Mazzucconi, Davide

Link to this page

Authority KeyName Variants
8ef83c33-cc48-4d28-9ceb-55b3dba0a475
  • Mazzucconi, Davide (2)
Projects

Author's Bibliography

4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification

Fattori, Serena; Petringa, Giada; Agosteo, Stefano; Bortot, Davide; Conte, Valeria; Cuttone, Giacomo; Di Fini, Andrea; Farokhi, Fatemeh; Mazzucconi, Davide; Pandola, Luciano; Petrović, Ivan M.; Ristić-Fira, Aleksandra; Rosenfeld, Anatoly; Weber, Uli; Cirrone, Giuseppe Pablo

(2022)

TY  - JOUR
AU  - Fattori, Serena
AU  - Petringa, Giada
AU  - Agosteo, Stefano
AU  - Bortot, Davide
AU  - Conte, Valeria
AU  - Cuttone, Giacomo
AU  - Di Fini, Andrea
AU  - Farokhi, Fatemeh
AU  - Mazzucconi, Davide
AU  - Pandola, Luciano
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
AU  - Rosenfeld, Anatoly
AU  - Weber, Uli
AU  - Cirrone, Giuseppe Pablo
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10393
AB  - In the present hadrontherapy scenario, there is a growing interest in exploring the capabilities of different ion species other than protons and carbons. The possibility of using different ions paves the way for new radiotherapy approaches, such as the multi-ions treatment, where radiation could vary according to target volume, shape, depth and histologic characteristics of the tumor. For these reasons, in this paper, the study and understanding of biological-relevant quantities was extended for the case of 4He ion. Approach. Geant4 Monte Carlo based algorithms for dose- and track-averaged LET (Linear Energy Transfer) calculations, were validated for 4He ions and for the case of a mixed field characterised by the presence of secondary ions from both target and projectile fragmentation. The simulated dose and track averaged LETs were compared with the corresponding dose and frequency mean values of the lineal energy, and , derived from experimental microdosimetric spectra. Two microdosimetric experimental campaigns were carried out at the Italian eye proton therapy facility of the Laboratori Nazionali del Sud of Istituto Nazionale di Fisica Nucleare (INFN-LNS, Catania, I) using two different microdosimeters: the MicroPlus probe and the nano-TEPC (Tissue Equivalent Proportional Counter). Main results. A good agreement of and with and experimentally measured with both microdosimetric detectors MicroPlus and nano-TEPC in two configurations: full energy and modulated 4He ion beam, was found. Significance. The results of this study certify the use of a very effective tool for the precise calculation of LET, given by a Monte Carlo approach which has the advantage of allowing detailed simulation and tracking of nuclear interactions, even in complex clinical scenarios.
T2  - Physics in Medicine & Biology
T1  - 4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification
VL  - 67
IS  - 16
SP  - 165003
DO  - 10.1088/1361-6560/ac776f
ER  - 
@article{
author = "Fattori, Serena and Petringa, Giada and Agosteo, Stefano and Bortot, Davide and Conte, Valeria and Cuttone, Giacomo and Di Fini, Andrea and Farokhi, Fatemeh and Mazzucconi, Davide and Pandola, Luciano and Petrović, Ivan M. and Ristić-Fira, Aleksandra and Rosenfeld, Anatoly and Weber, Uli and Cirrone, Giuseppe Pablo",
