Cuttone, Giacomo

Link to this page

Authority KeyName Variants
orcid::0000-0002-9534-4855
  • Cuttone, Giacomo (41)
Projects
High Energy Physics with the CMS Detector Radiosensitivity of human genome
Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Italy Signalni putevi delovanja steroidnih hormona i uticaj endogenih i egzogenih faktora na modulaciju procesa u ćelijama sisara
ENSAR - European Nuclear Science and Applications Research Eksperimentalna fizika visokih energija na detektoru CMS u CERN-u
Ministry of Science and Technological Development of Serbia [143044, 141038], Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Italy Czech Science Foundation [P205/11/1165], CzechRepublics Ministry of Education, Youth and Sports, ELI-Beamlines [CZ.1.05/1.1.00/02.0061], ECOP2 [CZ.1.07/2.3.00/20.0087]
European Union's Horizon 2020 [654002 ENSAR2] Fondo Affari Internazionali (FAI) of the INFN-LNS
France-Serbia bilateral project [CNRS PICS 8070] INFN-LNS, Italy
Istraživanja ekotoksikoloških aspekata delovanja ksenobiotika i biotičkih agenasa na populacije mišolikih glodara Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Catania, Italy
Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Italy (MC-INFN experiment) Italy-Serbia bilateral project [MAECI PGR 00794]
MAECI PGR [00794] Ministry of Education, Science and Technological Development of Serbia
Ministry of Science of Serbia [143044], INFN Laboratori Nazionali del Sud, Italy National Laboratories of the South, National Institute for Nuclear Physics, Catania, Italy
Project International mobility [MSCA-IF IV FZU-CZ.02.2.69/0.0/0.0/20-079/0017754]

Author's Bibliography

DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time

Keta, Otilija D.; Petković, Vladana; Cirrone, Pablo; Petringa, Giada; Cuttone, Giacomo; Sakata, Dousatsu; Shin, Wook-Geun; Incerti, Sebastien; Petrović, Ivan M.; Ristić-Fira, Aleksandra

(2021)

TY  - JOUR
AU  - Keta, Otilija D.
AU  - Petković, Vladana
AU  - Cirrone, Pablo
AU  - Petringa, Giada
AU  - Cuttone, Giacomo
AU  - Sakata, Dousatsu
AU  - Shin, Wook-Geun
AU  - Incerti, Sebastien
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9875
AB  - Purpose The complex relationship between linear energy transfer (LET) and cellular response to radiation is not yet fully elucidated. To better characterize DNA damage after irradiations with therapeutic protons, we monitored formation and disappearance of DNA double-strand breaks (DNA DSB) as a function of LET and time. Comparisons with conventional γ-rays and high LET carbon ions were also performed.Materials and Methods In the present work, we performed immunofluorescence-based assay to determine the amount of DNA DSB induced by different LET values along the 62 MeV therapeutic proton Spread out Bragg peak (SOBP) in three cancer cell lines, i.e. HTB140 melanoma, MCF-7 breast adenocarcinoma and HTB177 non-small lung cancer cells. Time dependence of foci formation was followed as well. To determine irradiation positions, corresponding to the desired LET values, numerical simulations were carried out using Geant4 toolkit. We compared γ-H2AX foci persistence after irradiations with protons to that of γ-rays and carbon ions.Results With the rise of LET values along the therapeutic proton SOBP, the increase of γ-H2AX foci number is detected in the three cell lines up to the distal end of the SOBP, while there is a decrease on its distal fall-off part. With the prolonged incubation time, the number of foci gradually drops tending to attain the residual level. For the maximum number of DNA DSB, irradiation with protons attain higher level than that of γ-rays. Carbon ions produce more DNA DSB than protons but not substantially. The number of residual foci produced by γ-rays is significantly lower than that of protons and particularly carbon ions. Carbon ions do not produce considerably higher number of foci than protons, as it could be expected due to their physical properties.Conclusions In situ visualization of γ-H2AX foci reveal creation of more lesions in the three cell lines by clinically relevant proton SOBP than γ-rays. The lack of significant differences in the number of γ-H2AX foci between the proton and carbon ion-irradiated samples suggests an increased complexity of DNA lesions and slower repair kinetics after carbon ions compared to protons. For all three irradiation types, there is no major difference between the three cell lines shortly after irradiations, while later on, the formation of residual foci starts to express the inherent nature of tested cells, therefore increasing discrepancy between them.
T2  - International Journal of Radiation Biology
T1  - DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time
VL  - 97
IS  - 9
SP  - 1229
EP  - 1240
DO  - 10.1080/09553002.2021.1948140
ER  - 
@article{
author = "Keta, Otilija D. and Petković, Vladana and Cirrone, Pablo and Petringa, Giada and Cuttone, Giacomo and Sakata, Dousatsu and Shin, Wook-Geun and Incerti, Sebastien and Petrović, Ivan M. and Ristić-Fira, Aleksandra",
year = "2021",
abstract = "Purpose The complex relationship between linear energy transfer (LET) and cellular response to radiation is not yet fully elucidated. To better characterize DNA damage after irradiations with therapeutic protons, we monitored formation and disappearance of DNA double-strand breaks (DNA DSB) as a function of LET and time. Comparisons with conventional γ-rays and high LET carbon ions were also performed.Materials and Methods In the present work, we performed immunofluorescence-based assay to determine the amount of DNA DSB induced by different LET values along the 62 MeV therapeutic proton Spread out Bragg peak (SOBP) in three cancer cell lines, i.e. HTB140 melanoma, MCF-7 breast adenocarcinoma and HTB177 non-small lung cancer cells. Time dependence of foci formation was followed as well. To determine irradiation positions, corresponding to the desired LET values, numerical simulations were carried out using Geant4 toolkit. We compared γ-H2AX foci persistence after irradiations with protons to that of γ-rays and carbon ions.Results With the rise of LET values along the therapeutic proton SOBP, the increase of γ-H2AX foci number is detected in the three cell lines up to the distal end of the SOBP, while there is a decrease on its distal fall-off part. With the prolonged incubation time, the number of foci gradually drops tending to attain the residual level. For the maximum number of DNA DSB, irradiation with protons attain higher level than that of γ-rays. Carbon ions produce more DNA DSB than protons but not substantially. The number of residual foci produced by γ-rays is significantly lower than that of protons and particularly carbon ions. Carbon ions do not produce considerably higher number of foci than protons, as it could be expected due to their physical properties.Conclusions In situ visualization of γ-H2AX foci reveal creation of more lesions in the three cell lines by clinically relevant proton SOBP than γ-rays. The lack of significant differences in the number of γ-H2AX foci between the proton and carbon ion-irradiated samples suggests an increased complexity of DNA lesions and slower repair kinetics after carbon ions compared to protons. For all three irradiation types, there is no major difference between the three cell lines shortly after irradiations, while later on, the formation of residual foci starts to express the inherent nature of tested cells, therefore increasing discrepancy between them.",
journal = "International Journal of Radiation Biology",
title = "DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time",
volume = "97",
number = "9",
pages = "1229-1240",
doi = "10.1080/09553002.2021.1948140"
}
Keta, O. D., Petković, V., Cirrone, P., Petringa, G., Cuttone, G., Sakata, D., Shin, W., Incerti, S., Petrović, I. M.,& Ristić-Fira, A.. (2021). DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time. in International Journal of Radiation Biology, 97(9), 1229-1240.
https://doi.org/10.1080/09553002.2021.1948140
Keta OD, Petković V, Cirrone P, Petringa G, Cuttone G, Sakata D, Shin W, Incerti S, Petrović IM, Ristić-Fira A. DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time. in International Journal of Radiation Biology. 2021;97(9):1229-1240.
doi:10.1080/09553002.2021.1948140 .
Keta, Otilija D., Petković, Vladana, Cirrone, Pablo, Petringa, Giada, Cuttone, Giacomo, Sakata, Dousatsu, Shin, Wook-Geun, Incerti, Sebastien, Petrović, Ivan M., Ristić-Fira, Aleksandra, "DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time" in International Journal of Radiation Biology, 97, no. 9 (2021):1229-1240,
https://doi.org/10.1080/09553002.2021.1948140 . .
4
10
1
8

