasing, especially in the field of electronic and electrochemical charge storage devices. Hence, the modification of surface chemistry and structure of GO can be outlined as crucial for achieving the preferable properties. In this study, we have investigated the influence of 15 keV proton-beam irradiation on GO structure and surface chemistry. The results obtained by Raman spectroscopy, Fourier-transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) were complemented with theoretical ones, obtained by using density functional theory (DFT), semi-empirical (SE) calculations and inelastic thermal spike (iTS) model. The FTIR and XPS results showed that proton irradiation partially reduces the GO with the preferential removal of the alkoxy and epoxy groups. Also, we identified a clear linear relation between the decresase of oxygen content and the decrease of ID/IG ratio i.e. increasing disorder of GO structure. The SE and DFT calculations highlighted a reduction of GO as a single- or multi-step process depending on the type of basal-plane or edge oxygen group. Dynamic SE calculations revealed that for kinetic energy of hydrogen below 1.5 eV the reduction is chemically driven, while at energies higher than 20 eV, the reduction of GO is a result of physical processes. iTS results showed that increase of temperature might contribute to reduction of GO via desorption of epoxy and alcoxy groups, as the least thermally stable groups (T ∼200 °C). The results of this work emphasize the capabilities ion beam irradiation for gradual modification of surface chemistry and structural properties of GO by providing more information about the mechanisms of hydrogen interaction with individual groups, interplay between defect creation, oxygen content and accompaning effects of ion energy loss processes.
T2  - Radiation Physics and Chemistry
T1  - Mechanistic insights into ion-beam induced reduction of graphene oxide: An experimental and theoretical study
VL  - 199
SP  - 110355
DO  - 10.1016/j.radphyschem.2022.110355
ER  - 
@article{
author = "Jovanović, Zoran and Gloginjić, Marko and Mravik, Željko and Olejniczak, Andrzej and Bajuk-Bogdanović, Danica V. and Jovanović, Sonja and Pašti, Igor A. and Skuratov, Vladimir A.",
year = "2022",
abstract = "Interest in graphene oxide (GO) due to its controllable and adjustable properties has been increasing, especially in the field of electronic and electrochemical charge storage devices. Hence, the modification of surface chemistry and structure of GO can be outlined as crucial for achieving the preferable properties. In this study, we have investigated the influence of 15 keV proton-beam irradiation on GO structure and surface chemistry. The results obtained by Raman spectroscopy, Fourier-transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) were complemented with theoretical ones, obtained by using density functional theory (DFT), semi-empirical (SE) calculations and inelastic thermal spike (iTS) model. The FTIR and XPS results showed that proton irradiation partially reduces the GO with the preferential removal of the alkoxy and epoxy groups. Also, we identified a clear linear relation between the decresase of oxygen content and the decrease of ID/IG ratio i.e. increasing disorder of GO structure. The SE and DFT calculations highlighted a reduction of GO as a single- or multi-step process depending on the type of basal-plane or edge oxygen group. Dynamic SE calculations revealed that for kinetic energy of hydrogen below 1.5 eV the reduction is chemically driven, while at energies higher than 20 eV, the reduction of GO is a result of physical processes. iTS results showed that increase of temperature might contribute to reduction of GO via desorption of epoxy and alcoxy groups, as the least thermally stable groups (T ∼200 °C). The results of this work emphasize the capabilities ion beam irradiation for gradual modification of surface chemistry and structural properties of GO by providing more information about the mechanisms of hydrogen interaction with individual groups, interplay between defect creation, oxygen content and accompaning effects of ion energy loss processes.",
journal = "Radiation Physics and Chemistry",
title = "Mechanistic insights into ion-beam induced reduction of graphene oxide: An experimental and theoretical study",
volume = "199",
pages = "110355",
doi = "10.1016/j.radphyschem.2022.110355"
}
Jovanović, Z., Gloginjić, M., Mravik, Ž., Olejniczak, A., Bajuk-Bogdanović, D. V., Jovanović, S., Pašti, I. A.,& Skuratov, V. A.. (2022). Mechanistic insights into ion-beam induced reduction of graphene oxide: An experimental and theoretical study. in Radiation Physics and Chemistry, 199, 110355.
https://doi.org/10.1016/j.radphyschem.2022.110355
Jovanović Z, Gloginjić M, Mravik Ž, Olejniczak A, Bajuk-Bogdanović DV, Jovanović S, Pašti IA, Skuratov VA. Mechanistic insights into ion-beam induced reduction of graphene oxide: An experimental and theoretical study. in Radiation Physics and Chemistry. 2022;199:110355.
doi:10.1016/j.radphyschem.2022.110355 .
Jovanović, Zoran, Gloginjić, Marko, Mravik, Željko, Olejniczak, Andrzej, Bajuk-Bogdanović, Danica V., Jovanović, Sonja, Pašti, Igor A., Skuratov, Vladimir A., "Mechanistic insights into ion-beam induced reduction of graphene oxide: An experimental and theoretical study" in Radiation Physics and Chemistry, 199 (2022):110355,
https://doi.org/10.1016/j.radphyschem.2022.110355 . .

Modification of Keggin anion structure with ion beams—A new spectroscopic insights into the effects of keV- and MeV-ion beam irradiation on 12-tungstophosphoric acid

Mravik, Željko; Bajuk-Bogdanović, Danica V.; Jovanović, Sonja; Rmuš, Jelena; Olejniczak, Andrzej; Mraković, Ana Đ.; Lazarević, Jasmina; Uskoković-Marković, Snežana; Lazarević, Nenad; Skuratov, Vladimir A.; Jovanović, Zoran

(2022)

TY  - JOUR
AU  - Mravik, Željko
AU  - Bajuk-Bogdanović, Danica V.
AU  - Jovanović, Sonja
AU  - Rmuš, Jelena
AU  - Olejniczak, Andrzej
AU  - Mraković, Ana Đ.
AU  - Lazarević, Jasmina
AU  - Uskoković-Marković, Snežana
AU  - Lazarević, Nenad
AU  - Skuratov, Vladimir A.
AU  - Jovanović, Zoran
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10376
AB  - Ion beam irradiation is a versatile tool for structural modification andengineering of new materials. In this study, 12-tungstophosphoric acid (WPA)films of different thickness were spin-coated on platinized silicon substrate andirradiated with low energy hydrogen ions (10 keV) and swift heavy ions (Bi,Xe, and V) with energies up to 710 MeV. The different energy/fluence combi-nations allowed controllable structural changes that were investigated in detailusing Raman and Infrared spectroscopy. For 120-nm-thick WPA samples, theirradiation led to the decrease of intensity of the skeletal and W-Oc-W bands ofKeggin anion in order: Bi < V < Xe (for their applied energy/fluence combina-tion). Also, symmetry change of Keggin anion similar to the one observed inthe case of Keggin anions interacting with the supports was observed. For theselected ion beam irradiation parameters, xenon ion beam induced transforma-tion of WPA to polytungstate. For 20-μm-thick WPA samples, the irradiationwith hydrogen ion beam induced changes of skeletal vibrations and increasedindividualistic behavior of Keggin anions. As the fluence increased, theamount of the Keggin anions partially transformed to bronze also increased.Irradiation with vanadium also caused transformation to bronze-like structurebut with higher ratio of terminal W=Odbonds. The overall results show clearReceived: 9 February 2022Revised: 17 June 2022Accepted: 5 July 2022DOI: 10.1002/jrs.6423J Raman Spectrosc.2022;1–11.wileyonlinelibrary.com/journal/jrs© 2022 John Wiley & Sons Ltd.1correlation between degree of structural modification of WPA and thecalculated displacement per atom value. These results open possibilities forengineering new catalytically active structures of polyoxometalates with thehelp of ion beams.
T2  - Journal of Raman Spectroscopy
T1  - Modification of Keggin anion structure with ion beams—A new spectroscopic insights into the effects of keV- and MeV-ion beam irradiation on 12-tungstophosphoric acid
DO  - 10.1002/jrs.6423
ER  - 
@article{
author = "Mravik, Željko and Bajuk-Bogdanović, Danica V. and Jovanović, Sonja and Rmuš, Jelena and Olejniczak, Andrzej and Mraković, Ana Đ. and Lazarević, Jasmina and Uskoković-Marković, Snežana and Lazarević, Nenad and Skuratov, Vladimir A. and Jovanović, Zoran",
year = "2022",
abstract = "Ion beam irradiation is a versatile tool for structural modification andengineering of new materials. In this study, 12-tungstophosphoric acid (WPA)films of different thickness were spin-coated on platinized silicon substrate andirradiated with low energy hydrogen ions (10 keV) and swift heavy ions (Bi,Xe, and V) with energies up to 710 MeV. The different energy/fluence combi-nations allowed controllable structural changes that were investigated in detailusing Raman and Infrared spectroscopy. For 120-nm-thick WPA samples, theirradiation led to the decrease of intensity of the skeletal and W-Oc-W bands ofKeggin anion in order: Bi < V < Xe (for their applied energy/fluence combina-tion). Also, symmetry change of Keggin anion similar to the one observed inthe case of Keggin anions interacting with the supports was observed. For theselected ion beam irradiation parameters, xenon ion beam induced transforma-tion of WPA to polytungstate. For 20-μm-thick WPA samples, the irradiationwith hydrogen ion beam induced changes of skeletal vibrations and increasedindividualistic behavior of Keggin anions. As the fluence increased, theamount of the Keggin anions partially transformed to bronze also increased.Irradiation with vanadium also caused transformation to bronze-like structurebut with higher ratio of terminal W=Odbonds. The overall results show clearReceived: 9 February 2022Revised: 17 June 2022Accepted: 5 July 2022DOI: 10.1002/jrs.6423J Raman Spectrosc.2022;1–11.wileyonlinelibrary.com/journal/jrs© 2022 John Wiley & Sons Ltd.1correlation between degree of structural modification of WPA and thecalculated displacement per atom value. These results open possibilities forengineering new catalytically active structures of polyoxometalates with thehelp of ion beams.",
journal = "Journal of Raman Spectroscopy",
title = "Modification of Keggin anion structure with ion beams—A new spectroscopic insights into the effects of keV- and MeV-ion beam irradiation on 12-tungstophosphoric acid",
doi = "10.1002/jrs.6423"
}
Mravik, Ž., Bajuk-Bogdanović, D. V., Jovanović, S., Rmuš, J., Olejniczak, A., Mraković, A. Đ., Lazarević, J., Uskoković-Marković, S., Lazarević, N., Skuratov, V. A.,& Jovanović, Z.. (2022). Modification of Keggin anion structure with ion beams—A new spectroscopic insights into the effects of keV- and MeV-ion beam irradiation on 12-tungstophosphoric acid. in Journal of Raman Spectroscopy.
https://doi.org/10.1002/jrs.6423
Mravik Ž, Bajuk-Bogdanović DV, Jovanović S, Rmuš J, Olejniczak A, Mraković AĐ, Lazarević J, Uskoković-Marković S, Lazarević N, Skuratov VA, Jovanović Z. Modification of Keggin anion structure with ion beams—A new spectroscopic insights into the effects of keV- and MeV-ion beam irradiation on 12-tungstophosphoric acid. in Journal of Raman Spectroscopy. 2022;.
doi:10.1002/jrs.6423 .
Mravik, Željko, Bajuk-Bogdanović, Danica V., Jovanović, Sonja, Rmuš, Jelena, Olejniczak, Andrzej, Mraković, Ana Đ., Lazarević, Jasmina, Uskoković-Marković, Snežana, Lazarević, Nenad, Skuratov, Vladimir A., Jovanović, Zoran, "Modification of Keggin anion structure with ion beams—A new spectroscopic insights into the effects of keV- and MeV-ion beam irradiation on 12-tungstophosphoric acid" in Journal of Raman Spectroscopy (2022),
https://doi.org/10.1002/jrs.6423 . .

Indigo Carmine in a Food Dye: Spectroscopic Characterization and Determining Its Micro-Concentration through the Clock Reaction

Pagnacco, Maja C.; Maksimović, Jelena P.; Nikolić, Nenad T.; Bajuk Bogdanović, Danica V.; Kragović, Milan M.; Stojmenović, Marija; Blagojević, Stevan N.; Senćanski, Jelena

(2022)

TY  - JOUR
AU  - Pagnacco, Maja C.
AU  - Maksimović, Jelena P.
AU  - Nikolić, Nenad T.
AU  - Bajuk Bogdanović, Danica V.
AU  - Kragović, Milan M.
AU  - Stojmenović, Marija
AU  - Blagojević, Stevan N.
AU  - Senćanski, Jelena
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10400
AB  - Indigo carmine is a commonly used industrial blue dye. To determine its concentration in a commercially available food dye composed of a mixture of indigo carmine and D-glucose, this paper characterizes it through (ATR, KBr) FTIR micro-Raman as well as UV/Vis and clock: Briggs–Rauscher (BR) oscillatory reaction methods. The indigo carmine was detected in the bulk food dye only by applying micro-Raman spectroscopy, indicating a low percentage of the indigo carmine present. This research provides an improvement in the deviations from the experimental Raman spectrum as calculated by the B97D/cc-pVTZ level of theory one, resulting in a better geometrical optimization of the indigo carmine molecule compared to data within the literature. The analytical curves used to determine indigo carmine concentrations (and quantities) in an aqueous solution of food dye were applied by means of UV/Vis and BR methods. BR yielded significantly better analytical parameters: 100 times lower LOD and LOQ compared to commonly used UV/Vis. The remarkable sensitivity of the BR reaction towards indigo carmine suggests that not only does indigo carmine react in an oscillatory reaction but also its decomposition products, meaning that the multiple oxidation reactions have an important role in the BR’s indigo carmine mechanism. The novelty of this research is the investigation of indigo carmine using a clock BR reaction, opening new possibilities to determine indigo carmine in other complex samples (pharmaceutical, food, etc.).
T2  - Molecules
T1  - Indigo Carmine in a Food Dye: Spectroscopic Characterization and Determining Its Micro-Concentration through the Clock Reaction
VL  - 27
IS  - 15
SP  - 4853
DO  - 10.3390/molecules27154853
ER  - 
@article{
author = "Pagnacco, Maja C. and Maksimović, Jelena P. and Nikolić, Nenad T. and Bajuk Bogdanović, Danica V. and Kragović, Milan M. and Stojmenović, Marija and Blagojević, Stevan N. and Senćanski, Jelena",
year = "2022",
abstract = "Indigo carmine is a commonly used industrial blue dye. To determine its concentration in a commercially available food dye composed of a mixture of indigo carmine and D-glucose, this paper characterizes it through (ATR, KBr) FTIR micro-Raman as well as UV/Vis and clock: Briggs–Rauscher (BR) oscillatory reaction methods. The indigo carmine was detected in the bulk food dye only by applying micro-Raman spectroscopy, indicating a low percentage of the indigo carmine present. This research provides an improvement in the deviations from the experimental Raman spectrum as calculated by the B97D/cc-pVTZ level of theory one, resulting in a better geometrical optimization of the indigo carmine molecule compared to data within the literature. The analytical curves used to determine indigo carmine concentrations (and quantities) in an aqueous solution of food dye were applied by means of UV/Vis and BR methods. BR yielded significantly better analytical parameters: 100 times lower LOD and LOQ compared to commonly used UV/Vis. The remarkable sensitivity of the BR reaction towards indigo carmine suggests that not only does indigo carmine react in an oscillatory reaction but also its decomposition products, meaning that the multiple oxidation reactions have an important role in the BR’s indigo carmine mechanism. The novelty of this research is the investigation of indigo carmine using a clock BR reaction, opening new possibilities to determine indigo carmine in other complex samples (pharmaceutical, food, etc.).",
journal = "Molecules",
title = "Indigo Carmine in a Food Dye: Spectroscopic Characterization and Determining Its Micro-Concentration through the Clock Reaction",
volume = "27",
number = "15",
pages = "4853",
doi = "10.3390/molecules27154853"
}
Pagnacco, M. C., Maksimović, J. P., Nikolić, N. T., Bajuk Bogdanović, D. V., Kragović, M. M., Stojmenović, M., Blagojević, S. N.,& Senćanski, J.. (2022). Indigo Carmine in a Food Dye: Spectroscopic Characterization and Determining Its Micro-Concentration through the Clock Reaction. in Molecules, 27(15), 4853.
https://doi.org/10.3390/molecules27154853
Pagnacco MC, Maksimović JP, Nikolić NT, Bajuk Bogdanović DV, Kragović MM, Stojmenović M, Blagojević SN, Senćanski J. Indigo Carmine in a Food Dye: Spectroscopic Characterization and Determining Its Micro-Concentration through the Clock Reaction. in Molecules. 2022;27(15):4853.
doi:10.3390/molecules27154853 .
Pagnacco, Maja C., Maksimović, Jelena P., Nikolić, Nenad T., Bajuk Bogdanović, Danica V., Kragović, Milan M., Stojmenović, Marija, Blagojević, Stevan N., Senćanski, Jelena, "Indigo Carmine in a Food Dye: Spectroscopic Characterization and Determining Its Micro-Concentration through the Clock Reaction" in Molecules, 27, no. 15 (2022):4853,
https://doi.org/10.3390/molecules27154853 . .