year = "2022",
abstract = "In the present hadrontherapy scenario, there is a growing interest in exploring the capabilities of different ion species other than protons and carbons. The possibility of using different ions paves the way for new radiotherapy approaches, such as the multi-ions treatment, where radiation could vary according to target volume, shape, depth and histologic characteristics of the tumor. For these reasons, in this paper, the study and understanding of biological-relevant quantities was extended for the case of 4He ion. Approach. Geant4 Monte Carlo based algorithms for dose- and track-averaged LET (Linear Energy Transfer) calculations, were validated for 4He ions and for the case of a mixed field characterised by the presence of secondary ions from both target and projectile fragmentation. The simulated dose and track averaged LETs were compared with the corresponding dose and frequency mean values of the lineal energy, and , derived from experimental microdosimetric spectra. Two microdosimetric experimental campaigns were carried out at the Italian eye proton therapy facility of the Laboratori Nazionali del Sud of Istituto Nazionale di Fisica Nucleare (INFN-LNS, Catania, I) using two different microdosimeters: the MicroPlus probe and the nano-TEPC (Tissue Equivalent Proportional Counter). Main results. A good agreement of and with and experimentally measured with both microdosimetric detectors MicroPlus and nano-TEPC in two configurations: full energy and modulated 4He ion beam, was found. Significance. The results of this study certify the use of a very effective tool for the precise calculation of LET, given by a Monte Carlo approach which has the advantage of allowing detailed simulation and tracking of nuclear interactions, even in complex clinical scenarios.",
journal = "Physics in Medicine & Biology",
title = "4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification",
volume = "67",
number = "16",
pages = "165003",
doi = "10.1088/1361-6560/ac776f"
}
Fattori, S., Petringa, G., Agosteo, S., Bortot, D., Conte, V., Cuttone, G., Di Fini, A., Farokhi, F., Mazzucconi, D., Pandola, L., Petrović, I. M., Ristić-Fira, A., Rosenfeld, A., Weber, U.,& Cirrone, G. P.. (2022). 4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification. in Physics in Medicine & Biology, 67(16), 165003.
https://doi.org/10.1088/1361-6560/ac776f
Fattori S, Petringa G, Agosteo S, Bortot D, Conte V, Cuttone G, Di Fini A, Farokhi F, Mazzucconi D, Pandola L, Petrović IM, Ristić-Fira A, Rosenfeld A, Weber U, Cirrone GP. 4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification. in Physics in Medicine & Biology. 2022;67(16):165003.
doi:10.1088/1361-6560/ac776f .
Fattori, Serena, Petringa, Giada, Agosteo, Stefano, Bortot, Davide, Conte, Valeria, Cuttone, Giacomo, Di Fini, Andrea, Farokhi, Fatemeh, Mazzucconi, Davide, Pandola, Luciano, Petrović, Ivan M., Ristić-Fira, Aleksandra, Rosenfeld, Anatoly, Weber, Uli, Cirrone, Giuseppe Pablo, "4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification" in Physics in Medicine & Biology, 67, no. 16 (2022):165003,
https://doi.org/10.1088/1361-6560/ac776f . .
2
1