Radiobiological Outcomes, Microdosimetric Evaluations and Monte Carlo Predictions in Eye Proton Therapy

Petringa, Giada; Calvaruso, Marco; Conte, Valeria; Bláha, Pavel; Bravatà, Valentina; Cammarata, Francesco Paolo; Cuttone, Giacomo; Forte, Giusi Irma; Keta, Otilija D.; Manti, Lorenzo; Minafra, Luigi; Petković, Vladana; Petrović, Ivan M.; Richiusa, Selene; Ristić-Fira, Aleksandra; Russo, Giorgio; Cirrone, Giuseppe Antonio Pablo

(2021)

TY  - JOUR
AU  - Petringa, Giada
AU  - Calvaruso, Marco
AU  - Conte, Valeria
AU  - Bláha, Pavel
AU  - Bravatà, Valentina
AU  - Cammarata, Francesco Paolo
AU  - Cuttone, Giacomo
AU  - Forte, Giusi Irma
AU  - Keta, Otilija D.
AU  - Manti, Lorenzo
AU  - Minafra, Luigi
AU  - Petković, Vladana
AU  - Petrović, Ivan M.
AU  - Richiusa, Selene
AU  - Ristić-Fira, Aleksandra
AU  - Russo, Giorgio
AU  - Cirrone, Giuseppe Antonio Pablo
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9958
AB  - CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) was the first Italian protontherapy facility dedicated to the treatment of ocular neoplastic pathologies. It is in operation at the LNS Laboratories of the Italian Institute for Nuclear Physics (INFN-LNS) and to date, 500 patients have been successfully treated. Even though proton therapy has demonstrated success in clinical settings, there is still a need for more accurate models because they are crucial for the estimation of clinically relevant RBE values. Since RBE can vary depending on several physical and biological parameters, there is a clear need for more experimental data to generate predictions. Establishing a database of cell survival experiments is therefore useful to accurately predict the effects of irradiations on both cancerous and normal tissue. The main aim of this work was to compare RBE values obtained from in-vitro experimental data with predictions made by the LEM II (Local Effect Model), Monte Carlo approaches, and semi-empirical models based on LET experimental measurements. For this purpose, the 92.1 uveal melanoma and ARPE-19 cells derived from normal retinal pigmented epithelium were selected and irradiated in the middle of clinical SOBP of the CATANA proton therapy facility. The remarkable results show the potentiality of using microdosimetric spectrum, Monte Carlo simulations and LEM model to predict not only the RBE but also the survival curves.
T2  - Applied Sciences
T1  - Radiobiological Outcomes, Microdosimetric Evaluations and Monte Carlo Predictions in Eye Proton Therapy
VL  - 11
IS  - 19
SP  - 8822
DO  - 10.3390/app11198822
ER  - 
@article{
author = "Petringa, Giada and Calvaruso, Marco and Conte, Valeria and Bláha, Pavel and Bravatà, Valentina and Cammarata, Francesco Paolo and Cuttone, Giacomo and Forte, Giusi Irma and Keta, Otilija D. and Manti, Lorenzo and Minafra, Luigi and Petković, Vladana and Petrović, Ivan M. and Richiusa, Selene and Ristić-Fira, Aleksandra and Russo, Giorgio and Cirrone, Giuseppe Antonio Pablo",
year = "2021",
abstract = "CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) was the first Italian protontherapy facility dedicated to the treatment of ocular neoplastic pathologies. It is in operation at the LNS Laboratories of the Italian Institute for Nuclear Physics (INFN-LNS) and to date, 500 patients have been successfully treated. Even though proton therapy has demonstrated success in clinical settings, there is still a need for more accurate models because they are crucial for the estimation of clinically relevant RBE values. Since RBE can vary depending on several physical and biological parameters, there is a clear need for more experimental data to generate predictions. Establishing a database of cell survival experiments is therefore useful to accurately predict the effects of irradiations on both cancerous and normal tissue. The main aim of this work was to compare RBE values obtained from in-vitro experimental data with predictions made by the LEM II (Local Effect Model), Monte Carlo approaches, and semi-empirical models based on LET experimental measurements. For this purpose, the 92.1 uveal melanoma and ARPE-19 cells derived from normal retinal pigmented epithelium were selected and irradiated in the middle of clinical SOBP of the CATANA proton therapy facility. The remarkable results show the potentiality of using microdosimetric spectrum, Monte Carlo simulations and LEM model to predict not only the RBE but also the survival curves.",
journal = "Applied Sciences",
title = "Radiobiological Outcomes, Microdosimetric Evaluations and Monte Carlo Predictions in Eye Proton Therapy",
volume = "11",
number = "19",
pages = "8822",
doi = "10.3390/app11198822"
}
Petringa, G., Calvaruso, M., Conte, V., Bláha, P., Bravatà, V., Cammarata, F. P., Cuttone, G., Forte, G. I., Keta, O. D., Manti, L., Minafra, L., Petković, V., Petrović, I. M., Richiusa, S., Ristić-Fira, A., Russo, G.,& Cirrone, G. A. P.. (2021). Radiobiological Outcomes, Microdosimetric Evaluations and Monte Carlo Predictions in Eye Proton Therapy. in Applied Sciences, 11(19), 8822.
https://doi.org/10.3390/app11198822
Petringa G, Calvaruso M, Conte V, Bláha P, Bravatà V, Cammarata FP, Cuttone G, Forte GI, Keta OD, Manti L, Minafra L, Petković V, Petrović IM, Richiusa S, Ristić-Fira A, Russo G, Cirrone GAP. Radiobiological Outcomes, Microdosimetric Evaluations and Monte Carlo Predictions in Eye Proton Therapy. in Applied Sciences. 2021;11(19):8822.
doi:10.3390/app11198822 .
Petringa, Giada, Calvaruso, Marco, Conte, Valeria, Bláha, Pavel, Bravatà, Valentina, Cammarata, Francesco Paolo, Cuttone, Giacomo, Forte, Giusi Irma, Keta, Otilija D., Manti, Lorenzo, Minafra, Luigi, Petković, Vladana, Petrović, Ivan M., Richiusa, Selene, Ristić-Fira, Aleksandra, Russo, Giorgio, Cirrone, Giuseppe Antonio Pablo, "Radiobiological Outcomes, Microdosimetric Evaluations and Monte Carlo Predictions in Eye Proton Therapy" in Applied Sciences, 11, no. 19 (2021):8822,
https://doi.org/10.3390/app11198822 . .
1
2
1
2

Comparison of human lung cancer cell radiosensitivity after irradiations with therapeutic protons and carbon ions

Keta, Otilija D.; Todorović, Danijela V.; Bulat, Tanja M.; Cirrone, Giuseppe Antonio Pablo; Romano, Francesco; Cuttone, Giacomo; Petrović, Ivan M.; Ristić-Fira, Aleksandra

(2017)