Gamma-ray-induced structural transformation of GQDs towards the improvement of their optical properties, monitoring of selected toxic compounds, and photo-induced effect on bacterial strains

Dorontić, Slađana; Bonasera, Aurelio; Scopelliti, Michelangelo; Marković, Olivera; Bajuk Bogdanović, Danica; Ciasca, Gabriele; Romanò, Sabrina; Dimkić, Ivica; Budimir, Milica; Marinković, Dragana; Jovanović, Svetlana

(2022)

TY  - JOUR
AU  - Dorontić, Slađana
AU  - Bonasera, Aurelio
AU  - Scopelliti, Michelangelo
AU  - Marković, Olivera
AU  - Bajuk Bogdanović, Danica
AU  - Ciasca, Gabriele
AU  - Romanò, Sabrina
AU  - Dimkić, Ivica
AU  - Budimir, Milica
AU  - Marinković, Dragana
AU  - Jovanović, Svetlana
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10406
AB  - Structural modification of different carbon-based nanomaterials is often necessary toimprove their morphology and optical properties, particularly the incorporation of N-atoms ingraphene quantum dots (GQDs). Here, a clean, simple, one-step, and eco-friendly method forN-doping of GQDs using gamma irradiation is reported. GQDs were irradiated in the presenceof the different ethylenediamine (EDA) amounts (1 g, 5 g, and 10 g) and the highest % of N wasdetected in the presence of 10 g. N-doped GQDs emitted strong, blue photoluminescence (PL).Photoluminescence quantum yield was increased from 1.45, as obtained for non-irradiated dots,to 7.24% for those irradiated in the presence of 1 g of EDA. Modified GQDs were investigated asa PL probe for the detection of insecticide Carbofuran (2,2-Dimethyl-2,3-dihydro-1-benzofuran-7-yl methylcarbamate) and herbicide Amitrole (3-amino-1,2,4-triazole). The limit of detection was5.4 µmol L−1for Carbofuran. For the first time, Amitrole was detected by GQDs in a turn-off/turn-onmechanism using Pd(II) ions as a quenching agent. First, Pd(II) ions were quenched (turn-off) PLof GQDs, while after Amitrole addition, PL was recovered linearly with Amitrole concentration(turn-on). LOD was 2.03 µmol L−1. These results suggest that modified GQDs can be used as anefficient new material for Carbofuran and Amitrole detection. Furthermore, the phototoxicity of dotswas investigated on both Gram-positive and Gram-negative bacterial strains. When bacterial cellswere exposed to different GQD concentrations and illuminated with light of 470 nm wavelength, thetoxic effects were not observed.
T2  - Nanomaterials
T1  - Gamma-ray-induced structural transformation of GQDs towards the improvement of their optical properties, monitoring of selected toxic compounds, and photo-induced effect on bacterial strains
VL  - 12
SP  - 2714
DO  - 10.3390/nano12152714
ER  - 
@article{
author = "Dorontić, Slađana and Bonasera, Aurelio and Scopelliti, Michelangelo and Marković, Olivera and Bajuk Bogdanović, Danica and Ciasca, Gabriele and Romanò, Sabrina and Dimkić, Ivica and Budimir, Milica and Marinković, Dragana and Jovanović, Svetlana",
year = "2022",
abstract = "Structural modification of different carbon-based nanomaterials is often necessary toimprove their morphology and optical properties, particularly the incorporation of N-atoms ingraphene quantum dots (GQDs). Here, a clean, simple, one-step, and eco-friendly method forN-doping of GQDs using gamma irradiation is reported. GQDs were irradiated in the presenceof the different ethylenediamine (EDA) amounts (1 g, 5 g, and 10 g) and the highest % of N wasdetected in the presence of 10 g. N-doped GQDs emitted strong, blue photoluminescence (PL).Photoluminescence quantum yield was increased from 1.45, as obtained for non-irradiated dots,to 7.24% for those irradiated in the presence of 1 g of EDA. Modified GQDs were investigated asa PL probe for the detection of insecticide Carbofuran (2,2-Dimethyl-2,3-dihydro-1-benzofuran-7-yl methylcarbamate) and herbicide Amitrole (3-amino-1,2,4-triazole). The limit of detection was5.4 µmol L−1for Carbofuran. For the first time, Amitrole was detected by GQDs in a turn-off/turn-onmechanism using Pd(II) ions as a quenching agent. First, Pd(II) ions were quenched (turn-off) PLof GQDs, while after Amitrole addition, PL was recovered linearly with Amitrole concentration(turn-on). LOD was 2.03 µmol L−1. These results suggest that modified GQDs can be used as anefficient new material for Carbofuran and Amitrole detection. Furthermore, the phototoxicity of dotswas investigated on both Gram-positive and Gram-negative bacterial strains. When bacterial cellswere exposed to different GQD concentrations and illuminated with light of 470 nm wavelength, thetoxic effects were not observed.",
journal = "Nanomaterials",
title = "Gamma-ray-induced structural transformation of GQDs towards the improvement of their optical properties, monitoring of selected toxic compounds, and photo-induced effect on bacterial strains",
volume = "12",
pages = "2714",
doi = "10.3390/nano12152714"
}
Dorontić, S., Bonasera, A., Scopelliti, M., Marković, O., Bajuk Bogdanović, D., Ciasca, G., Romanò, S., Dimkić, I., Budimir, M., Marinković, D.,& Jovanović, S.. (2022). Gamma-ray-induced structural transformation of GQDs towards the improvement of their optical properties, monitoring of selected toxic compounds, and photo-induced effect on bacterial strains. in Nanomaterials, 12, 2714.
https://doi.org/10.3390/nano12152714
Dorontić S, Bonasera A, Scopelliti M, Marković O, Bajuk Bogdanović D, Ciasca G, Romanò S, Dimkić I, Budimir M, Marinković D, Jovanović S. Gamma-ray-induced structural transformation of GQDs towards the improvement of their optical properties, monitoring of selected toxic compounds, and photo-induced effect on bacterial strains. in Nanomaterials. 2022;12:2714.
doi:10.3390/nano12152714 .
Dorontić, Slađana, Bonasera, Aurelio, Scopelliti, Michelangelo, Marković, Olivera, Bajuk Bogdanović, Danica, Ciasca, Gabriele, Romanò, Sabrina, Dimkić, Ivica, Budimir, Milica, Marinković, Dragana, Jovanović, Svetlana, "Gamma-ray-induced structural transformation of GQDs towards the improvement of their optical properties, monitoring of selected toxic compounds, and photo-induced effect on bacterial strains" in Nanomaterials, 12 (2022):2714,
https://doi.org/10.3390/nano12152714 . .
3
2

Viscose-Derived Activated Carbons Fibers as Highly Efficient Adsorbents for Dimethoate Removal from Water

Jocić, Ana; Breitenbach, Stefan; Bajuk-Bogdanović, Danica V.; Pašti, Igor A.; Unterweger, Cristoph; Fürst, Christian; Lazarević-Pašti, Tamara

(2022)

TY  - JOUR
AU  - Jocić, Ana
AU  - Breitenbach, Stefan
AU  - Bajuk-Bogdanović, Danica V.
AU  - Pašti, Igor A.
AU  - Unterweger, Cristoph
AU  - Fürst, Christian
AU  - Lazarević-Pašti, Tamara
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10185
AB  - Extensive use of pesticides resulting in their accumulation in the environment presents a hazard for their non-target species, including humans. Hence, efficient remediation strategies are needed, and, in this sense, adsorption is seen as the most straightforward approach. We have studied activated carbon fibers (ACFs) derived from viscose fibers impregnated with diammonium hydrogen phosphate (DAHP). By changing the amount of DAHP in the impregnation step, the chemical composition and textural properties of ACFs are effectively tuned, affecting their performance for dimethoate removal from water. The prepared ACFs effectively reduced the toxicity of treated water samples, both deionized water solutions and spiked tap water samples, under batch conditions and in dynamic filtration experiments. Using the results of physicochemical characterization and dimethoate adsorption measurements, multiple linear regression models were made to reliably predict performance towards dimethoate removal from water. These models can be used to quickly screen among larger sets of possible adsorbents and guide the development of novel, highly efficient adsorbents for dimethoate removal from water. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
T2  - Molecules
T1  - Viscose-Derived Activated Carbons Fibers as Highly Efficient Adsorbents for Dimethoate Removal from Water
VL  - 27
IS  - 5
SP  - 1477
DO  - 10.3390/molecules27051477
ER  - 
@article{
author = "Jocić, Ana and Breitenbach, Stefan and Bajuk-Bogdanović, Danica V. and Pašti, Igor A. and Unterweger, Cristoph and Fürst, Christian and Lazarević-Pašti, Tamara",
year = "2022",
abstract = "Extensive use of pesticides resulting in their accumulation in the environment presents a hazard for their non-target species, including humans. Hence, efficient remediation strategies are needed, and, in this sense, adsorption is seen as the most straightforward approach. We have studied activated carbon fibers (ACFs) derived from viscose fibers impregnated with diammonium hydrogen phosphate (DAHP). By changing the amount of DAHP in the impregnation step, the chemical composition and textural properties of ACFs are effectively tuned, affecting their performance for dimethoate removal from water. The prepared ACFs effectively reduced the toxicity of treated water samples, both deionized water solutions and spiked tap water samples, under batch conditions and in dynamic filtration experiments. Using the results of physicochemical characterization and dimethoate adsorption measurements, multiple linear regression models were made to reliably predict performance towards dimethoate removal from water. These models can be used to quickly screen among larger sets of possible adsorbents and guide the development of novel, highly efficient adsorbents for dimethoate removal from water. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.",
journal = "Molecules",
title = "Viscose-Derived Activated Carbons Fibers as Highly Efficient Adsorbents for Dimethoate Removal from Water",
volume = "27",
number = "5",
pages = "1477",
doi = "10.3390/molecules27051477"
}
Jocić, A., Breitenbach, S., Bajuk-Bogdanović, D. V., Pašti, I. A., Unterweger, C., Fürst, C.,& Lazarević-Pašti, T.. (2022). Viscose-Derived Activated Carbons Fibers as Highly Efficient Adsorbents for Dimethoate Removal from Water. in Molecules, 27(5), 1477.
https://doi.org/10.3390/molecules27051477
Jocić A, Breitenbach S, Bajuk-Bogdanović DV, Pašti IA, Unterweger C, Fürst C, Lazarević-Pašti T. Viscose-Derived Activated Carbons Fibers as Highly Efficient Adsorbents for Dimethoate Removal from Water. in Molecules. 2022;27(5):1477.
doi:10.3390/molecules27051477 .
Jocić, Ana, Breitenbach, Stefan, Bajuk-Bogdanović, Danica V., Pašti, Igor A., Unterweger, Cristoph, Fürst, Christian, Lazarević-Pašti, Tamara, "Viscose-Derived Activated Carbons Fibers as Highly Efficient Adsorbents for Dimethoate Removal from Water" in Molecules, 27, no. 5 (2022):1477,
https://doi.org/10.3390/molecules27051477 . .

Properties of free-standing graphene oxide/silver nanowires films and effects of chemical reduction and gamma irradiation

Mišović, Aleksandra; Bajuk-Bogdanović, Danica V.; Kepić, Dejan; Pavlović, Vladimir B.; Huskić, Miroslav; Hasheminejad, Navid; Vuye, Cedric; Zorić, Nemanja; Jovanović, Svetlana P.

(2022)

TY  - JOUR
AU  - Mišović, Aleksandra
AU  - Bajuk-Bogdanović, Danica V.
AU  - Kepić, Dejan
AU  - Pavlović, Vladimir B.
AU  - Huskić, Miroslav
AU  - Hasheminejad, Navid
AU  - Vuye, Cedric
AU  - Zorić, Nemanja
AU  - Jovanović, Svetlana P.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10078
AB  - The need for stable, chemical resistant and conductive materials is on the rise in recent times. Graphene shows promising electrical conductivity and chemical stability, but the production of a continual, conductive layer is limited and expensive. Silver nanowires (AgNWs) are both conducive and economically viable, but they are sensitive to water and oxygen. In this study, graphene oxide (GO) and AgNWs were synthesized and combined in different mass ratios (3:1, 2.5:1.5, and 1:1) to obtain chemically stable composites with improved electrical properties. Composites were reduced using ascorbic acid. With the increase of AgNWs to GO mass ratio, the surface of the free-standing composite film improved: the root mean square roughness was lowered from 376 nm for GO to 168 nm for the composite with the mass ratio of GO:AgNWs 1:1, while the sheet resistance was lowered from 146 × 106 Ω/□ to 4 Ω/□. For the first time, the effects of gamma irradiation on the structure of the composites were studied. Doses of 15, 25, and 35 kGy were applied.
T2  - Synthetic Metals
T1  - Properties of free-standing graphene oxide/silver nanowires films and effects of chemical reduction and gamma irradiation
VL  - 283
SP  - 116980
DO  - 10.1016/j.synthmet.2021.116980
ER  - 
@article{
author = "Mišović, Aleksandra and Bajuk-Bogdanović, Danica V. and Kepić, Dejan and Pavlović, Vladimir B. and Huskić, Miroslav and Hasheminejad, Navid and Vuye, Cedric and Zorić, Nemanja and Jovanović, Svetlana P.",
year = "2022",
abstract = "The need for stable, chemical resistant and conductive materials is on the rise in recent times. Graphene shows promising electrical conductivity and chemical stability, but the production of a continual, conductive layer is limited and expensive. Silver nanowires (AgNWs) are both conducive and economically viable, but they are sensitive to water and oxygen. In this study, graphene oxide (GO) and AgNWs were synthesized and combined in different mass ratios (3:1, 2.5:1.5, and 1:1) to obtain chemically stable composites with improved electrical properties. Composites were reduced using ascorbic acid. With the increase of AgNWs to GO mass ratio, the surface of the free-standing composite film improved: the root mean square roughness was lowered from 376 nm for GO to 168 nm for the composite with the mass ratio of GO:AgNWs 1:1, while the sheet resistance was lowered from 146 × 106 Ω/□ to 4 Ω/□. For the first time, the effects of gamma irradiation on the structure of the composites were studied. Doses of 15, 25, and 35 kGy were applied.",
journal = "Synthetic Metals",
title = "Properties of free-standing graphene oxide/silver nanowires films and effects of chemical reduction and gamma irradiation",
volume = "283",
pages = "116980",
doi = "10.1016/j.synthmet.2021.116980"
}
Mišović, A., Bajuk-Bogdanović, D. V., Kepić, D., Pavlović, V. B., Huskić, M., Hasheminejad, N., Vuye, C., Zorić, N.,& Jovanović, S. P.. (2022). Properties of free-standing graphene oxide/silver nanowires films and effects of chemical reduction and gamma irradiation. in Synthetic Metals, 283, 116980.
https://doi.org/10.1016/j.synthmet.2021.116980
Mišović A, Bajuk-Bogdanović DV, Kepić D, Pavlović VB, Huskić M, Hasheminejad N, Vuye C, Zorić N, Jovanović SP. Properties of free-standing graphene oxide/silver nanowires films and effects of chemical reduction and gamma irradiation. in Synthetic Metals. 2022;283:116980.
doi:10.1016/j.synthmet.2021.116980 .
Mišović, Aleksandra, Bajuk-Bogdanović, Danica V., Kepić, Dejan, Pavlović, Vladimir B., Huskić, Miroslav, Hasheminejad, Navid, Vuye, Cedric, Zorić, Nemanja, Jovanović, Svetlana P., "Properties of free-standing graphene oxide/silver nanowires films and effects of chemical reduction and gamma irradiation" in Synthetic Metals, 283 (2022):116980,
https://doi.org/10.1016/j.synthmet.2021.116980 . .
2
1

Structural and electrochemical properties of carbon ion beam irradiated 12-tungstophosphoric acid

Mravik, Željko; Bajuk-Bogdanović, Danica V.; Mraković, Ana Đ.; Vukosavljević, Ljubiša; Trajić, Ivan; Kovač, Janez; Peruško, Davor; Gavrilov, Nemanja; Jovanović, Zoran M.