4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification

Fattori, Serena; Petringa, Giada; Agosteo, Stefano; Bortot, Davide; Conte, Valeria; Cuttone, Giacomo; Di Fini, Andrea; Farokhi, Fatemeh; Mazzucconi, Davide; Pandola, Luciano; Petrović, Ivan M.; Ristić-Fira, Aleksandra; Rosenfeld, Anatoly; Weber, Uli; Cirrone, Giuseppe Pablo

(2022)

TY  - JOUR
AU  - Fattori, Serena
AU  - Petringa, Giada
AU  - Agosteo, Stefano
AU  - Bortot, Davide
AU  - Conte, Valeria
AU  - Cuttone, Giacomo
AU  - Di Fini, Andrea
AU  - Farokhi, Fatemeh
AU  - Mazzucconi, Davide
AU  - Pandola, Luciano
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
AU  - Rosenfeld, Anatoly
AU  - Weber, Uli
AU  - Cirrone, Giuseppe Pablo
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10586
AB  - In the present hadrontherapy scenario, there is a growing interest in exploring the capabilities of different ion species other than protons and carbons. The possibility of using different ions paves the way for new radiotherapy approaches, such as the multi-ions treatment, where radiation could vary according to target volume, shape, depth and histologic characteristics of the tumor. For these reasons, in this paper, the study and understanding of biological-relevant quantities was extended for the case of 4He ion. Approach. Geant4 Monte Carlo based algorithms for dose- and track-averaged LET (Linear Energy Transfer) calculations, were validated for 4He ions and for the case of a mixed field characterised by the presence of secondary ions from both target and projectile fragmentation. The simulated dose and track averaged LETs were compared with the corresponding dose and frequency mean values of the lineal energy, and , derived from experimental microdosimetric spectra. Two microdosimetric experimental campaigns were carried out at the Italian eye proton therapy facility of the Laboratori Nazionali del Sud of Istituto Nazionale di Fisica Nucleare (INFN-LNS, Catania, I) using two different microdosimeters: the MicroPlus probe and the nano-TEPC (Tissue Equivalent Proportional Counter). Main results. A good agreement of and with and experimentally measured with both microdosimetric detectors MicroPlus and nano-TEPC in two configurations: full energy and modulated 4He ion beam, was found. Significance. The results of this study certify the use of a very effective tool for the precise calculation of LET, given by a Monte Carlo approach which has the advantage of allowing detailed simulation and tracking of nuclear interactions, even in complex clinical scenarios.
T2  - Physics in Medicine & Biology
T1  - 4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification
VL  - 67
IS  - 16
SP  - 165003
DO  - 10.1088/1361-6560/ac776f
ER  - 
@article{
author = "Fattori, Serena and Petringa, Giada and Agosteo, Stefano and Bortot, Davide and Conte, Valeria and Cuttone, Giacomo and Di Fini, Andrea and Farokhi, Fatemeh and Mazzucconi, Davide and Pandola, Luciano and Petrović, Ivan M. and Ristić-Fira, Aleksandra and Rosenfeld, Anatoly and Weber, Uli and Cirrone, Giuseppe Pablo",
year = "2022",
abstract = "In the present hadrontherapy scenario, there is a growing interest in exploring the capabilities of different ion species other than protons and carbons. The possibility of using different ions paves the way for new radiotherapy approaches, such as the multi-ions treatment, where radiation could vary according to target volume, shape, depth and histologic characteristics of the tumor. For these reasons, in this paper, the study and understanding of biological-relevant quantities was extended for the case of 4He ion. Approach. Geant4 Monte Carlo based algorithms for dose- and track-averaged LET (Linear Energy Transfer) calculations, were validated for 4He ions and for the case of a mixed field characterised by the presence of secondary ions from both target and projectile fragmentation. The simulated dose and track averaged LETs were compared with the corresponding dose and frequency mean values of the lineal energy, and , derived from experimental microdosimetric spectra. Two microdosimetric experimental campaigns were carried out at the Italian eye proton therapy facility of the Laboratori Nazionali del Sud of Istituto Nazionale di Fisica Nucleare (INFN-LNS, Catania, I) using two different microdosimeters: the MicroPlus probe and the nano-TEPC (Tissue Equivalent Proportional Counter). Main results. A good agreement of and with and experimentally measured with both microdosimetric detectors MicroPlus and nano-TEPC in two configurations: full energy and modulated 4He ion beam, was found. Significance. The results of this study certify the use of a very effective tool for the precise calculation of LET, given by a Monte Carlo approach which has the advantage of allowing detailed simulation and tracking of nuclear interactions, even in complex clinical scenarios.",
journal = "Physics in Medicine & Biology",
title = "4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification",
volume = "67",
number = "16",
pages = "165003",
doi = "10.1088/1361-6560/ac776f"
}
Fattori, S., Petringa, G., Agosteo, S., Bortot, D., Conte, V., Cuttone, G., Di Fini, A., Farokhi, F., Mazzucconi, D., Pandola, L., Petrović, I. M., Ristić-Fira, A., Rosenfeld, A., Weber, U.,& Cirrone, G. P.. (2022). 4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification. in Physics in Medicine & Biology, 67(16), 165003.
https://doi.org/10.1088/1361-6560/ac776f
Fattori S, Petringa G, Agosteo S, Bortot D, Conte V, Cuttone G, Di Fini A, Farokhi F, Mazzucconi D, Pandola L, Petrović IM, Ristić-Fira A, Rosenfeld A, Weber U, Cirrone GP. 4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification. in Physics in Medicine & Biology. 2022;67(16):165003.
doi:10.1088/1361-6560/ac776f .
Fattori, Serena, Petringa, Giada, Agosteo, Stefano, Bortot, Davide, Conte, Valeria, Cuttone, Giacomo, Di Fini, Andrea, Farokhi, Fatemeh, Mazzucconi, Davide, Pandola, Luciano, Petrović, Ivan M., Ristić-Fira, Aleksandra, Rosenfeld, Anatoly, Weber, Uli, Cirrone, Giuseppe Pablo, "4He dose- and track-averaged linear energy transfer: Monte Carlo algorithms and experimental verification" in Physics in Medicine & Biology, 67, no. 16 (2022):165003,
https://doi.org/10.1088/1361-6560/ac776f . .
2
1