TY  - JOUR
AU  - Keta, Otilija D.
AU  - Todorović, Danijela V.
AU  - Bulat, Tanja M.
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Romano, Francesco
AU  - Cuttone, Giacomo
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1573
AB  - The aim of this study was to investigate effects of irradiations with the therapeutic proton and carbon ion beams in two non-small cell lung cancers, CRL5876 adenocarcinoma and HTB177 large cell lung carcinoma. The DNA damage response dynamics, cell cycle regulation, and cell death pathway activation were followed. Viability of both cell lines was lower after carbon ions compared to the therapeutic proton irradiations. HTB177 cells showed higher recovery than CRL5876 cells seven days following the treatments, but the survival rates of both cell lines were lower after exposure to carbon ions with respect to therapeutic protons. When analyzing cell cycle distribution of both CRL5876 and HTB177 cells, it was noticed that therapeutic protons predominantly induced G1 arrest, while the cells after carbon ions were arrested in G2/M phase. The results illustrated that differences in the levels of phosphorylated H2AX, a double-strand break marker, exist after therapeutic proton and carbon ion irradiations. We also observed dose- and time-dependent increase in the p53 and p21 levels after applied irradiations. Carbon ions caused larger increase in the quantity of p53 and p21 compared to therapeutic protons. These results suggested that various repair mechanisms were induced in the treated cells. Considering the fact that we have not observed any distinct change in the Bax/Bcl-2 ratio following irradiations, it seemed that different types of cell death were involved in the response to the two types of irradiations that were applied.
T2  - Experimental Biology and Medicine
T1  - Comparison of human lung cancer cell radiosensitivity after irradiations with therapeutic protons and carbon ions
VL  - 242
IS  - 10
SP  - 1015
EP  - 1024
DO  - 10.1177/1535370216669611
ER  - 
@article{
author = "Keta, Otilija D. and Todorović, Danijela V. and Bulat, Tanja M. and Cirrone, Giuseppe Antonio Pablo and Romano, Francesco and Cuttone, Giacomo and Petrović, Ivan M. and Ristić-Fira, Aleksandra",
year = "2017",
abstract = "The aim of this study was to investigate effects of irradiations with the therapeutic proton and carbon ion beams in two non-small cell lung cancers, CRL5876 adenocarcinoma and HTB177 large cell lung carcinoma. The DNA damage response dynamics, cell cycle regulation, and cell death pathway activation were followed. Viability of both cell lines was lower after carbon ions compared to the therapeutic proton irradiations. HTB177 cells showed higher recovery than CRL5876 cells seven days following the treatments, but the survival rates of both cell lines were lower after exposure to carbon ions with respect to therapeutic protons. When analyzing cell cycle distribution of both CRL5876 and HTB177 cells, it was noticed that therapeutic protons predominantly induced G1 arrest, while the cells after carbon ions were arrested in G2/M phase. The results illustrated that differences in the levels of phosphorylated H2AX, a double-strand break marker, exist after therapeutic proton and carbon ion irradiations. We also observed dose- and time-dependent increase in the p53 and p21 levels after applied irradiations. Carbon ions caused larger increase in the quantity of p53 and p21 compared to therapeutic protons. These results suggested that various repair mechanisms were induced in the treated cells. Considering the fact that we have not observed any distinct change in the Bax/Bcl-2 ratio following irradiations, it seemed that different types of cell death were involved in the response to the two types of irradiations that were applied.",
journal = "Experimental Biology and Medicine",
title = "Comparison of human lung cancer cell radiosensitivity after irradiations with therapeutic protons and carbon ions",
volume = "242",
number = "10",
pages = "1015-1024",
doi = "10.1177/1535370216669611"
}
Keta, O. D., Todorović, D. V., Bulat, T. M., Cirrone, G. A. P., Romano, F., Cuttone, G., Petrović, I. M.,& Ristić-Fira, A.. (2017). Comparison of human lung cancer cell radiosensitivity after irradiations with therapeutic protons and carbon ions. in Experimental Biology and Medicine, 242(10), 1015-1024.
https://doi.org/10.1177/1535370216669611
Keta OD, Todorović DV, Bulat TM, Cirrone GAP, Romano F, Cuttone G, Petrović IM, Ristić-Fira A. Comparison of human lung cancer cell radiosensitivity after irradiations with therapeutic protons and carbon ions. in Experimental Biology and Medicine. 2017;242(10):1015-1024.
doi:10.1177/1535370216669611 .
Keta, Otilija D., Todorović, Danijela V., Bulat, Tanja M., Cirrone, Giuseppe Antonio Pablo, Romano, Francesco, Cuttone, Giacomo, Petrović, Ivan M., Ristić-Fira, Aleksandra, "Comparison of human lung cancer cell radiosensitivity after irradiations with therapeutic protons and carbon ions" in Experimental Biology and Medicine, 242, no. 10 (2017):1015-1024,
https://doi.org/10.1177/1535370216669611 . .
15
10
13

Carbon ions of different linear energy transfer (LET) values induce apoptosis and G2 cell cycle arrest in radio-resistant melanoma cells

Žakula, Jelena; Korićanac, Lela; Keta, Otilija D.; Todorović, Danijela V.; Cirrone, Giuseppe Antonio Pablo; Romano, Francesco; Cuttone, Giacomo; Petrović, Ivan M.; Ristić-Fira, Aleksandra

(2016)