(2021)

TY  - JOUR
AU  - Mravik, Željko
AU  - Bajuk-Bogdanović, Danica V.
AU  - Mraković, Ana Đ.
AU  - Vukosavljević, Ljubiša
AU  - Trajić, Ivan
AU  - Kovač, Janez
AU  - Peruško, Davor
AU  - Gavrilov, Nemanja
AU  - Jovanović, Zoran M.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9150
AB  - In recent years polyoxometalates (POMs) have attracted significant research interest due to versatile properties. These properties are determined by the size, structure and elemental composition of POMs and hence play an important role in their application. In the present study, the ion beam irradiation (10 keV C+ ions, 5 × 1014–2.5 × 1015 ions/cm2) has been utilized for modification of physicochemical properties of 120 nm-thick layer of 12-tungstophosphoric acid (WPA). Scanning electron microscopy analysis of irradiated films showed change of morphology i.e. an increase of WPA grain size with irradiation and coalescence of grains at the highest fluence. This was accompanied by structural changes. Attenuated total reflectance Fourier transform infrared analysis revealed that vibration bands of Keggin anion became less pronounced as fluence increased, while Raman spectra appeared as strongly modified. The effect of irradiation with 1.25 × 1015 ions/cm2 on the structure of WPA was similar to the effect of thermal treatment at 600 °C. Irradiation of WPA led to decrease of the band gap (from 4.07 to 3.92 eV), which was correlated to transformation Keggin anions into a network of WO6 octahedra and PO4 tetrahedra. This is in line with increased number of W=Od bonds observed by UV–Visible diffuse reflectance spectroscopy. Beside transformation to bronzes a reduction of WPA was observed by X-ray Photoelectron Spectroscopy (shift to lower binding energy) and Raman methods, whereas the Raman spectra of irradiated samples were similar to heteropoly blue. The electrochemical properties of irradiated WPA were also assessed. Cyclic voltammetry measurements showed that at up to 1.25 × 1015 ions/cm2 lithiation capacity of WPA increases and activity for hydrogen evolution reaction (HER) improves. The highest fluence caused interconnection of WO6 octahedra, closing of lithiation pathways and decrease in the number of active sites for HER. Our results provide a novel insight into the effects of ion beam irradiation on WPA and demonstrate high potential for tuning of physicochemical properties of POMs that are relevant in wide range of applications. © 2021 Elsevier Ltd
T2  - Radiation Physics and Chemistry
T1  - Structural and electrochemical properties of carbon ion beam irradiated 12-tungstophosphoric acid
VL  - 183
SP  - 109422
DO  - 10.1016/j.radphyschem.2021.109422
ER  - 
@article{
author = "Mravik, Željko and Bajuk-Bogdanović, Danica V. and Mraković, Ana Đ. and Vukosavljević, Ljubiša and Trajić, Ivan and Kovač, Janez and Peruško, Davor and Gavrilov, Nemanja and Jovanović, Zoran M.",
year = "2021",
abstract = "In recent years polyoxometalates (POMs) have attracted significant research interest due to versatile properties. These properties are determined by the size, structure and elemental composition of POMs and hence play an important role in their application. In the present study, the ion beam irradiation (10 keV C+ ions, 5 × 1014–2.5 × 1015 ions/cm2) has been utilized for modification of physicochemical properties of 120 nm-thick layer of 12-tungstophosphoric acid (WPA). Scanning electron microscopy analysis of irradiated films showed change of morphology i.e. an increase of WPA grain size with irradiation and coalescence of grains at the highest fluence. This was accompanied by structural changes. Attenuated total reflectance Fourier transform infrared analysis revealed that vibration bands of Keggin anion became less pronounced as fluence increased, while Raman spectra appeared as strongly modified. The effect of irradiation with 1.25 × 1015 ions/cm2 on the structure of WPA was similar to the effect of thermal treatment at 600 °C. Irradiation of WPA led to decrease of the band gap (from 4.07 to 3.92 eV), which was correlated to transformation Keggin anions into a network of WO6 octahedra and PO4 tetrahedra. This is in line with increased number of W=Od bonds observed by UV–Visible diffuse reflectance spectroscopy. Beside transformation to bronzes a reduction of WPA was observed by X-ray Photoelectron Spectroscopy (shift to lower binding energy) and Raman methods, whereas the Raman spectra of irradiated samples were similar to heteropoly blue. The electrochemical properties of irradiated WPA were also assessed. Cyclic voltammetry measurements showed that at up to 1.25 × 1015 ions/cm2 lithiation capacity of WPA increases and activity for hydrogen evolution reaction (HER) improves. The highest fluence caused interconnection of WO6 octahedra, closing of lithiation pathways and decrease in the number of active sites for HER. Our results provide a novel insight into the effects of ion beam irradiation on WPA and demonstrate high potential for tuning of physicochemical properties of POMs that are relevant in wide range of applications. © 2021 Elsevier Ltd",
journal = "Radiation Physics and Chemistry",
title = "Structural and electrochemical properties of carbon ion beam irradiated 12-tungstophosphoric acid",
volume = "183",
pages = "109422",
doi = "10.1016/j.radphyschem.2021.109422"
}
Mravik, Ž., Bajuk-Bogdanović, D. V., Mraković, A. Đ., Vukosavljević, L., Trajić, I., Kovač, J., Peruško, D., Gavrilov, N.,& Jovanović, Z. M.. (2021). Structural and electrochemical properties of carbon ion beam irradiated 12-tungstophosphoric acid. in Radiation Physics and Chemistry, 183, 109422.
https://doi.org/10.1016/j.radphyschem.2021.109422
Mravik Ž, Bajuk-Bogdanović DV, Mraković AĐ, Vukosavljević L, Trajić I, Kovač J, Peruško D, Gavrilov N, Jovanović ZM. Structural and electrochemical properties of carbon ion beam irradiated 12-tungstophosphoric acid. in Radiation Physics and Chemistry. 2021;183:109422.
doi:10.1016/j.radphyschem.2021.109422 .
Mravik, Željko, Bajuk-Bogdanović, Danica V., Mraković, Ana Đ., Vukosavljević, Ljubiša, Trajić, Ivan, Kovač, Janez, Peruško, Davor, Gavrilov, Nemanja, Jovanović, Zoran M., "Structural and electrochemical properties of carbon ion beam irradiated 12-tungstophosphoric acid" in Radiation Physics and Chemistry, 183 (2021):109422,
https://doi.org/10.1016/j.radphyschem.2021.109422 . .
2
2

One-step preparation of gold nanoparticles - exfoliated graphene composite by gamma irradiation at low doses for photothermal therapy applications

Kepić, Dejan P.; Kleut, Duška; Marković, Zoran M.; Bajuk-Bogdanović, Danica V.; Pavlović, Vladimir B.; Krmpot, Aleksandar; Lekić, Marina; Jovanović, Dragana J.; Todorović-Marković, Biljana

(2021)

TY  - JOUR
AU  - Kepić, Dejan P.
AU  - Kleut, Duška
AU  - Marković, Zoran M.
AU  - Bajuk-Bogdanović, Danica V.
AU  - Pavlović, Vladimir B.
AU  - Krmpot, Aleksandar
AU  - Lekić, Marina
AU  - Jovanović, Dragana J.
AU  - Todorović-Marković, Biljana
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9568
AB  - Graphene is an excellent material to anchor metal nanoparticles due to its large surface area. In this paper, we report the use of electrochemically exfoliated graphene as support to anchor gold nanoparticles (Au NPs). Au NPs are synthesized via the reduction of chloroauric acid under gamma irradiation at low doses of 1, 5, and 10 kGy and directly deposited onto the graphene surface, making this procedure simple and fast. Good water dispersibility of exfoliated graphene, due to the presence of oxygen-containing functional groups in the structure of graphene, provides long-term stability of Au NPs - graphene composite dispersions. The majority of the Au NPs obtained by this method have sizes of up to 40 nm, while the increase in the applied dose leads to an increase in the amount of smaller nanoparticles. The increase of temperature of the prepared composite material upon irradiation with an 808 nm continuous wave laser was monitored. All samples show a temperature increase between 21.5 and 25.6 °C for 10 min of the laser exposure, which indicates that Au NPs - graphene composite can effectively be used in photothermal treatment for cancer therapy. © 2021 Elsevier Inc.
T2  - Materials Characterization
T1  - One-step preparation of gold nanoparticles - exfoliated graphene composite by gamma irradiation at low doses for photothermal therapy applications
VL  - 173
SP  - 110944
DO  - 10.1016/j.matchar.2021.110944
ER  - 
@article{
author = "Kepić, Dejan P. and Kleut, Duška and Marković, Zoran M. and Bajuk-Bogdanović, Danica V. and Pavlović, Vladimir B. and Krmpot, Aleksandar and Lekić, Marina and Jovanović, Dragana J. and Todorović-Marković, Biljana",
year = "2021",
abstract = "Graphene is an excellent material to anchor metal nanoparticles due to its large surface area. In this paper, we report the use of electrochemically exfoliated graphene as support to anchor gold nanoparticles (Au NPs). Au NPs are synthesized via the reduction of chloroauric acid under gamma irradiation at low doses of 1, 5, and 10 kGy and directly deposited onto the graphene surface, making this procedure simple and fast. Good water dispersibility of exfoliated graphene, due to the presence of oxygen-containing functional groups in the structure of graphene, provides long-term stability of Au NPs - graphene composite dispersions. The majority of the Au NPs obtained by this method have sizes of up to 40 nm, while the increase in the applied dose leads to an increase in the amount of smaller nanoparticles. The increase of temperature of the prepared composite material upon irradiation with an 808 nm continuous wave laser was monitored. All samples show a temperature increase between 21.5 and 25.6 °C for 10 min of the laser exposure, which indicates that Au NPs - graphene composite can effectively be used in photothermal treatment for cancer therapy. © 2021 Elsevier Inc.",
journal = "Materials Characterization",
title = "One-step preparation of gold nanoparticles - exfoliated graphene composite by gamma irradiation at low doses for photothermal therapy applications",
volume = "173",
pages = "110944",
doi = "10.1016/j.matchar.2021.110944"
}
Kepić, D. P., Kleut, D., Marković, Z. M., Bajuk-Bogdanović, D. V., Pavlović, V. B., Krmpot, A., Lekić, M., Jovanović, D. J.,& Todorović-Marković, B.. (2021). One-step preparation of gold nanoparticles - exfoliated graphene composite by gamma irradiation at low doses for photothermal therapy applications. in Materials Characterization, 173, 110944.
https://doi.org/10.1016/j.matchar.2021.110944
Kepić DP, Kleut D, Marković ZM, Bajuk-Bogdanović DV, Pavlović VB, Krmpot A, Lekić M, Jovanović DJ, Todorović-Marković B. One-step preparation of gold nanoparticles - exfoliated graphene composite by gamma irradiation at low doses for photothermal therapy applications. in Materials Characterization. 2021;173:110944.
doi:10.1016/j.matchar.2021.110944 .
Kepić, Dejan P., Kleut, Duška, Marković, Zoran M., Bajuk-Bogdanović, Danica V., Pavlović, Vladimir B., Krmpot, Aleksandar, Lekić, Marina, Jovanović, Dragana J., Todorović-Marković, Biljana, "One-step preparation of gold nanoparticles - exfoliated graphene composite by gamma irradiation at low doses for photothermal therapy applications" in Materials Characterization, 173 (2021):110944,
https://doi.org/10.1016/j.matchar.2021.110944 . .
2
1

Polyaniline as a charge storage material in an aqueous aluminum-based electrolyte: Can aluminum ions play the role of protons?

Vujković, Milica ; Etinski, Mihajlo; Vasić, Borislav; Kuzmanović, Bojana; Bajuk-Bogdanović, Danica V.; Dominko, Robert; Mentus, Slavko V.