TY  - JOUR
AU  - Žakula, Jelena
AU  - Korićanac, Lela
AU  - Keta, Otilija D.
AU  - Todorović, Danijela V.
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Romano, Francesco
AU  - Cuttone, Giacomo
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1290
AB  - Background and objectives: The main goal when treating malignancies with radiation is to deprive tumour cells of their reproductive potential. One approach is to induce tumour cell apoptosis. This study was conducted to evaluate the ability of carbon ions (C-12) to induce apoptosis and cell cycle arrest in human HTB140 melanoma cells. Methods: In this in vitro study, human melanoma HTB140 cells were irradiated with the 62 MeV/n carbon (C-12) ion beam, having two different linear energy transfer (LET) values: 197 and 382 keV/mu m. The dose range was 2 to 16 Gy. Cell viability was estimated by the sulforhodamine B assay seven days after irradiation. The cell cycle and apoptosis were evaluated 48 h after irradiation using flow cytometry. At the same time point, protein and gene expression of apoptotic regulators were estimated using the Western blot and q-PCR methods, respectively. Results: Cell viability experiments indicated strong anti-tumour effects of C-12 ions. The analysis of cell cycle showed that C-12 ions blocked HTB140 cells in G2 phase and induced the dose dependent increase of apoptosis. The maximum value of 21.8 per cent was attained after irradiation with LET of 197 keV/mu m at the dose level of 16 Gy. Pro-apoptotic effects of C-12 ions were confirmed by changes of key apoptotic molecules: the p53, Bax, Bcl-2, poly ADP ribose polymerase (PARP) as well as nuclear factor kappa B (NF kappa B). At the level of protein expression, the results indicated significant increases of p53, NF kappa B and Bax/Bcl-2 ratio and PARP cleavage. The Bax/Bcl-2 mRNA ratio was also increased, while no change was detected in the level of NF kappa B mRNA. Interpretation and conclusions: The present results indicated that anti-tumour effects of C-12 ions in human melanoma HTB140 cells were accomplished through induction of the mitochondrial apoptotic pathway as well as G2 arrest.
T2  - Indian Journal of Medical Research
T1  - Carbon ions of different linear energy transfer (LET) values induce apoptosis and G2 cell cycle arrest in radio-resistant melanoma cells
VL  - 143
SP  - 120
EP  - 128
DO  - 10.4103/0971-5916.191811
ER  - 
@article{
author = "Žakula, Jelena and Korićanac, Lela and Keta, Otilija D. and Todorović, Danijela V. and Cirrone, Giuseppe Antonio Pablo and Romano, Francesco and Cuttone, Giacomo and Petrović, Ivan M. and Ristić-Fira, Aleksandra",
year = "2016",
abstract = "Background and objectives: The main goal when treating malignancies with radiation is to deprive tumour cells of their reproductive potential. One approach is to induce tumour cell apoptosis. This study was conducted to evaluate the ability of carbon ions (C-12) to induce apoptosis and cell cycle arrest in human HTB140 melanoma cells. Methods: In this in vitro study, human melanoma HTB140 cells were irradiated with the 62 MeV/n carbon (C-12) ion beam, having two different linear energy transfer (LET) values: 197 and 382 keV/mu m. The dose range was 2 to 16 Gy. Cell viability was estimated by the sulforhodamine B assay seven days after irradiation. The cell cycle and apoptosis were evaluated 48 h after irradiation using flow cytometry. At the same time point, protein and gene expression of apoptotic regulators were estimated using the Western blot and q-PCR methods, respectively. Results: Cell viability experiments indicated strong anti-tumour effects of C-12 ions. The analysis of cell cycle showed that C-12 ions blocked HTB140 cells in G2 phase and induced the dose dependent increase of apoptosis. The maximum value of 21.8 per cent was attained after irradiation with LET