(2021)

TY  - JOUR
AU  - Vujković, Milica 
AU  - Etinski, Mihajlo
AU  - Vasić, Borislav
AU  - Kuzmanović, Bojana
AU  - Bajuk-Bogdanović, Danica V.
AU  - Dominko, Robert
AU  - Mentus, Slavko V.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9645
AB  - The high redox activity of polyaniline emeraldine salt (PANI-ES) was revealed in the aqueous solution of Al-salt, which makes this polymer attractive as an electrode material for aqueous aluminum electrochemical storage devices. Its redox behavior in Al(NO3)3, Al(NO3)3+HCl, AlCl3 and HCl was investigated by Cyclic Voltammetry and Chronopotentiometry. While the proton exchange determines PANI's redox behavior in strong acidic solutions, anion doping/dedoping is a more dominant process in less acidic Al-salt solutions. The formation/dissolution of solid-state nitrate complexes is proposed to happen during PANI's redox switching in Al(NO3)3, which causes disappearance and reappearance of grain boundaries, as revealed by AFM. Combined experimental and DFT approaches identify Al-salt as a secondary dopant of protonated PANI-ES (by Lewis acid-base complexation), which causes polaron→bipolaron conversion. The change in the redox mechanism of PANI-ES, caused by the substitution of HCl with Al(NO3)3, did not attenuate its charge storage ability. Moreover, PANI-ES delivers a higher capacitance in Al(NO3)3, amounting to 269 F g−1 at 10 A g−1. Furthermore, the use of Al(NO3)3 results in attenuated electrochemical PANI overoxidation, when compared to HCl, thus providing better capacitance retention upon potentiodynamic cycling. The results open novel perspective of using PANI-based materials for more suitable energy storage devices.
T2  - Journal of Power Sources
T1  - Polyaniline as a charge storage material in an aqueous aluminum-based electrolyte: Can aluminum ions play the role of protons?
VL  - 482
SP  - 228937
DO  - 10.1016/j.jpowsour.2020.228937
ER  - 
@article{
author = "Vujković, Milica  and Etinski, Mihajlo and Vasić, Borislav and Kuzmanović, Bojana and Bajuk-Bogdanović, Danica V. and Dominko, Robert and Mentus, Slavko V.",
year = "2021",
abstract = "The high redox activity of polyaniline emeraldine salt (PANI-ES) was revealed in the aqueous solution of Al-salt, which makes this polymer attractive as an electrode material for aqueous aluminum electrochemical storage devices. Its redox behavior in Al(NO3)3, Al(NO3)3+HCl, AlCl3 and HCl was investigated by Cyclic Voltammetry and Chronopotentiometry. While the proton exchange determines PANI's redox behavior in strong acidic solutions, anion doping/dedoping is a more dominant process in less acidic Al-salt solutions. The formation/dissolution of solid-state nitrate complexes is proposed to happen during PANI's redox switching in Al(NO3)3, which causes disappearance and reappearance of grain boundaries, as revealed by AFM. Combined experimental and DFT approaches identify Al-salt as a secondary dopant of protonated PANI-ES (by Lewis acid-base complexation), which causes polaron→bipolaron conversion. The change in the redox mechanism of PANI-ES, caused by the substitution of HCl with Al(NO3)3, did not attenuate its charge storage ability. Moreover, PANI-ES delivers a higher capacitance in Al(NO3)3, amounting to 269 F g−1 at 10 A g−1. Furthermore, the use of Al(NO3)3 results in attenuated electrochemical PANI overoxidation, when compared to HCl, thus providing better capacitance retention upon potentiodynamic cycling. The results open novel perspective of using PANI-based materials for more suitable energy storage devices.",
journal = "Journal of Power Sources",
title = "Polyaniline as a charge storage material in an aqueous aluminum-based electrolyte: Can aluminum ions play the role of protons?",
volume = "482",
pages = "228937",
doi = "10.1016/j.jpowsour.2020.228937"
}
Vujković, M., Etinski, M., Vasić, B., Kuzmanović, B., Bajuk-Bogdanović, D. V., Dominko, R.,& Mentus, S. V.. (2021). Polyaniline as a charge storage material in an aqueous aluminum-based electrolyte: Can aluminum ions play the role of protons?. in Journal of Power Sources, 482, 228937.
https://doi.org/10.1016/j.jpowsour.2020.228937
Vujković M, Etinski M, Vasić B, Kuzmanović B, Bajuk-Bogdanović DV, Dominko R, Mentus SV. Polyaniline as a charge storage material in an aqueous aluminum-based electrolyte: Can aluminum ions play the role of protons?. in Journal of Power Sources. 2021;482:228937.
doi:10.1016/j.jpowsour.2020.228937 .
Vujković, Milica , Etinski, Mihajlo, Vasić, Borislav, Kuzmanović, Bojana, Bajuk-Bogdanović, Danica V., Dominko, Robert, Mentus, Slavko V., "Polyaniline as a charge storage material in an aqueous aluminum-based electrolyte: Can aluminum ions play the role of protons?" in Journal of Power Sources, 482 (2021):228937,
https://doi.org/10.1016/j.jpowsour.2020.228937 . .
13
6
10

Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite

Jovanović, Zoran M.; Mravik, Željko; Bajuk-Bogdanović, Danica V.; Jovanović, Sonja; Marković, Smilja; Vujković, Milica; Kovač, Janez; Vengust, Damjan; Uskoković-Marković, Snežana; Holclajtner-Antunović, Ivanka D.

(2020)

TY  - JOUR
AU  - Jovanović, Zoran M.
AU  - Mravik, Željko
AU  - Bajuk-Bogdanović, Danica V.
AU  - Jovanović, Sonja
AU  - Marković, Smilja
AU  - Vujković, Milica
AU  - Kovač, Janez
AU  - Vengust, Damjan
AU  - Uskoković-Marković, Snežana
AU  - Holclajtner-Antunović, Ivanka D.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8520
AB  - In the present study we investigated the interaction between 12-tungstophosphoric acid (WPA) and graphene oxide (GO) in their nanocomposite by utilizing the loading of WPA as an intrinsic parameter for interaction tuning. The Fourier-transform infrared spectroscopy, temperature-programmed desorption, X-ray photoelectron spectroscopy, zeta-potential measurements, thermogravimetric analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy methods revealed that ∼5–13 wt% of WPA represents critical loading that separates two distinct contributions to GO-WPA interaction. This was explained by the self-limiting nature of GO-WPA interaction, initially controlled by high dispersion of WPA on GO (up to 13 wt%), that is eventually overpowered by WPA-WPA interaction as loading increases. As a result, the WPA agglomerates are being formed because of which the hybrid character of the nanocomposite diminishes, i.e., the properties of independent components start to be manifested to greater extent. The obtained results provide an important framework for considering possible outcomes in other 2D-0D systems, whose interaction is relevant both from fundamental and applicative point of view. Thus, the GO/WPA nanocomposite illustrates how the interactions between the components can be used for tuning the properties of nanocomposite as a whole. © 2019 Elsevier Ltd
T2  - Carbon
T1  - Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite
VL  - 156
SP  - 166
EP  - 178
DO  - 10.1016/j.carbon.2019.09.072
ER  - 
@article{
author = "Jovanović, Zoran M. and Mravik, Željko and Bajuk-Bogdanović, Danica V. and Jovanović, Sonja and Marković, Smilja and Vujković, Milica and Kovač, Janez and Vengust, Damjan and Uskoković-Marković, Snežana and Holclajtner-Antunović, Ivanka D.",
year = "2020",
abstract = "In the present study we investigated the interaction between 12-tungstophosphoric acid (WPA) and graphene oxide (GO) in their nanocomposite by utilizing the loading of WPA as an intrinsic parameter for interaction tuning. The Fourier-transform infrared spectroscopy, temperature-programmed desorption, X-ray photoelectron spectroscopy, zeta-potential measurements, thermogravimetric analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy methods revealed that ∼5–13 wt% of WPA represents critical loading that separates two distinct contributions to GO-WPA interaction. This was explained by the self-limiting nature of GO-WPA interaction, initially controlled by high dispersion of WPA on GO (up to 13 wt%), that is eventually overpowered by WPA-WPA interaction as loading increases. As a result, the WPA agglomerates are being formed because of which the hybrid character of the nanocomposite diminishes, i.e., the properties of independent components start to be manifested to greater extent. The obtained results provide an important framework for considering possible outcomes in other 2D-0D systems, whose interaction is relevant both from fundamental and applicative point of view. Thus, the GO/WPA nanocomposite illustrates how the interactions between the components can be used for tuning the properties of nanocomposite as a whole. © 2019 Elsevier Ltd",
journal = "Carbon",
title = "Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite",
volume = "156",
pages = "166-178",
doi = "10.1016/j.carbon.2019.09.072"
}
Jovanović, Z. M., Mravik, Ž., Bajuk-Bogdanović, D. V., Jovanović, S., Marković, S., Vujković, M., Kovač, J., Vengust, D., Uskoković-Marković, S.,& Holclajtner-Antunović, I. D.. (2020). Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite. in Carbon, 156, 166-178.
https://doi.org/10.1016/j.carbon.2019.09.072
Jovanović ZM, Mravik Ž, Bajuk-Bogdanović DV, Jovanović S, Marković S, Vujković M, Kovač J, Vengust D, Uskoković-Marković S, Holclajtner-Antunović ID. Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite. in Carbon. 2020;156:166-178.
doi:10.1016/j.carbon.2019.09.072 .
Jovanović, Zoran M., Mravik, Željko, Bajuk-Bogdanović, Danica V., Jovanović, Sonja, Marković, Smilja, Vujković, Milica, Kovač, Janez, Vengust, Damjan, Uskoković-Marković, Snežana, Holclajtner-Antunović, Ivanka D., "Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite" in Carbon, 156 (2020):166-178,
https://doi.org/10.1016/j.carbon.2019.09.072 . .
8
4
7

In situ synthesis of potassium tungstophosphate supported on BEA zeolite and perspective application for pesticide removal

Vasiljević-Nedić, Bojana; Obradović, Milena; Bajuk-Bogdanović, Danica V.; Milojević-Rakić, Maja; Jovanović, Zoran M.; Gavrilov, Nemanja M.; Holclajtner-Antunović, Ivanka D.

(2019)

TY  - JOUR
AU  - Vasiljević-Nedić, Bojana
AU  - Obradović, Milena
AU  - Bajuk-Bogdanović, Danica V.
AU  - Milojević-Rakić, Maja
AU  - Jovanović, Zoran M.
AU  - Gavrilov, Nemanja M.
AU  - Holclajtner-Antunović, Ivanka D.
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S1001074218314682
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8217
AB  - Potassium tungstophosphate is supported on BEA zeolite by in situ synthesis for glyphosate removal. Spectroscopic measurements identified hydrogen bonding as a primal interaction of potassium salt and BEA zeolite. Composites are evaluated for glyphosate herbicide removal and adsorption process is analyzed using two isotherm models. Obtained adsorption capacities for all prepared composites lay between 45.2 and 92.2 mg of glyphosate per gram of investigated composite. Suspension acidity revealed that glyphosate is adsorbed mainly in the zwitter-ion form at the composite surface while the amount of potassium salt in the composites is crucial for the adsorption application. Exceptional adsorption behavior is postulated to come from a high degree of homogeneity among surface active sites which is confirmed by different experimental methods. Temperature programmed desorption of glyphosate coupled with mass spectrometer detected one broad, high-temperature peak which represents overlapped desorption processes from active sights of similar strength. Introduction of potassium tungstophosphate affects active sites present in BEA zeolite for glyphosate desorption and significantly increases the amount of adsorbed pesticide in comparison to BEA zeolite. Supporting of potassium tungstophosphate on BEA zeolite via in situ synthesis procedure enables the formation of highly efficient adsorbents and revealed their perspective environmental application. © 2019
T2  - Journal of Environmental Sciences
T1  - In situ synthesis of potassium tungstophosphate supported on BEA zeolite and perspective application for pesticide removal
VL  - 81
SP  - 136
EP  - 147
DO  - 10.1016/j.jes.2019.01.018
ER  - 
@article{
author = "Vasiljević-Nedić, Bojana and Obradović, Milena and Bajuk-Bogdanović, Danica V. and Milojević-Rakić, Maja and Jovanović, Zoran M. and Gavrilov, Nemanja M. and Holclajtner-Antunović, Ivanka D.",
year = "2019",
abstract = "Potassium tungstophosphate is supported on BEA zeolite by in situ synthesis for glyphosate removal. Spectroscopic measurements identified hydrogen bonding as a primal interaction of potassium salt and BEA zeolite. Composites are evaluated for glyphosate herbicide removal and adsorption process is analyzed using two isotherm models. Obtained adsorption capacities for all prepared composites lay between 45.2 and 92.2 mg of glyphosate per gram of investigated composite. Suspension acidity revealed that glyphosate is adsorbed mainly in the zwitter-ion form at the composite surface while the amount of potassium salt in the composites is crucial for the adsorption application. Exceptional adsorption behavior is postulated to come from a high degree of homogeneity among surface active sites which is confirmed by different experimental methods. Temperature programmed desorption of glyphosate coupled with mass spectrometer detected one broad, high-temperature peak which represents overlapped desorption processes from active sights of similar strength. Introduction of potassium tungstophosphate affects active sites present in BEA zeolite for glyphosate desorption and significantly increases the amount of adsorbed pesticide in comparison to BEA zeolite. Supporting of potassium tungstophosphate on BEA zeolite via in situ synthesis procedure enables the formation of highly efficient adsorbents and revealed their perspective environmental application. © 2019",
journal = "Journal of Environmental Sciences",
title = "In situ synthesis of potassium tungstophosphate supported on BEA zeolite and perspective application for pesticide removal",
volume = "81",
pages = "136-147",
doi = "10.1016/j.jes.2019.01.018"
}
Vasiljević-Nedić, B., Obradović, M., Bajuk-Bogdanović, D. V., Milojević-Rakić, M., Jovanović, Z. M., Gavrilov, N. M.,& Holclajtner-Antunović, I. D.. (2019). In situ synthesis of potassium tungstophosphate supported on BEA zeolite and perspective application for pesticide removal. in Journal of Environmental Sciences, 81, 136-147.
https://doi.org/10.1016/j.jes.2019.01.018
Vasiljević-Nedić B, Obradović M, Bajuk-Bogdanović DV, Milojević-Rakić M, Jovanović ZM, Gavrilov NM, Holclajtner-Antunović ID. In situ synthesis of potassium tungstophosphate supported on BEA zeolite and perspective application for pesticide removal. in Journal of Environmental Sciences. 2019;81:136-147.
doi:10.1016/j.jes.2019.01.018 .
Vasiljević-Nedić, Bojana, Obradović, Milena, Bajuk-Bogdanović, Danica V., Milojević-Rakić, Maja, Jovanović, Zoran M., Gavrilov, Nemanja M., Holclajtner-Antunović, Ivanka D., "In situ synthesis of potassium tungstophosphate supported on BEA zeolite and perspective application for pesticide removal" in Journal of Environmental Sciences, 81 (2019):136-147,
https://doi.org/10.1016/j.jes.2019.01.018 . .
15
9
14

Tailoring the electrochemical charge storage properties of carbonaceous support by redox properties of heteropoly acids: where does the synergy come from?

Bajuk-Bogdanović, Danica V.; Holclajtner-Antunović, Ivanka D.; Jovanović, Zoran M.; Mravik, Željko; Krstić, Jugoslav B.; Uskoković-Marković, Snežana; Vujković, Milica

(2019)

TY  - JOUR
AU  - Bajuk-Bogdanović, Danica V.
AU  - Holclajtner-Antunović, Ivanka D.
AU  - Jovanović, Zoran M.
AU  - Mravik, Željko
AU  - Krstić, Jugoslav B.
AU  - Uskoković-Marković, Snežana
AU  - Vujković, Milica
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8500
AB  - The synergistic effects between two Keggin-type heteropoly acids (HPAs) and carbon surface were examined and elucidated. An improved high rate capability (and potential high capacitor electrode for supercapacitors) of the hybrid materials, obtained by anchoring of α-dodecamolybdophosphoric (MoPA), α-dodecatungstophosphoric (WPA), and their mixture to activated carbon (AC), was achieved through the different mechanism of interaction. In order to elaborate this, a detailed analysis of AC-HPA composites has been performed by scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) analysis, temperature-programmed desorption (TPD), Fourier-transform infrared spectroscopy (FTIR), micro Raman spectroscopy, and zeta potential measurements. The zeta potential measurements revealed positive charge of carbon surface thus indicating attractive interactions with negatively charged Keggin anion. The surface analysis has shown that WPA spontaneously reduces the carbon surface, while interaction with MoPA leads to its oxidation. As the consequence of the tailoring of the functional groups at carbon surface through HPAs’ action, the distortion of cyclic voltammograms (CVs) decreased in the following order: AC-MoPA, AC-MoPA-WPA, and AC-WPA. A prominent rectangular shape of AC-WPA, even at an extremely high scan rate of 400 mVs−1, was measured, which is rarely demonstrated for carbon-based composites. By applying the theory of electrode potentials, the HPA-AC synergistic effect was explained and discussed in terms of charge storage improvement of HPA-modified carbon. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
T2  - Journal of Solid State Electrochemistry
T1  - Tailoring the electrochemical charge storage properties of carbonaceous support by redox properties of heteropoly acids: where does the synergy come from?
VL  - 23
IS  - 9
SP  - 2747
EP  - 2758
DO  - 10.1007/s10008-019-04369-4
ER  - 
@article{
author = "Bajuk-Bogdanović, Danica V. and Holclajtner-Antunović, Ivanka D. and Jovanović, Zoran M. and Mravik, Željko and Krstić, Jugoslav B. and Uskoković-Marković, Snežana and Vujković, Milica",
year = "2019",
abstract = "The synergistic effects between two Keggin-type heteropoly acids (HPAs) and carbon surface were examined and elucidated. An improved high rate capability (and potential high capacitor electrode for supercapacitors) of the hybrid materials, obtained by anchoring of α-dodecamolybdophosphoric (MoPA), α-dodecatungstophosphoric (WPA), and their mixture to activated carbon (AC), was achieved through the different mechanism of interaction. In order to elaborate this, a detailed analysis of AC-HPA composites has been performed by scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) analysis, temperature-programmed desorption (TPD), Fourier-transform infrared spectroscopy (FTIR), micro Raman spectroscopy, and zeta potential measurements. The zeta potential measurements revealed positive charge of carbon surface thus indicating attractive interactions with negatively charged Keggin anion. The surface analysis has shown that WPA spontaneously reduces the carbon surface, while interaction with MoPA leads to its oxidation. As the consequence of the tailoring of the functional groups at carbon surface through HPAs’ action, the distortion of cyclic voltammograms (CVs) decreased in the following order: AC-MoPA, AC-MoPA-WPA, and AC-WPA. A prominent rectangular shape of AC-WPA, even at an extremely high scan rate of 400 mVs−1, was measured, which is rarely demonstrated for carbon-based composites. By applying the theory of electrode potentials, the HPA-AC synergistic effect was explained and discussed in terms of charge storage improvement of HPA-modified carbon. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.",
journal = "Journal of Solid State Electrochemistry",
title = "Tailoring the electrochemical charge storage properties of carbonaceous support by redox properties of heteropoly acids: where does the synergy come from?",
volume = "23",
number = "9",
pages = "2747-2758",
doi = "10.1007/s10008-019-04369-4"
}
Bajuk-Bogdanović, D. V., Holclajtner-Antunović, I. D., Jovanović, Z. M., Mravik, Ž., Krstić, J. B., Uskoković-Marković, S.,& Vujković, M.. (2019). Tailoring the electrochemical charge storage properties of carbonaceous support by redox properties of heteropoly acids: where does the synergy come from?. in Journal of Solid State Electrochemistry, 23(9), 2747-2758.
https://doi.org/10.1007/s10008-019-04369-4
Bajuk-Bogdanović DV, Holclajtner-Antunović ID, Jovanović ZM, Mravik Ž, Krstić JB, Uskoković-Marković S, Vujković M. Tailoring the electrochemical charge storage properties of carbonaceous support by redox properties of heteropoly acids: where does the synergy come from?. in Journal of Solid State Electrochemistry. 2019;23(9):2747-2758.
doi:10.1007/s10008-019-04369-4 .
Bajuk-Bogdanović, Danica V., Holclajtner-Antunović, Ivanka D., Jovanović, Zoran M., Mravik, Željko, Krstić, Jugoslav B., Uskoković-Marković, Snežana, Vujković, Milica, "Tailoring the electrochemical charge storage properties of carbonaceous support by redox properties of heteropoly acids: where does the synergy come from?" in Journal of Solid State Electrochemistry, 23, no. 9 (2019):2747-2758,
https://doi.org/10.1007/s10008-019-04369-4 . .
2
2
2

Green and facile microwave assisted synthesis of (metal-free) N-doped carbon quantum dots for catalytic applications

Prekodravac, Jovana; Vasiljević, Bojana; Marković, Zoran M.; Jovanović, Dragana J.; Kleut, Duška; Špitalsky, Zdenko; Mičušik, Matej; Danko, Martin; Bajuk-Bogdanović, Danica V.; Todorović-Marković, Biljana

(2019)

TY  - JOUR
AU  - Prekodravac, Jovana
AU  - Vasiljević, Bojana
AU  - Marković, Zoran M.
AU  - Jovanović, Dragana J.
AU  - Kleut, Duška
AU  - Špitalsky, Zdenko
AU  - Mičušik, Matej
AU  - Danko, Martin
AU  - Bajuk-Bogdanović, Danica V.
AU  - Todorović-Marković, Biljana
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0272884219313598
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8211
AB  - Industrialization today leads to a significant increase in the environmental pollution, with number of phenols, pesticides, paints, solvents and other organic pollutants with potentially carcinogenic effect in natural resources. Investigation of some new semiconductor materials and their photocatalytic properties for removal of pollutants is a challenging work. However, limited usage of photoactive materials still requires the testing of new materials with photoactive properties. The current work introduces the swift and easy approach for synthesis of (metal–free) N–doped carbon quantum dots in water using microwave reactor. Synthesis was performed from glucose water solution by heating in microwave reactor for only 1 min, at low temperature and applied microwave power. The synthesized N–doped carbon quantum dots show remarkable photocatalytic activity for removal of toxic organic dye (Rose Bengal) under visible light irradiation. Almost 93% of the dye degradation is achieved after only 30 min of radiation. The uninspected result, that the pH of the medium has a significant effect on the performance of the synthesized material in the presence of organic dye, indicates that dots show dual behavior. In the neutral and basic conditions, they have the ability to degrade organic dye, whereas, by shifting the medium pH into acidic medium, they form a stable conjugate with Rose Bengal. © 2019 Elsevier Ltd and Techna Group S.r.l.
T2  - Ceramics International
T1  - Green and facile microwave assisted synthesis of (metal-free) N-doped carbon quantum dots for catalytic applications
VL  - 45
IS  - 14
SP  - 17006
EP  - 17013
DO  - 10.1016/j.ceramint.2019.05.250
ER  - 
@article{
author = "Prekodravac, Jovana and Vasiljević, Bojana and Marković, Zoran M. and Jovanović, Dragana J. and Kleut, Duška and Špitalsky, Zdenko and Mičušik, Matej and Danko, Martin and Bajuk-Bogdanović, Danica V. and Todorović-Marković, Biljana",
year = "2019",
abstract = "Industrialization today leads to a significant increase in the environmental pollution, with number of phenols, pesticides, paints, solvents and other organic pollutants with potentially carcinogenic effect in natural resources. Investigation of some new semiconductor materials and their photocatalytic properties for removal of pollutants is a challenging work. However, limited usage of photoactive materials still requires the testing of new materials with photoactive properties. The current work introduces the swift and easy approach for synthesis of (metal–free) N–doped carbon quantum dots in water using microwave reactor. Synthesis was performed from glucose water solution by heating in microwave reactor for only 1 min, at low temperature and applied microwave power. The synthesized N–doped carbon quantum dots show remarkable photocatalytic activity for removal of toxic organic dye (Rose Bengal) under visible light irradiation. Almost 93% of the dye degradation is achieved after only 30 min of radiation. The uninspected result, that the pH of the medium has a significant effect on the performance of the synthesized material in the presence of organic dye, indicates that dots show dual behavior. In the neutral and basic conditions, they have the ability to degrade organic dye, whereas, by shifting the medium pH into acidic medium, they form a stable conjugate with Rose Bengal. © 2019 Elsevier Ltd and Techna Group S.r.l.",
journal = "Ceramics International",
title = "Green and facile microwave assisted synthesis of (metal-free) N-doped carbon quantum dots for catalytic applications",
volume = "45",
number = "14",
pages = "17006-17013",
doi = "10.1016/j.ceramint.2019.05.250"
}
Prekodravac, J., Vasiljević, B., Marković, Z. M., Jovanović, D. J., Kleut, D., Špitalsky, Z., Mičušik, M., Danko, M., Bajuk-Bogdanović, D. V.,& Todorović-Marković, B.. (2019). Green and facile microwave assisted synthesis of (metal-free) N-doped carbon quantum dots for catalytic applications. in Ceramics International, 45(14), 17006-17013.
https://doi.org/10.1016/j.ceramint.2019.05.250
Prekodravac J, Vasiljević B, Marković ZM, Jovanović DJ, Kleut D, Špitalsky Z, Mičušik M, Danko M, Bajuk-Bogdanović DV, Todorović-Marković B. Green and facile microwave assisted synthesis of (metal-free) N-doped carbon quantum dots for catalytic applications. in Ceramics International. 2019;45(14):17006-17013.
doi:10.1016/j.ceramint.2019.05.250 .
Prekodravac, Jovana, Vasiljević, Bojana, Marković, Zoran M., Jovanović, Dragana J., Kleut, Duška, Špitalsky, Zdenko, Mičušik, Matej, Danko, Martin, Bajuk-Bogdanović, Danica V., Todorović-Marković, Biljana, "Green and facile microwave assisted synthesis of (metal-free) N-doped carbon quantum dots for catalytic applications" in Ceramics International, 45, no. 14 (2019):17006-17013,
https://doi.org/10.1016/j.ceramint.2019.05.250 . .
32
19
31

The influence of oxygen vacancy concentration in nanodispersed non-stoichiometric CeO2-δ oxides on the physico-chemical properties of conducting polyaniline/CeO2 composites

Kuzmanović, Bojana; Vujković, Milica; Tomić, Nataša M.; Bajuk-Bogdanović, Danica V.; Lazović, Vladimir M.; Šljukić, Biljana; Ivanović, Nenad; Mentus, Slavko V.

(2019)

TY  - JOUR
AU  - Kuzmanović, Bojana
AU  - Vujković, Milica
AU  - Tomić, Nataša M.
AU  - Bajuk-Bogdanović, Danica V.
AU  - Lazović, Vladimir M.
AU  - Šljukić, Biljana
AU  - Ivanović, Nenad
AU  - Mentus, Slavko V.
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0013468619305584
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8135
AB  - Cerium oxide (CeO 2-δ ) ultrafine nanoparticles, with the lower (CeO 2-δ -HT) and higher (CeO 2-δ -SS) fraction of oxygen vacancies, were used as anchoring sites for the polymerization of aniline in acidic medium. As a result, polyaniline-emeraldine salt (PANI-ES)-based composites (PANI-ES@CeO 2-δ -HT and PANI-ES@CeO 2-δ -SS) were obtained. The interaction between CeO 2-δ and PANI was examined by FTIR and Raman spectroscopy. The PANI polymerization is initiated via electrostatic interaction of anilinium cation and Cl − ions (adsorbed at the protonated hydroxyl groups of CeO 2-δ ), and proceeds with hydrogen and nitrogen interaction with oxide nanoparticles. Tailoring the oxygen vacancy population of oxide offers the possibility to control the type of PANI-cerium oxide interaction, and consequently structural, electrical, thermal, electronic and charge storage properties of composite. A high capacitance of synthesized materials, reaching ∼294 F g −1 (PANI-ES), ∼299 F g −1 (PANI-ES@CeO 2-δ -HT) and ∼314 F g −1 (PANI-ES@CeO 2-δ -SS), was measured in 1 M HCl, at a common scan rate of 20 mV s −1 . The high adhesion of PANI with cerium oxide prevents the oxide from its slow dissolution in 1MHCl thus providing the stability of this composite in an acidic solution. The rate of electrochemical oxidation of emeraldine salt into pernigraniline was also found to depend on CeO 2-δ characteristics. © 2019 Elsevier Ltd
T2  - Electrochimica Acta
T1  - The influence of oxygen vacancy concentration in nanodispersed non-stoichiometric CeO2-δ oxides on the physico-chemical properties of conducting polyaniline/CeO2 composites
VL  - 306
SP  - 506
EP  - 515
DO  - 10.1016/j.electacta.2019.03.135
ER  - 
@article{
author = "Kuzmanović, Bojana and Vujković, Milica and Tomić, Nataša M. and Bajuk-Bogdanović, Danica V. and Lazović, Vladimir M. and Šljukić, Biljana and Ivanović, Nenad and Mentus, Slavko V.",
year = "2019",
abstract = "Cerium oxide (CeO 2-δ ) ultrafine nanoparticles, with the lower (CeO 2-δ -HT) and higher (CeO 2-δ -SS) fraction of oxygen vacancies, were used as anchoring sites for the polymerization of aniline in acidic medium. As a result, polyaniline-emeraldine salt (PANI-ES)-based composites (PANI-ES@CeO 2-δ -HT and PANI-ES@CeO 2-δ -SS) were obtained. The interaction between CeO 2-δ and PANI was examined by FTIR and Raman spectroscopy. The PANI polymerization is initiated via electrostatic interaction of anilinium cation and Cl − ions (adsorbed at the protonated hydroxyl groups of CeO 2-δ ), and proceeds with hydrogen and nitrogen interaction with oxide nanoparticles. Tailoring the oxygen vacancy population of oxide offers the possibility to control the type of PANI-cerium oxide interaction, and consequently structural, electrical, thermal, electronic and charge storage properties of composite. A high capacitance of synthesized materials, reaching ∼294 F g −1 (PANI-ES), ∼299 F g −1 (PANI-ES@CeO 2-δ -HT) and ∼314 F g −1 (PANI-ES@CeO 2-δ -SS), was measured in 1 M HCl, at a common scan rate of 20 mV s −1 . The high adhesion of PANI with cerium oxide prevents the oxide from its slow dissolution in 1MHCl thus providing the stability of this composite in an acidic solution. The rate of electrochemical oxidation of emeraldine salt into pernigraniline was also found to depend on CeO 2-δ characteristics. © 2019 Elsevier Ltd",
journal = "Electrochimica Acta",
title = "The influence of oxygen vacancy concentration in nanodispersed non-stoichiometric CeO2-δ oxides on the physico-chemical properties of conducting polyaniline/CeO2 composites",
volume = "306",
pages = "506-515",
doi = "10.1016/j.electacta.2019.03.135"
}
Kuzmanović, B., Vujković, M., Tomić, N. M., Bajuk-Bogdanović, D. V., Lazović, V. M., Šljukić, B., Ivanović, N.,& Mentus, S. V.. (2019). The influence of oxygen vacancy concentration in nanodispersed non-stoichiometric CeO2-δ oxides on the physico-chemical properties of conducting polyaniline/CeO2 composites. in Electrochimica Acta, 306, 506-515.
https://doi.org/10.1016/j.electacta.2019.03.135
Kuzmanović B, Vujković M, Tomić NM, Bajuk-Bogdanović DV, Lazović VM, Šljukić B, Ivanović N, Mentus SV. The influence of oxygen vacancy concentration in nanodispersed non-stoichiometric CeO2-δ oxides on the physico-chemical properties of conducting polyaniline/CeO2 composites. in Electrochimica Acta. 2019;306:506-515.
doi:10.1016/j.electacta.2019.03.135 .
Kuzmanović, Bojana, Vujković, Milica, Tomić, Nataša M., Bajuk-Bogdanović, Danica V., Lazović, Vladimir M., Šljukić, Biljana, Ivanović, Nenad, Mentus, Slavko V., "The influence of oxygen vacancy concentration in nanodispersed non-stoichiometric CeO2-δ oxides on the physico-chemical properties of conducting polyaniline/CeO2 composites" in Electrochimica Acta, 306 (2019):506-515,
https://doi.org/10.1016/j.electacta.2019.03.135 . .
7
3
6