of 197 keV/mu m at the dose level of 16 Gy. Pro-apoptotic effects of C-12 ions were confirmed by changes of key apoptotic molecules: the p53, Bax, Bcl-2, poly ADP ribose polymerase (PARP) as well as nuclear factor kappa B (NF kappa B). At the level of protein expression, the results indicated significant increases of p53, NF kappa B and Bax/Bcl-2 ratio and PARP cleavage. The Bax/Bcl-2 mRNA ratio was also increased, while no change was detected in the level of NF kappa B mRNA. Interpretation and conclusions: The present results indicated that anti-tumour effects of C-12 ions in human melanoma HTB140 cells were accomplished through induction of the mitochondrial apoptotic pathway as well as G2 arrest.",
journal = "Indian Journal of Medical Research",
title = "Carbon ions of different linear energy transfer (LET) values induce apoptosis and G2 cell cycle arrest in radio-resistant melanoma cells",
volume = "143",
pages = "120-128",
doi = "10.4103/0971-5916.191811"
}
Žakula, J., Korićanac, L., Keta, O. D., Todorović, D. V., Cirrone, G. A. P., Romano, F., Cuttone, G., Petrović, I. M.,& Ristić-Fira, A.. (2016). Carbon ions of different linear energy transfer (LET) values induce apoptosis and G2 cell cycle arrest in radio-resistant melanoma cells. in Indian Journal of Medical Research, 143, 120-128.
https://doi.org/10.4103/0971-5916.191811
Žakula J, Korićanac L, Keta OD, Todorović DV, Cirrone GAP, Romano F, Cuttone G, Petrović IM, Ristić-Fira A. Carbon ions of different linear energy transfer (LET) values induce apoptosis and G2 cell cycle arrest in radio-resistant melanoma cells. in Indian Journal of Medical Research. 2016;143:120-128.
doi:10.4103/0971-5916.191811 .
Žakula, Jelena, Korićanac, Lela, Keta, Otilija D., Todorović, Danijela V., Cirrone, Giuseppe Antonio Pablo, Romano, Francesco, Cuttone, Giacomo, Petrović, Ivan M., Ristić-Fira, Aleksandra, "Carbon ions of different linear energy transfer (LET) values induce apoptosis and G2 cell cycle arrest in radio-resistant melanoma cells" in Indian Journal of Medical Research, 143 (2016):120-128,
https://doi.org/10.4103/0971-5916.191811 . .
4
2
5

Recent developments in Geant4

Allison, John; Amako, Katsuya; Apostolakis, John; Arce, Pedro; Asai, Makoto; Aso, Tsukasa; Bagli, Enrico; Bagulya, Alexander V.; Banerjee, S; Barrand, Guy C.; Beck, Bret R.; Bogdanov, Aleksei G.; Brandt, Daniel; Brown, Jeremy Michael Cooney; Burkhardt, Helmut; Canal, Philippe; Cano-Ott, Daniel; Chauvie, S; Cho, Kihyeon; Cirrone, Giuseppe Antonio Pablo; Cooperman, Gene D.; Cortés-Giraldo, Miguel Antonio; Cosmo, Gabriele; Cuttone, Giacomo; Depaola, Gerardo O.; Desorgher, Laurent; Dong, Xin; Dotti, Andrea; Elvira, Daniel V.; Folger, Gunter; Francis, Ziad; Galoyan, Aida S.; Garnier, Laurent; Gayer, Marek; Genser, K.L.; Grichine, V.M.; Guatelli, S; Gueye, Paul L.J.; Gumplinger, Peter; Howard, Alexander S.; Hrivnacova, Ivana; Hwang, Soonwook; Incerti, Sebastien; Ivanchenko, A.; Ivanchenko, Vladimir; Jones, F.W.; Jun, S.Y.; Kaitaniemi, Pekka; Karakatsanis, Nicolas; Karamitros, M; Kelsey, M; Kimura, Akinori; Koi, Tatsumi; Kurashige, Hisaya; Lechner, Anton; Lee, Sebyeong; Longo, F; Maire, M; Mancusi, Davide; Mantero, Alfonso; Mendoza, Emilio; Morgan, Ben; Murakami, Kouichi; Nikitina, Tatiana; Pandola, Luciano; Paprocki, P; Perl, Joseph M.; Petrović, Ivan M.; Pia, Maria Grazia; Pokorski, Witold; Quesada Molina, Jose Manuel; Raine, Melanie; Reis, M.A.; Ribon, A; Ristić-Fira, Aleksandra; Romano, Francesco; Russo, Giorgio; Santin, G; Sasaki, Takashi; Sawkey, Daren L.; Shin, Jae-ik; Strakovsky, Igor I.; Taborda, Ana; Tanaka, Satoshi; Tomé, B; Toshito, T; Tran, H.N.; Truscott, Peter R.; Urban, Laszlo; Uzhinsky, Vladimir V.; Verbeke, Jerome M.; Verderi, Marc; Wendt, Brycen L.; Wenzel, Hans Joachim; Wright, Dennis Herbert; Wright, Douglas M.; Yamashita, Tomohiro; Yarba, Julia V.; Yoshida, Hajime