Biliverdin-copper complex at physiological pH

Dimitrijević, Milena S.; Bogdanović-Pristov, Jelena; Žižić, Milan; Stanković, Dalibor M.; Bajuk-Bogdanović, Danica V.; Stanić, Marina; Spasić, Snežana D.; Hagen, Wilfred; Spasojević, Ivan

(2019)

TY  - JOUR
AU  - Dimitrijević, Milena S.
AU  - Bogdanović-Pristov, Jelena
AU  - Žižić, Milan
AU  - Stanković, Dalibor M.
AU  - Bajuk-Bogdanović, Danica V.
AU  - Stanić, Marina
AU  - Spasić, Snežana D.
AU  - Hagen, Wilfred
AU  - Spasojević, Ivan
PY  - 2019
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3066
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8200
AB  - Biliverdin (BV), a product of heme catabolism, is known to interact with transition metals, but the details of such interactions under physiological conditions are scarce. Herein, we examined coordinate/redox interactions of BV with Cu2+ in phosphate buffer at pH 7.4, using spectrophotometry, HESI-MS, Raman spectroscopy, 1 H NMR, EPR, fluorimetry, and electrochemical methods. BV formed a stable coordination complex with copper in 1 : 1 stoichiometry. The structure of BV was more planar and energetically stable in the complex. The complex showed strong paramagnetic effects that were attributed to an unpaired delocalized e−. The delocalized electron may come from BV or Cu2+, so the complex is formally composed either of BV radical cation and Cu1+ or of BV radical anion and Cu3+. The complex underwent oxidation only in the presence of both O2 and an excess of Cu2+, or a strong oxidizing agent, and it was resistant to reducing agents. The biological effects of the stable BV metallocomplex containing a delocalized unpaired electron should be further examined, and may provide an answer to the long-standing question of high energy investment in the catabolism of BV, which represents a relatively harmless molecule per se.
T2  - Dalton Transactions
T1  - Biliverdin-copper complex at physiological pH
VL  - 48
IS  - 18
SP  - 6061
EP  - 6070
DO  - 10.1039/c8dt04724c
ER  - 
@article{
author = "Dimitrijević, Milena S. and Bogdanović-Pristov, Jelena and Žižić, Milan and Stanković, Dalibor M. and Bajuk-Bogdanović, Danica V. and Stanić, Marina and Spasić, Snežana D. and Hagen, Wilfred and Spasojević, Ivan",
year = "2019",
abstract = "Biliverdin (BV), a product of heme catabolism, is known to interact with transition metals, but the details of such interactions under physiological conditions are scarce. Herein, we examined coordinate/redox interactions of BV with Cu2+ in phosphate buffer at pH 7.4, using spectrophotometry, HESI-MS, Raman spectroscopy, 1 H NMR, EPR, fluorimetry, and electrochemical methods. BV formed a stable coordination complex with copper in 1 : 1 stoichiometry. The structure of BV was more planar and energetically stable in the complex. The complex showed strong paramagnetic effects that were attributed to an unpaired delocalized e−. The delocalized electron may come from BV or Cu2+, so the complex is formally composed either of BV radical cation and Cu1+ or of BV radical anion and Cu3+. The complex underwent oxidation only in the presence of both O2 and an excess of Cu2+, or a strong oxidizing agent, and it was resistant to reducing agents. The biological effects of the stable BV metallocomplex containing a delocalized unpaired electron should be further examined, and may provide an answer to the long-standing question of high energy investment in the catabolism of BV, which represents a relatively harmless molecule per se.",
journal = "Dalton Transactions",
title = "Biliverdin-copper complex at physiological pH",
volume = "48",
number = "18",
pages = "6061-6070",
doi = "10.1039/c8dt04724c"
}
Dimitrijević, M. S., Bogdanović-Pristov, J., Žižić, M., Stanković, D. M., Bajuk-Bogdanović, D. V., Stanić, M., Spasić, S. D., Hagen, W.,& Spasojević, I.. (2019). Biliverdin-copper complex at physiological pH. in Dalton Transactions, 48(18), 6061-6070.
https://doi.org/10.1039/c8dt04724c
Dimitrijević MS, Bogdanović-Pristov J, Žižić M, Stanković DM, Bajuk-Bogdanović DV, Stanić M, Spasić SD, Hagen W, Spasojević I. Biliverdin-copper complex at physiological pH. in Dalton Transactions. 2019;48(18):6061-6070.
doi:10.1039/c8dt04724c .
Dimitrijević, Milena S., Bogdanović-Pristov, Jelena, Žižić, Milan, Stanković, Dalibor M., Bajuk-Bogdanović, Danica V., Stanić, Marina, Spasić, Snežana D., Hagen, Wilfred, Spasojević, Ivan, "Biliverdin-copper complex at physiological pH" in Dalton Transactions, 48, no. 18 (2019):6061-6070,
https://doi.org/10.1039/c8dt04724c . .
8
6
7

Biliverdin-copper complex at physiological pH

Dimitrijević, Milena S.; Bogdanović-Pristov, Jelena; Žižić, Milan; Stanković, Dalibor M.; Bajuk-Bogdanović, Danica V.; Stanić, Marina; Spasić, Snežana D.; Hagen, Wilfred; Spasojević, Ivan

(2019)

TY  - JOUR
AU  - Dimitrijević, Milena S.
AU  - Bogdanović-Pristov, Jelena
AU  - Žižić, Milan
AU  - Stanković, Dalibor M.
AU  - Bajuk-Bogdanović, Danica V.
AU  - Stanić, Marina
AU  - Spasić, Snežana D.
AU  - Hagen, Wilfred
AU  - Spasojević, Ivan
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8258
AB  - Biliverdin (BV), a product of heme catabolism, is known to interact with transition metals, but the details of such interactions under physiological conditions are scarce. Herein, we examined coordinate/redox interactions of BV with Cu2+ in phosphate buffer at pH 7.4, using spectrophotometry, HESI-MS, Raman spectroscopy, 1 H NMR, EPR, fluorimetry, and electrochemical methods. BV formed a stable coordination complex with copper in 1 : 1 stoichiometry. The structure of BV was more planar and energetically stable in the complex. The complex showed strong paramagnetic effects that were attributed to an unpaired delocalized e−. The delocalized electron may come from BV or Cu2+, so the complex is formally composed either of BV radical cation and Cu1+ or of BV radical anion and Cu3+. The complex underwent oxidation only in the presence of both O2 and an excess of Cu2+, or a strong oxidizing agent, and it was resistant to reducing agents. The biological effects of the stable BV metallocomplex containing a delocalized unpaired electron should be further examined, and may provide an answer to the long-standing question of high energy investment in the catabolism of BV, which represents a relatively harmless molecule per se.
T2  - Dalton Transactions
T1  - Biliverdin-copper complex at physiological pH
VL  - 48
IS  - 18
SP  - 6061
EP  - 6070
DO  - 10.1039/c8dt04724c
ER  - 
@article{
author = "Dimitrijević, Milena S. and Bogdanović-Pristov, Jelena and Žižić, Milan and Stanković, Dalibor M. and Bajuk-Bogdanović, Danica V. and Stanić, Marina and Spasić, Snežana D. and Hagen, Wilfred and Spasojević, Ivan",
year = "2019",
abstract = "Biliverdin (BV), a product of heme catabolism, is known to interact with transition metals, but the details of such interactions under physiological conditions are scarce. Herein, we examined coordinate/redox interactions of BV with Cu2+ in phosphate buffer at pH 7.4, using spectrophotometry, HESI-MS, Raman spectroscopy, 1 H NMR, EPR, fluorimetry, and electrochemical methods. BV formed a stable coordination complex with copper in 1 : 1 stoichiometry. The structure of BV was more planar and energetically stable in the complex. The complex showed strong paramagnetic effects that were attributed to an unpaired delocalized e−. The delocalized electron may come from BV or Cu2+, so the complex is formally composed either of BV radical cation and Cu1+ or of BV radical anion and Cu3+. The complex underwent oxidation only in the presence of both O2 and an excess of Cu2+, or a strong oxidizing agent, and it was resistant to reducing agents. The biological effects of the stable BV metallocomplex containing a delocalized unpaired electron should be further examined, and may provide an answer to the long-standing question of high energy investment in the catabolism of BV, which represents a relatively harmless molecule per se.",
journal = "Dalton Transactions",
title = "Biliverdin-copper complex at physiological pH",
volume = "48",
number = "18",
pages = "6061-6070",
doi = "10.1039/c8dt04724c"
}
Dimitrijević, M. S., Bogdanović-Pristov, J., Žižić, M., Stanković, D. M., Bajuk-Bogdanović, D. V., Stanić, M., Spasić, S. D., Hagen, W.,& Spasojević, I.. (2019). Biliverdin-copper complex at physiological pH. in Dalton Transactions, 48(18), 6061-6070.
https://doi.org/10.1039/c8dt04724c
Dimitrijević MS, Bogdanović-Pristov J, Žižić M, Stanković DM, Bajuk-Bogdanović DV, Stanić M, Spasić SD, Hagen W, Spasojević I. Biliverdin-copper complex at physiological pH. in Dalton Transactions. 2019;48(18):6061-6070.
doi:10.1039/c8dt04724c .
Dimitrijević, Milena S., Bogdanović-Pristov, Jelena, Žižić, Milan, Stanković, Dalibor M., Bajuk-Bogdanović, Danica V., Stanić, Marina, Spasić, Snežana D., Hagen, Wilfred, Spasojević, Ivan, "Biliverdin-copper complex at physiological pH" in Dalton Transactions, 48, no. 18 (2019):6061-6070,
https://doi.org/10.1039/c8dt04724c . .
8
6
7

Modification of graphene oxide surfaces with 12-molybdophosphoric acid: Structural and antibacterial study

Jovanović, Svetlana P.; Holclajtner-Antunović, Ivanka D.; Uskoković-Marković, Snežana; Bajuk-Bogdanović, Danica V.; Pavlović, Vladimir B.; Tošić, Dragana; Milenković, Marina; Todorović-Marković, Biljana

(2018)

TY  - JOUR
AU  - Jovanović, Svetlana P.
AU  - Holclajtner-Antunović, Ivanka D.
AU  - Uskoković-Marković, Snežana
AU  - Bajuk-Bogdanović, Danica V.
AU  - Pavlović, Vladimir B.
AU  - Tošić, Dragana
AU  - Milenković, Marina
AU  - Todorović-Marković, Biljana
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7611
AB  - © 2018 Antibacterial properties of graphene oxide (GO) have been studied extensively in the last few years, while for polyoxometalates there are just a few researches. Herein, we prepared nanocomposites of GO and different amounts of 12-molybdophosphoric acid (MoPA) and analyzed their antibacterial activity and both structural and morphological properties. In nanocomposites with higher amounts of MoPA, graphene sheets were significantly changed with disrupted flat, graphene-like morphology of GO. In the nanocomposites with low MoPA content, flat GO morphology was preserved. Additionally, structural analyses showed some changes in symmetry of the Keggin anion as a consequence of interactions between GO and MoPA, the increase in structural disorder and the lowering of electron density in GO structure due to interaction with MoPA. We have studied antibacterial properties on the gram-positive: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis; and the gram-negative bacteria: Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella abony. Only a mild antibacterial effect of GO and nanocomposites with low amount of MoPA against Bacillus subtilis was observed, while the rest of analyzed materials did not show any antibacterial activity.
T2  - Materials Chemistry and Physics
T1  - Modification of graphene oxide surfaces with 12-molybdophosphoric acid: Structural and antibacterial study
VL  - 213
SP  - 157
EP  - 167
DO  - 10.1016/j.matchemphys.2018.04.011
ER  - 
@article{
author = "Jovanović, Svetlana P. and Holclajtner-Antunović, Ivanka D. and Uskoković-Marković, Snežana and Bajuk-Bogdanović, Danica V. and Pavlović, Vladimir B. and Tošić, Dragana and Milenković, Marina and Todorović-Marković, Biljana",
year = "2018",
abstract = "© 2018 Antibacterial properties of graphene oxide (GO) have been studied extensively in the last few years, while for polyoxometalates there are just a few researches. Herein, we prepared nanocomposites of GO and different amounts of 12-molybdophosphoric acid (MoPA) and analyzed their antibacterial activity and both structural and morphological properties. In nanocomposites with higher amounts of MoPA, graphene sheets were significantly changed with disrupted flat, graphene-like morphology of GO. In the nanocomposites with low MoPA content, flat GO morphology was preserved. Additionally, structural analyses showed some changes in symmetry of the Keggin anion as a consequence of interactions between GO and MoPA, the increase in structural disorder and the lowering of electron density in GO structure due to interaction with MoPA. We have studied antibacterial properties on the gram-positive: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis; and the gram-negative bacteria: Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella abony. Only a mild antibacterial effect of GO and nanocomposites with low amount of MoPA against Bacillus subtilis was observed, while the rest of analyzed materials did not show any antibacterial activity.",
journal = "Materials Chemistry and Physics",
title = "Modification of graphene oxide surfaces with 12-molybdophosphoric acid: Structural and antibacterial study",
volume = "213",
pages = "157-167",
doi = "10.1016/j.matchemphys.2018.04.011"
}
Jovanović, S. P., Holclajtner-Antunović, I. D., Uskoković-Marković, S., Bajuk-Bogdanović, D. V., Pavlović, V. B., Tošić, D., Milenković, M.,& Todorović-Marković, B.. (2018). Modification of graphene oxide surfaces with 12-molybdophosphoric acid: Structural and antibacterial study. in Materials Chemistry and Physics, 213, 157-167.
https://doi.org/10.1016/j.matchemphys.2018.04.011
Jovanović SP, Holclajtner-Antunović ID, Uskoković-Marković S, Bajuk-Bogdanović DV, Pavlović VB, Tošić D, Milenković M, Todorović-Marković B. Modification of graphene oxide surfaces with 12-molybdophosphoric acid: Structural and antibacterial study. in Materials Chemistry and Physics. 2018;213:157-167.
doi:10.1016/j.matchemphys.2018.04.011 .
Jovanović, Svetlana P., Holclajtner-Antunović, Ivanka D., Uskoković-Marković, Snežana, Bajuk-Bogdanović, Danica V., Pavlović, Vladimir B., Tošić, Dragana, Milenković, Marina, Todorović-Marković, Biljana, "Modification of graphene oxide surfaces with 12-molybdophosphoric acid: Structural and antibacterial study" in Materials Chemistry and Physics, 213 (2018):157-167,
https://doi.org/10.1016/j.matchemphys.2018.04.011 . .
15
11
15

Mild electrochemical oxidation of zeolite templated carbon in acidic solutions, as a way to boost its charge storage properties in alkaline solutions

Vujković, Milica; Bajuk-Bogdanović, Danica V.; Matović, Ljiljana; Stojmenović, Marija; Mentus, Slavko V.