(2016)

TY  - JOUR
AU  - Allison, John
AU  - Amako, Katsuya
AU  - Apostolakis, John
AU  - Arce, Pedro
AU  - Asai, Makoto
AU  - Aso, Tsukasa
AU  - Bagli, Enrico
AU  - Bagulya, Alexander V.
AU  - Banerjee, S
AU  - Barrand, Guy C.
AU  - Beck, Bret R.
AU  - Bogdanov, Aleksei G.
AU  - Brandt, Daniel
AU  - Brown, Jeremy Michael Cooney
AU  - Burkhardt, Helmut
AU  - Canal, Philippe
AU  - Cano-Ott, Daniel
AU  - Chauvie, S
AU  - Cho, Kihyeon
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Cooperman, Gene D.
AU  - Cortés-Giraldo, Miguel Antonio
AU  - Cosmo, Gabriele
AU  - Cuttone, Giacomo
AU  - Depaola, Gerardo O.
AU  - Desorgher, Laurent
AU  - Dong, Xin
AU  - Dotti, Andrea
AU  - Elvira, Daniel V.
AU  - Folger, Gunter
AU  - Francis, Ziad
AU  - Galoyan, Aida S.
AU  - Garnier, Laurent
AU  - Gayer, Marek
AU  - Genser, K.L.
AU  - Grichine, V.M.
AU  - Guatelli, S
AU  - Gueye, Paul L.J.
AU  - Gumplinger, Peter
AU  - Howard, Alexander S.
AU  - Hrivnacova, Ivana
AU  - Hwang, Soonwook
AU  - Incerti, Sebastien
AU  - Ivanchenko, A.
AU  - Ivanchenko, Vladimir
AU  - Jones, F.W.
AU  - Jun, S.Y.
AU  - Kaitaniemi, Pekka
AU  - Karakatsanis, Nicolas
AU  - Karamitros, M
AU  - Kelsey, M
AU  - Kimura, Akinori
AU  - Koi, Tatsumi
AU  - Kurashige, Hisaya
AU  - Lechner, Anton
AU  - Lee, Sebyeong
AU  - Longo, F
AU  - Maire, M
AU  - Mancusi, Davide
AU  - Mantero, Alfonso
AU  - Mendoza, Emilio
AU  - Morgan, Ben
AU  - Murakami, Kouichi
AU  - Nikitina, Tatiana
AU  - Pandola, Luciano
AU  - Paprocki, P
AU  - Perl, Joseph M.
AU  - Petrović, Ivan M.
AU  - Pia, Maria Grazia
AU  - Pokorski, Witold
AU  - Quesada Molina, Jose Manuel
AU  - Raine, Melanie
AU  - Reis, M.A.
AU  - Ribon, A
AU  - Ristić-Fira, Aleksandra
AU  - Romano, Francesco
AU  - Russo, Giorgio
AU  - Santin, G
AU  - Sasaki, Takashi
AU  - Sawkey, Daren L.
AU  - Shin, Jae-ik
AU  - Strakovsky, Igor I.
AU  - Taborda, Ana
AU  - Tanaka, Satoshi
AU  - Tomé, B
AU  - Toshito, T
AU  - Tran, H.N.
AU  - Truscott, Peter R.
AU  - Urban, Laszlo
AU  - Uzhinsky, Vladimir V.
AU  - Verbeke, Jerome M.
AU  - Verderi, Marc
AU  - Wendt, Brycen L.
AU  - Wenzel, Hans Joachim
AU  - Wright, Dennis Herbert
AU  - Wright, Douglas M.
AU  - Yamashita, Tomohiro
AU  - Yarba, Julia V.
AU  - Yoshida, Hajime
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8645
AB  - Geant4 is a software toolkit for the simulation of the passage of particles through matter. It is used by a large number of experiments and projects in a variety of application domains, including high energy physics, astrophysics and space science, medical physics and radiation protection. Over the past several years, major changes have been made to the toolkit in order to accommodate the needs of these user communities, and to efficiently exploit the growth of computing power made available by advances in technology. The adaptation of Geant4 to multithreading, advances in physics, detector modeling and visualization, extensions to the toolkit, including biasing and reverse Monte Carlo, and tools for physics and release validation are discussed here.
T2  - Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
T1  - Recent developments in Geant4
VL  - 835
SP  - 186
EP  - 225
DO  - 10.1016/j.nima.2016.06.125
ER  - 
@article{
author = "Allison, John and Amako, Katsuya and Apostolakis, John and Arce, Pedro and Asai, Makoto and Aso, Tsukasa and Bagli, Enrico and Bagulya, Alexander V. and Banerjee, S and Barrand, Guy C. and Beck, Bret R. and Bogdanov, Aleksei G. and Brandt, Daniel and Brown, Jeremy Michael Cooney and Burkhardt, Helmut and Canal, Philippe and Cano-Ott, Daniel and Chauvie, S and Cho, Kihyeon and Cirrone, Giuseppe Antonio Pablo and Cooperman, Gene D. and Cortés-Giraldo, Miguel Antonio and Cosmo, Gabriele and Cuttone, Giacomo and Depaola, Gerardo O. and Desorgher, Laurent and Dong, Xin and Dotti, Andrea and Elvira, Daniel V. and Folger, Gunter and Francis, Ziad and Galoyan, Aida S. and Garnier, Laurent and Gayer, Marek and Genser, K.L. and Grichine, V.M. and Guatelli, S and Gueye, Paul L.J. and Gumplinger, Peter and Howard, Alexander S. and Hrivnacova, Ivana and Hwang, Soonwook and Incerti, Sebastien and Ivanchenko, A. and Ivanchenko, Vladimir and Jones, F.W. and Jun, S.Y. and Kaitaniemi, Pekka and Karakatsanis, Nicolas and Karamitros, M and Kelsey, M and Kimura, Akinori and Koi, Tatsumi and Kurashige, Hisaya and Lechner, Anton and Lee, Sebyeong and Longo, F and Maire, M and Mancusi, Davide and Mantero, Alfonso and Mendoza, Emilio and Morgan, Ben and Murakami, Kouichi and Nikitina, Tatiana and Pandola, Luciano and Paprocki, P and Perl, Joseph M. and Petrović, Ivan M. and Pia, Maria Grazia and Pokorski, Witold and Quesada Molina, Jose Manuel and Raine, Melanie and Reis, M.A. and Ribon, A and Ristić-Fira, Aleksandra and Romano, Francesco and Russo, Giorgio and Santin, G and Sasaki, Takashi and Sawkey, Daren L. and Shin, Jae-ik and Strakovsky, Igor I. and Taborda, Ana and Tanaka, Satoshi and Tomé, B and Toshito, T and Tran, H.N. and Truscott, Peter R. and Urban, Laszlo and Uzhinsky, Vladimir V. and Verbeke, Jerome M. and Verderi, Marc and Wendt, Brycen L. and Wenzel, Hans Joachim and Wright, Dennis Herbert and Wright, Douglas M. and Yamashita, Tomohiro and Yarba, Julia V. and Yoshida, Hajime",
year = "2016",
abstract = "Geant4 is a software toolkit for the simulation of the passage of particles through matter. It is used by a large number of experiments and projects in a variety of application domains, including high energy physics, astrophysics and space science, medical physics and radiation protection. Over the past several years, major changes have been made to the toolkit in order to accommodate the needs of these user communities, and to efficiently exploit the growth of computing power made available by advances in technology. The adaptation of Geant4 to multithreading, advances in physics, detector modeling and visualization, extensions to the toolkit, including biasing and reverse Monte Carlo, and tools for physics and release validation are discussed here.",
journal = "Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment",
title = "Recent developments in Geant4",
volume = "835",
pages = "186-225",
doi = "10.1016/j.nima.2016.06.125"
}
Allison, J., Amako, K., Apostolakis, J., Arce, P., Asai, M., Aso, T., Bagli, E., Bagulya, A. V., Banerjee, S., Barrand, G. C., Beck, B. R., Bogdanov, A. G., Brandt, D., Brown, J. M. C., Burkhardt, H., Canal, P., Cano-Ott, D., Chauvie, S., Cho, K., Cirrone, G. A. P., Cooperman, G. D., Cortés-Giraldo, M. A., Cosmo, G., Cuttone, G., Depaola, G. O., Desorgher, L., Dong, X., Dotti, A., Elvira, D. V., Folger, G., Francis, Z., Galoyan, A. S., Garnier, L., Gayer, M., Genser, K.L., Grichine, V.M., Guatelli, S., Gueye, P. L.J., Gumplinger, P., Howard, A. S., Hrivnacova, I., Hwang, S., Incerti, S., Ivanchenko, A., Ivanchenko, V., Jones, F.W., Jun, S.Y., Kaitaniemi, P., Karakatsanis, N., Karamitros, M., Kelsey, M., Kimura, A., Koi, T., Kurashige, H., Lechner, A., Lee, S., Longo, F., Maire, M., Mancusi, D., Mantero, A., Mendoza, E., Morgan, B., Murakami, K., Nikitina, T., Pandola, L., Paprocki, P., Perl, J. M., Petrović, I. M., Pia, M. G., Pokorski, W., Quesada Molina, J. M., Raine, M., Reis, M.A., Ribon, A., Ristić-Fira, A., Romano, F., Russo, G., Santin, G., Sasaki, T., Sawkey, D. L., Shin, J., Strakovsky, I. I., Taborda, A., Tanaka, S., Tomé, B., Toshito, T., Tran, H.N., Truscott, P. R., Urban, L., Uzhinsky, V. V., Verbeke, J. M., Verderi, M., Wendt, B. L., Wenzel, H. J., Wright, D. H., Wright, D. M., Yamashita, T., Yarba, J. V.,& Yoshida, H.. (2016). Recent developments in Geant4. in Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835, 186-225.
https://doi.org/10.1016/j.nima.2016.06.125
Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya AV, Banerjee S, Barrand GC, Beck BR, Bogdanov AG, Brandt D, Brown JMC, Burkhardt H, Canal P, Cano-Ott D, Chauvie S, Cho K, Cirrone GAP, Cooperman GD, Cortés-Giraldo MA, Cosmo G, Cuttone G, Depaola GO, Desorgher L, Dong X, Dotti A, Elvira DV, Folger G, Francis Z, Galoyan AS, Garnier L, Gayer M, Genser K, Grichine V, Guatelli S, Gueye PL, Gumplinger P, Howard AS, Hrivnacova I, Hwang S, Incerti S, Ivanchenko A, Ivanchenko V, Jones F, Jun S, Kaitaniemi P, Karakatsanis N, Karamitros M, Kelsey M, Kimura A, Koi T, Kurashige H, Lechner A, Lee S, Longo F, Maire M, Mancusi D, Mantero A, Mendoza E, Morgan B, Murakami K, Nikitina T, Pandola L, Paprocki P, Perl JM, Petrović IM, Pia MG, Pokorski W, Quesada Molina JM, Raine M, Reis M, Ribon A, Ristić-Fira A, Romano F, Russo G, Santin G, Sasaki T, Sawkey DL, Shin J, Strakovsky II, Taborda A, Tanaka S, Tomé B, Toshito T, Tran H, Truscott PR, Urban L, Uzhinsky VV, Verbeke JM, Verderi M, Wendt BL, Wenzel HJ, Wright DH, Wright DM, Yamashita T, Yarba JV, Yoshida H. Recent developments in Geant4. in Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2016;835:186-225.
doi:10.1016/j.nima.2016.06.125 .
Allison, John, Amako, Katsuya, Apostolakis, John, Arce, Pedro, Asai, Makoto, Aso, Tsukasa, Bagli, Enrico, Bagulya, Alexander V., Banerjee, S, Barrand, Guy C., Beck, Bret R., Bogdanov, Aleksei G., Brandt, Daniel, Brown, Jeremy Michael Cooney, Burkhardt, Helmut, Canal, Philippe, Cano-Ott, Daniel, Chauvie, S, Cho, Kihyeon, Cirrone, Giuseppe Antonio Pablo, Cooperman, Gene D., Cortés-Giraldo, Miguel Antonio, Cosmo, Gabriele, Cuttone, Giacomo, Depaola, Gerardo O., Desorgher, Laurent, Dong, Xin, Dotti, Andrea, Elvira, Daniel V., Folger, Gunter, Francis, Ziad, Galoyan, Aida S., Garnier, Laurent, Gayer, Marek, Genser, K.L., Grichine, V.M., Guatelli, S, Gueye, Paul L.J., Gumplinger, Peter, Howard, Alexander S., Hrivnacova, Ivana, Hwang, Soonwook, Incerti, Sebastien, Ivanchenko, A., Ivanchenko, Vladimir, Jones, F.W., Jun, S.Y., Kaitaniemi, Pekka, Karakatsanis, Nicolas, Karamitros, M, Kelsey, M, Kimura, Akinori, Koi, Tatsumi, Kurashige, Hisaya, Lechner, Anton, Lee, Sebyeong, Longo, F, Maire, M, Mancusi, Davide, Mantero, Alfonso, Mendoza, Emilio, Morgan, Ben, Murakami, Kouichi, Nikitina, Tatiana, Pandola, Luciano, Paprocki, P, Perl, Joseph M., Petrović, Ivan M., Pia, Maria Grazia, Pokorski, Witold, Quesada Molina, Jose Manuel, Raine, Melanie, Reis, M.A., Ribon, A, Ristić-Fira, Aleksandra, Romano, Francesco, Russo, Giorgio, Santin, G, Sasaki, Takashi, Sawkey, Daren L., Shin, Jae-ik, Strakovsky, Igor I., Taborda, Ana, Tanaka, Satoshi, Tomé, B, Toshito, T, Tran, H.N., Truscott, Peter R., Urban, Laszlo, Uzhinsky, Vladimir V., Verbeke, Jerome M., Verderi, Marc, Wendt, Brycen L., Wenzel, Hans Joachim, Wright, Dennis Herbert, Wright, Douglas M., Yamashita, Tomohiro, Yarba, Julia V., Yoshida, Hajime, "Recent developments in Geant4" in Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835 (2016):186-225,
https://doi.org/10.1016/j.nima.2016.06.125 . .
9
2484
1397
2288