(2018)

TY  - JOUR
AU  - Vujković, Milica
AU  - Bajuk-Bogdanović, Danica V.
AU  - Matović, Ljiljana
AU  - Stojmenović, Marija
AU  - Mentus, Slavko V.
PY  - 2018
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0008622318307036
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7872
AB  - Coulombic capacity of zeolite-templated carbon (ZTC) measured in alkaline solution was roughly doubled by a previous potentiodynamic treatment in sulfuric acidic solution. In order to explain the reasons of this capacity improvement, the changes in chemical composition of ZTC surface during its pretreatment in sulfuric acid either by simple immersion, or by potentiodynamic polarization, and during subsequent potentiodynamic polarization in KOH solutions, were studied by means of TG/DTA, FTIR spectroscopy and Raman spectroscopy. The results of this study open some novel insights in understanding of very peculiar carbon electrochemistry. The observed changes in surface chemistry include i) fast adsorption of H2O and formation of OH− and epoxide groups on immersion in sulfuric acid, ii) the multiplication of concentration of H2O/OH− and epoxide groups during potentiodynamic cycling in sulfuric acid and iii) the ring-opening of epoxide groups (formed during potentiodynamic cycling in acidic solution) upon its potentiodynamic cycling in alkaline solution, according to a SN2 type mechanism, which results in the formation of aromatic OH-containing diol compounds. © 2018 Elsevier Ltd
T2  - Carbon
T1  - Mild electrochemical oxidation of zeolite templated carbon in acidic solutions, as a way to boost its charge storage properties in alkaline solutions
VL  - 138
SP  - 369
EP  - 378
DO  - 10.1016/j.carbon.2018.07.053
ER  - 
@article{
author = "Vujković, Milica and Bajuk-Bogdanović, Danica V. and Matović, Ljiljana and Stojmenović, Marija and Mentus, Slavko V.",
year = "2018",
abstract = "Coulombic capacity of zeolite-templated carbon (ZTC) measured in alkaline solution was roughly doubled by a previous potentiodynamic treatment in sulfuric acidic solution. In order to explain the reasons of this capacity improvement, the changes in chemical composition of ZTC surface during its pretreatment in sulfuric acid either by simple immersion, or by potentiodynamic polarization, and during subsequent potentiodynamic polarization in KOH solutions, were studied by means of TG/DTA, FTIR spectroscopy and Raman spectroscopy. The results of this study open some novel insights in understanding of very peculiar carbon electrochemistry. The observed changes in surface chemistry include i) fast adsorption of H2O and formation of OH− and epoxide groups on immersion in sulfuric acid, ii) the multiplication of concentration of H2O/OH− and epoxide groups during potentiodynamic cycling in sulfuric acid and iii) the ring-opening of epoxide groups (formed during potentiodynamic cycling in acidic solution) upon its potentiodynamic cycling in alkaline solution, according to a SN2 type mechanism, which results in the formation of aromatic OH-containing diol compounds. © 2018 Elsevier Ltd",
journal = "Carbon",
title = "Mild electrochemical oxidation of zeolite templated carbon in acidic solutions, as a way to boost its charge storage properties in alkaline solutions",
volume = "138",
pages = "369-378",
doi = "10.1016/j.carbon.2018.07.053"
}
Vujković, M., Bajuk-Bogdanović, D. V., Matović, L., Stojmenović, M.,& Mentus, S. V.. (2018). Mild electrochemical oxidation of zeolite templated carbon in acidic solutions, as a way to boost its charge storage properties in alkaline solutions. in Carbon, 138, 369-378.
https://doi.org/10.1016/j.carbon.2018.07.053
Vujković M, Bajuk-Bogdanović DV, Matović L, Stojmenović M, Mentus SV. Mild electrochemical oxidation of zeolite templated carbon in acidic solutions, as a way to boost its charge storage properties in alkaline solutions. in Carbon. 2018;138:369-378.
doi:10.1016/j.carbon.2018.07.053 .
Vujković, Milica, Bajuk-Bogdanović, Danica V., Matović, Ljiljana, Stojmenović, Marija, Mentus, Slavko V., "Mild electrochemical oxidation of zeolite templated carbon in acidic solutions, as a way to boost its charge storage properties in alkaline solutions" in Carbon, 138 (2018):369-378,
https://doi.org/10.1016/j.carbon.2018.07.053 . .
10
9
10

Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH

Korać, Jelena; Stanković, Dalibor M.; Stanić, Marina; Bajuk-Bogdanović, Danica V.; Žižić, Milan; Bogdanović-Pristov, Jelena; Grgurić-Šipka, Sanja; Popović-Bijelić, Ana D.; Spasojević, Ivan

(2018)

TY  - JOUR
AU  - Korać, Jelena
AU  - Stanković, Dalibor M.
AU  - Stanić, Marina
AU  - Bajuk-Bogdanović, Danica V.
AU  - Žižić, Milan
AU  - Bogdanović-Pristov, Jelena
AU  - Grgurić-Šipka, Sanja
AU  - Popović-Bijelić, Ana D.
AU  - Spasojević, Ivan
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7582
AB  - Coordinate and redox interactions of epinephrine (Epi) with iron at physiological pH are essential for understanding two very different phenomena - the detrimental effects of chronic stress on the cardiovascular system and the cross-linking of catecholamine-rich biopolymers and frameworks. Here we show that Epi and Fe3+ form stable high-spin complexes in the 1:1 or 3:1 stoichiometry, depending on the Epi/Fe3+ concentration ratio (low or high). Oxygen atoms on the catechol ring represent the sites of coordinate bond formation within physiologically relevant bidentate 1:1 complex. Redox properties of Epi are slightly impacted by Fe3+. On the other hand, Epi and Fe2+ form a complex that acts as a strong reducing agent, which leads to the production of hydrogen peroxide via O-2 reduction, and to a facilitated formation of the Epi-Fe3+ complexes. Epi is not oxidized in this process, i.e. Fe2+ is not an electron shuttle, but the electron donor. Epi-catalyzed oxidation of Fe2+ represents a plausible chemical basis of stress-related damage to heart cells. In addition, our results support the previous findings on the interactions of catecholamine moieties in polymers with iron and provide a novel strategy for improving the efficiency of cross-linking.
T2  - Scientific Reports
T1  - Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH
VL  - 8
SP  - 3530
DO  - 10.1038/s41598-018-21940-7
ER  - 
@article{
author = "Korać, Jelena and Stanković, Dalibor M. and Stanić, Marina and Bajuk-Bogdanović, Danica V. and Žižić, Milan and Bogdanović-Pristov, Jelena and Grgurić-Šipka, Sanja and Popović-Bijelić, Ana D. and Spasojević, Ivan",
year = "2018",
abstract = "Coordinate and redox interactions of epinephrine (Epi) with iron at physiological pH are essential for understanding two very different phenomena - the detrimental effects of chronic stress on the cardiovascular system and the cross-linking of catecholamine-rich biopolymers and frameworks. Here we show that Epi and Fe3+ form stable high-spin complexes in the 1:1 or 3:1 stoichiometry, depending on the Epi/Fe3+ concentration ratio (low or high). Oxygen atoms on the catechol ring represent the sites of coordinate bond formation within physiologically relevant bidentate 1:1 complex. Redox properties of Epi are slightly impacted by Fe3+. On the other hand, Epi and Fe2+ form a complex that acts as a strong reducing agent, which leads to the production of hydrogen peroxide via O-2 reduction, and to a facilitated formation of the Epi-Fe3+ complexes. Epi is not oxidized in this process, i.e. Fe2+ is not an electron shuttle, but the electron donor. Epi-catalyzed oxidation of Fe2+ represents a plausible chemical basis of stress-related damage to heart cells. In addition, our results support the previous findings on the interactions of catecholamine moieties in polymers with iron and provide a novel strategy for improving the efficiency of cross-linking.",
journal = "Scientific Reports",
title = "Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH",
volume = "8",
pages = "3530",
doi = "10.1038/s41598-018-21940-7"
}
Korać, J., Stanković, D. M., Stanić, M., Bajuk-Bogdanović, D. V., Žižić, M., Bogdanović-Pristov, J., Grgurić-Šipka, S., Popović-Bijelić, A. D.,& Spasojević, I.. (2018). Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH. in Scientific Reports, 8, 3530.
https://doi.org/10.1038/s41598-018-21940-7
Korać J, Stanković DM, Stanić M, Bajuk-Bogdanović DV, Žižić M, Bogdanović-Pristov J, Grgurić-Šipka S, Popović-Bijelić AD, Spasojević I. Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH. in Scientific Reports. 2018;8:3530.
doi:10.1038/s41598-018-21940-7 .
Korać, Jelena, Stanković, Dalibor M., Stanić, Marina, Bajuk-Bogdanović, Danica V., Žižić, Milan, Bogdanović-Pristov, Jelena, Grgurić-Šipka, Sanja, Popović-Bijelić, Ana D., Spasojević, Ivan, "Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH" in Scientific Reports, 8 (2018):3530,
https://doi.org/10.1038/s41598-018-21940-7 . .
1
11
7
8

Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction

Zdolšek, Nikola; Dimitrijević, Aleksandra; Bendova, Magdalena; Krstić, Jugoslav B.; Rocha, Raquel P.; Figueiredo, Jose L.; Bajuk-Bogdanović, Danica V.; Trtić-Petrović, Tatjana M.; Šljukić, Biljana

(2018)

TY  - JOUR
AU  - Zdolšek, Nikola
AU  - Dimitrijević, Aleksandra
AU  - Bendova, Magdalena
AU  - Krstić, Jugoslav B.
AU  - Rocha, Raquel P.
AU  - Figueiredo, Jose L.
AU  - Bajuk-Bogdanović, Danica V.
AU  - Trtić-Petrović, Tatjana M.
AU  - Šljukić, Biljana
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7672
AB  - Carbon materials, prepared by using different methods with ionicliquids, are compared as electrocatalysts for the oxygen reductionreaction (ORR). Materials were synthesized through the hydrothermalcarbonization of glucose and by using the same method in the presence of1-butyl-3-methylimidazolium methanesulfonate {[}bmim]{[}MeSO3] as anadditive. Another two carbon-based materials were prepared by usingionic-liquid-based methods: ionothermal carbonization of glucose using{[}bmim]{[}MeSO3] as a recyclable medium for the carbonization reactionand by direct carbonization of the ionic liquid in a one-step methodusing {[}bmim]{[}MeSO3] as the precursor for N- and S-doped porouscarbon (Carb-IL). Characterization results showed the possibility ofmorphology and porosity control by using {[}bmim]{[}MeSO3]. Allmaterials were subsequently tested for the ORR in alkaline media.Carb-IL showed enhanced and stable electrocatalytic ORR activity, evenin the presence of methanol, ethanol, and borohydride, opening thepossibility for its application in fuel cells.
T2  - ChemElectroChem
T1  - Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction
VL  - 5
IS  - 7
SP  - 1037
EP  - 1046
DO  - 10.1002/celc.201701369
ER  - 
@article{
author = "Zdolšek, Nikola and Dimitrijević, Aleksandra and Bendova, Magdalena and Krstić, Jugoslav B. and Rocha, Raquel P. and Figueiredo, Jose L. and Bajuk-Bogdanović, Danica V. and Trtić-Petrović, Tatjana M. and Šljukić, Biljana",
year = "2018",
abstract = "Carbon materials, prepared by using different methods with ionicliquids, are compared as electrocatalysts for the oxygen reductionreaction (ORR). Materials were synthesized through the hydrothermalcarbonization of glucose and by using the same method in the presence of1-butyl-3-methylimidazolium methanesulfonate {[}bmim]{[}MeSO3] as anadditive. Another two carbon-based materials were prepared by usingionic-liquid-based methods: ionothermal carbonization of glucose using{[}bmim]{[}MeSO3] as a recyclable medium for the carbonization reactionand by direct carbonization of the ionic liquid in a one-step methodusing {[}bmim]{[}MeSO3] as the precursor for N- and S-doped porouscarbon (Carb-IL). Characterization results showed the possibility ofmorphology and porosity control by using {[}bmim]{[}MeSO3]. Allmaterials were subsequently tested for the ORR in alkaline media.Carb-IL showed enhanced and stable electrocatalytic ORR activity, evenin the presence of methanol, ethanol, and borohydride, opening thepossibility for its application in fuel cells.",
journal = "ChemElectroChem",
title = "Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction",
volume = "5",
number = "7",
pages = "1037-1046",
doi = "10.1002/celc.201701369"
}
Zdolšek, N., Dimitrijević, A., Bendova, M., Krstić, J. B., Rocha, R. P., Figueiredo, J. L., Bajuk-Bogdanović, D. V., Trtić-Petrović, T. M.,& Šljukić, B.. (2018). Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction. in ChemElectroChem, 5(7), 1037-1046.
https://doi.org/10.1002/celc.201701369
Zdolšek N, Dimitrijević A, Bendova M, Krstić JB, Rocha RP, Figueiredo JL, Bajuk-Bogdanović DV, Trtić-Petrović TM, Šljukić B. Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction. in ChemElectroChem. 2018;5(7):1037-1046.
doi:10.1002/celc.201701369 .
Zdolšek, Nikola, Dimitrijević, Aleksandra, Bendova, Magdalena, Krstić, Jugoslav B., Rocha, Raquel P., Figueiredo, Jose L., Bajuk-Bogdanović, Danica V., Trtić-Petrović, Tatjana M., Šljukić, Biljana, "Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction" in ChemElectroChem, 5, no. 7 (2018):1037-1046,
https://doi.org/10.1002/celc.201701369 . .
1
21
16
20

Electrochemical tuning of capacitive response of graphene oxide

Gutić, Sanjin J.; Kozlica, Dževad K.; Korać, Fehim; Bajuk-Bogdanović, Danica V.; Mitrić, Miodrag; Mirsky, Vladimir M.; Mentus, Slavko V.; Pašti, Igor A.

(2018)

TY  - JOUR
AU  - Gutić, Sanjin J.
AU  - Kozlica, Dževad K.
AU  - Korać, Fehim
AU  - Bajuk-Bogdanović, Danica V.
AU  - Mitrić, Miodrag
AU  - Mirsky, Vladimir M.
AU  - Mentus, Slavko V.
AU  - Pašti, Igor A.
PY  - 2018
UR  - http://xlink.rsc.org/?DOI=C8CP03631D
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7877
AB  - The increasing energy demands of modern society require a deep understanding of the properties of energy storage materials, as well as the tuning of their performance. We show that the capacitance of graphene oxide (GO) can be precisely tuned using a simple electrochemical reduction route. In situ resistance measurements, in combination with cyclic voltammetry measurements and Raman spectroscopy, have shown that upon reduction GO is irreversibly deoxygenated, which is further accompanied by structural ordering and an increase in electrical conductivity. The capacitance is maximized when the concentration of oxygen functional groups is properly balanced with the conductivity. Any further reduction and deoxygenation leads to a gradual loss of capacitance. The observed trend is independent of the preparation route and the exact chemical and structural properties of GO. It is proposed that an improvement in the capacitive properties of any GO can be achieved by optimization of its reduction conditions.
T2  - Physical Chemistry Chemical Physics
T1  - Electrochemical tuning of capacitive response of graphene oxide
VL  - 20
IS  - 35
SP  - 22698
EP  - 22709
DO  - 10.1039/C8CP03631D
ER  - 
@article{
author = "Gutić, Sanjin J. and Kozlica, Dževad K. and Korać, Fehim and Bajuk-Bogdanović, Danica V. and Mitrić, Miodrag and Mirsky, Vladimir M. and Mentus, Slavko V. and Pašti, Igor A.",
year = "2018",
abstract = "The increasing energy demands of modern society require a deep understanding of the properties of energy storage materials, as well as the tuning of their performance. We show that the capacitance of graphene oxide (GO) can be precisely tuned using a simple electrochemical reduction route. In situ resistance measurements, in combination with cyclic voltammetry measurements and Raman spectroscopy, have shown that upon reduction GO is irreversibly deoxygenated, which is further accompanied by structural ordering and an increase in electrical conductivity. The capacitance is maximized when the concentration of oxygen functional groups is properly balanced with the conductivity. Any further reduction and deoxygenation leads to a gradual loss of capacitance. The observed trend is independent of the preparation route and the exact chemical and structural properties of GO. It is proposed that an improvement in the capacitive properties of any GO can be achieved by optimization of its reduction conditions.",
journal = "Physical Chemistry Chemical Physics",
title = "Electrochemical tuning of capacitive response of graphene oxide",
volume = "20",
number = "35",
pages = "22698-22709",
doi = "10.1039/C8CP03631D"
}
Gutić, S. J., Kozlica, D. K., Korać, F., Bajuk-Bogdanović, D. V., Mitrić, M., Mirsky, V. M., Mentus, S. V.,& Pašti, I. A.. (2018). Electrochemical tuning of capacitive response of graphene oxide. in Physical Chemistry Chemical Physics, 20(35), 22698-22709.
https://doi.org/10.1039/C8CP03631D
Gutić SJ, Kozlica DK, Korać F, Bajuk-Bogdanović DV, Mitrić M, Mirsky VM, Mentus SV, Pašti IA. Electrochemical tuning of capacitive response of graphene oxide. in Physical Chemistry Chemical Physics. 2018;20(35):22698-22709.
doi:10.1039/C8CP03631D .
Gutić, Sanjin J., Kozlica, Dževad K., Korać, Fehim, Bajuk-Bogdanović, Danica V., Mitrić, Miodrag, Mirsky, Vladimir M., Mentus, Slavko V., Pašti, Igor A., "Electrochemical tuning of capacitive response of graphene oxide" in Physical Chemistry Chemical Physics, 20, no. 35 (2018):22698-22709,
https://doi.org/10.1039/C8CP03631D . .
1
12
9
11

Electrochemical tuning of capacitive response of graphene oxide

Gutić, Sanjin J.; Kozlica, Dževad K.; Korać, Fehim; Bajuk-Bogdanović, Danica V.; Mitrić, Miodrag; Mirsky, Vladimir M.; Mentus, Slavko V.; Pašti, Igor A.

(2018)

TY  - JOUR
AU  - Gutić, Sanjin J.
AU  - Kozlica, Dževad K.
AU  - Korać, Fehim
AU  - Bajuk-Bogdanović, Danica V.
AU  - Mitrić, Miodrag
AU  - Mirsky, Vladimir M.
AU  - Mentus, Slavko V.
AU  - Pašti, Igor A.
PY  - 2018
UR  - http://xlink.rsc.org/?DOI=C8CP03631D
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7887
AB  - The increasing energy demands of modern society require a deep understanding of the properties of energy storage materials, as well as the tuning of their performance. We show that the capacitance of graphene oxide (GO) can be precisely tuned using a simple electrochemical reduction route. In situ resistance measurements, in combination with cyclic voltammetry measurements and Raman spectroscopy, have shown that upon reduction GO is irreversibly deoxygenated, which is further accompanied by structural ordering and an increase in electrical conductivity. The capacitance is maximized when the concentration of oxygen functional groups is properly balanced with the conductivity. Any further reduction and deoxygenation leads to a gradual loss of capacitance. The observed trend is independent of the preparation route and the exact chemical and structural properties of GO. It is proposed that an improvement in the capacitive properties of any GO can be achieved by optimization of its reduction conditions.
T2  - Physical Chemistry Chemical Physics
T1  - Electrochemical tuning of capacitive response of graphene oxide
VL  - 20
IS  - 35
SP  - 22698
EP  - 22709
DO  - 10.1039/C8CP03631D
ER  - 
@article{
author = "Gutić, Sanjin J. and Kozlica, Dževad K. and Korać, Fehim and Bajuk-Bogdanović, Danica V. and Mitrić, Miodrag and Mirsky, Vladimir M. and Mentus, Slavko V. and Pašti, Igor A.",
year = "2018",
abstract = "The increasing energy demands of modern society require a deep understanding of the properties of energy storage materials, as well as the tuning of their performance. We show that the capacitance of graphene oxide (GO) can be precisely tuned using a simple electrochemical reduction route. In situ resistance measurements, in combination with cyclic voltammetry measurements and Raman spectroscopy, have shown that upon reduction GO is irreversibly deoxygenated, which is further accompanied by structural ordering and an increase in electrical conductivity. The capacitance is maximized when the concentration of oxygen functional groups is properly balanced with the conductivity. Any further reduction and deoxygenation leads to a gradual loss of capacitance. The observed trend is independent of the preparation route and the exact chemical and structural properties of GO. It is proposed that an improvement in the capacitive properties of any GO can be achieved by optimization of its reduction conditions.",
journal = "Physical Chemistry Chemical Physics",
title = "Electrochemical tuning of capacitive response of graphene oxide",
volume = "20",
number = "35",
pages = "22698-22709",
doi = "10.1039/C8CP03631D"
}
Gutić, S. J., Kozlica, D. K., Korać, F., Bajuk-Bogdanović, D. V., Mitrić, M., Mirsky, V. M., Mentus, S. V.,& Pašti, I. A.. (2018). Electrochemical tuning of capacitive response of graphene oxide. in Physical Chemistry Chemical Physics, 20(35), 22698-22709.
https://doi.org/10.1039/C8CP03631D
Gutić SJ, Kozlica DK, Korać F, Bajuk-Bogdanović DV, Mitrić M, Mirsky VM, Mentus SV, Pašti IA. Electrochemical tuning of capacitive response of graphene oxide. in Physical Chemistry Chemical Physics. 2018;20(35):22698-22709.
doi:10.1039/C8CP03631D .
Gutić, Sanjin J., Kozlica, Dževad K., Korać, Fehim, Bajuk-Bogdanović, Danica V., Mitrić, Miodrag, Mirsky, Vladimir M., Mentus, Slavko V., Pašti, Igor A., "Electrochemical tuning of capacitive response of graphene oxide" in Physical Chemistry Chemical Physics, 20, no. 35 (2018):22698-22709,
https://doi.org/10.1039/C8CP03631D . .
1
12
9
11

Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction

Zdolšek, Nikola; Dimitrijević, Aleksandra; Bendova, Magdalena; Krstić, Jugoslav B.; Rocha, Raquel P.; Figueiredo, Jose L.; Bajuk-Bogdanović, Danica V.; Trtić-Petrović, Tatjana M.; Šljukić, Biljana

(2018)

TY  - JOUR
AU  - Zdolšek, Nikola
AU  - Dimitrijević, Aleksandra
AU  - Bendova, Magdalena
AU  - Krstić, Jugoslav B.
AU  - Rocha, Raquel P.
AU  - Figueiredo, Jose L.
AU  - Bajuk-Bogdanović, Danica V.
AU  - Trtić-Petrović, Tatjana M.
AU  - Šljukić, Biljana
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9881
AB  - Carbon materials, prepared by using different methods with ionic liquids, are compared as electrocatalysts for the oxygen reduction reaction (ORR). Materials were synthesized through the hydrothermal carbonization of glucose and by using the same method in the presence of 1-butyl-3-methylimidazolium methanesulfonate [bmim][MeSO3] as an additive. Another two carbon-based materials were prepared by using ionic-liquid-based methods: ionothermal carbonization of glucose using [bmim][MeSO3] as a recyclable medium for the carbonization reaction and by direct carbonization of the ionic liquid in a one-step method using [bmim][MeSO3] as the precursor for N- and S-doped porous carbon (Carb-IL). Characterization results showed the possibility of morphology and porosity control by using [bmim][MeSO3]. All materials were subsequently tested for the ORR in alkaline media. Carb-IL showed enhanced and stable electrocatalytic ORR activity, even in the presence of methanol, ethanol, and borohydride, opening the possibility for its application in fuel cells.
T2  - Chemelectrochem
T1  - Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction
VL  - 5
IS  - 7
SP  - 1037
EP  - 1046
DO  - 10.1002/celc.201701369
ER  - 
@article{
author = "Zdolšek, Nikola and Dimitrijević, Aleksandra and Bendova, Magdalena and Krstić, Jugoslav B. and Rocha, Raquel P. and Figueiredo, Jose L. and Bajuk-Bogdanović, Danica V. and Trtić-Petrović, Tatjana M. and Šljukić, Biljana",
year = "2018",
abstract = "Carbon materials, prepared by using different methods with ionic liquids, are compared as electrocatalysts for the oxygen reduction reaction (ORR). Materials were synthesized through the hydrothermal carbonization of glucose and by using the same method in the presence of 1-butyl-3-methylimidazolium methanesulfonate [bmim][MeSO3] as an additive. Another two carbon-based materials were prepared by using ionic-liquid-based methods: ionothermal carbonization of glucose using [bmim][MeSO3] as a recyclable medium for the carbonization reaction and by direct carbonization of the ionic liquid in a one-step method using [bmim][MeSO3] as the precursor for N- and S-doped porous carbon (Carb-IL). Characterization results showed the possibility of morphology and porosity control by using [bmim][MeSO3]. All materials were subsequently tested for the ORR in alkaline media. Carb-IL showed enhanced and stable electrocatalytic ORR activity, even in the presence of methanol, ethanol, and borohydride, opening the possibility for its application in fuel cells.",
journal = "Chemelectrochem",
title = "Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction",
volume = "5",
number = "7",
pages = "1037-1046",
doi = "10.1002/celc.201701369"
}
Zdolšek, N., Dimitrijević, A., Bendova, M., Krstić, J. B., Rocha, R. P., Figueiredo, J. L., Bajuk-Bogdanović, D. V., Trtić-Petrović, T. M.,& Šljukić, B.. (2018). Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction. in Chemelectrochem, 5(7), 1037-1046.
https://doi.org/10.1002/celc.201701369
Zdolšek N, Dimitrijević A, Bendova M, Krstić JB, Rocha RP, Figueiredo JL, Bajuk-Bogdanović DV, Trtić-Petrović TM, Šljukić B. Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction. in Chemelectrochem. 2018;5(7):1037-1046.
doi:10.1002/celc.201701369 .
Zdolšek, Nikola, Dimitrijević, Aleksandra, Bendova, Magdalena, Krstić, Jugoslav B., Rocha, Raquel P., Figueiredo, Jose L., Bajuk-Bogdanović, Danica V., Trtić-Petrović, Tatjana M., Šljukić, Biljana, "Electrocatalytic Activity of Ionic-Liquid-Derived Porous Carbon Materials for the Oxygen Reduction Reaction" in Chemelectrochem, 5, no. 7 (2018):1037-1046,
https://doi.org/10.1002/celc.201701369 . .
1
21
16
20

Surface chemistry, thermal stability and structural properties of graphene oxide/12-tungstophosphoric acid nanocomposite

Marković, Smilja; Mravik, Željko; Bajuk-Bogdanović, Danica V.; Marković, Smilja; Holclajtner-Antunović, Ivanka D.; Jovanović, Zoran M.

(Belgrade : Institute of Technical Sciences of SASA, 2017)

TY  - CONF
AU  - Mravik, Željko
AU  - Bajuk-Bogdanović, Danica V.
AU  - Marković, Smilja
AU  - Holclajtner-Antunović, Ivanka D.
AU  - Jovanović, Zoran M.
PY  - 2017
UR  - http://itn.sanu.ac.rs/opus4/frontdoor/index/index/docId/1219
UR  - http://itn.sanu.ac.rs/opus4/files/1219/Mravik_16YRC2017.pdf
UR  - http://dais.sanu.ac.rs/123456789/15450
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7556
AB  - In recent years the nanocomposites of graphene oxide (GO) and different inorganic and organic compounds have shown great potential for charge storage applications. In present work we have investigated the influence of 12-tungstophosphoric acid (WPA) on surface chemistry of graphene oxide and thermal stability of nanocomposite. For this purpose nanocomposites with different mass ratios of GO and WPA were prepared. The thermal stability of nanocomposites was investigated by thermogravimetric and differential thermal analysis (TGA-DTA) while changes in surface chemistry of GO and structural properties of WPA were investigated by Fourier transform infrared spectroscopy (FTIR) and temperature programmed desorption (TPD) method. The TGA-DTA measurements of composites have shown that the major mass loss, due to carbon combustion, is shifted to higher temperatures (~500 °C vs. 380 °C of pure GO). Furthermore, when the amount of WPA is higher than 25 mass percent the nanocomposites start to act like individual components, which was also confirmed by FTIR analysis. The amount of surface oxygen groups, monitored by both TPD and FTIR methods, showed ˝V˝ shaped dependence from the quantity of WPA with minimum at about 12 mass percent of WPA. At the same time, the FTIR spectra revealed the structural changes of WPA, displayed as shifting and splitting of characteristic bands of Keggin anion structure.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia
T1  - Surface chemistry, thermal stability and structural properties of graphene oxide/12-tungstophosphoric acid nanocomposite
SP  - 48
EP  - 48
ER  - 
@conference{
editor = "Marković, Smilja",
author = "Mravik, Željko and Bajuk-Bogdanović, Danica V. and Marković, Smilja and Holclajtner-Antunović, Ivanka D. and Jovanović, Zoran M.",
year = "2017",
abstract = "In recent years the nanocomposites of graphene oxide (GO) and different inorganic and organic compounds have shown great potential for charge storage applications. In present work we have investigated the influence of 12-tungstophosphoric acid (WPA) on surface chemistry of graphene oxide and thermal stability of nanocomposite. For this purpose nanocomposites with different mass ratios of GO and WPA were prepared. The thermal stability of nanocomposites was investigated by thermogravimetric and differential thermal analysis (TGA-DTA) while changes in surface chemistry of GO and structural properties of WPA were investigated by Fourier transform infrared spectroscopy (FTIR) and temperature programmed desorption (TPD) method. The TGA-DTA measurements of composites have shown that the major mass loss, due to carbon combustion, is shifted to higher temperatures (~500 °C vs. 380 °C of pure GO). Furthermore, when the amount of WPA is higher than 25 mass percent the nanocomposites start to act like individual components, which was also confirmed by FTIR analysis. The amount of surface oxygen groups, monitored by both TPD and FTIR methods, showed ˝V˝ shaped dependence from the quantity of WPA with minimum at about 12 mass percent of WPA. At the same time, the FTIR spectra revealed the structural changes of WPA, displayed as shifting and splitting of characteristic bands of Keggin anion structure.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia",
title = "Surface chemistry, thermal stability and structural properties of graphene oxide/12-tungstophosphoric acid nanocomposite",
pages = "48-48"
}
Marković, S., Mravik, Ž., Bajuk-Bogdanović, D. V., Marković, S., Holclajtner-Antunović, I. D.,& Jovanović, Z. M.. (2017). Surface chemistry, thermal stability and structural properties of graphene oxide/12-tungstophosphoric acid nanocomposite. in Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 48-48.
Marković S, Mravik Ž, Bajuk-Bogdanović DV, Marković S, Holclajtner-Antunović ID, Jovanović ZM. Surface chemistry, thermal stability and structural properties of graphene oxide/12-tungstophosphoric acid nanocomposite. in Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia. 2017;:48-48..
Marković, Smilja, Mravik, Željko, Bajuk-Bogdanović, Danica V., Marković, Smilja, Holclajtner-Antunović, Ivanka D., Jovanović, Zoran M., "Surface chemistry, thermal stability and structural properties of graphene oxide/12-tungstophosphoric acid nanocomposite" in Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia (2017):48-48.