Radiosensitivity of human ovarian carcinoma and melanoma cells to gamma-rays and protons

Keta, Otilija D.; Todorović, Danijela V.; Popović, Nataša M.; Korićanac, Lela; Cuttone, Giacomo; Petrović, Ivan M.; Ristić-Fira, Aleksandra

(2014)

TY  - JOUR
AU  - Keta, Otilija D.
AU  - Todorović, Danijela V.
AU  - Popović, Nataša M.
AU  - Korićanac, Lela
AU  - Cuttone, Giacomo
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5447
AB  - Introduction: Proton radiation offers physical advantages over conventional radiation. Radiosensitivity of human 59M ovarian cancer and HTB140 melanoma cells was investigated after exposure to gamma-rays and protons. Material and methods: Irradiations were performed in the middle of a 62 MeV therapeutic proton spread out Bragg peak with doses ranging from 2 to 16 Gy. The mean energy of protons was 34.88+/-2.15 MeV, corresponding to the linear energy transfer of 4.7+/-0.2 keV/mu m. Irradiations with gamma-rays were performed using the same doses. Viability, proliferation and survival were assessed 7 days after both types of irradiation while analyses of cell cycle and apoptosis were performed 48 h after irradiation. Results: Results showed that gamma-rays and protons reduced the number of viable cells for both cell lines, with stronger inactivation achieved after irradiation with protons. Surviving fractions for 59M were 0.91+/-0.01 for gamma-rays and 0.81+/-0.01 for protons, while those for HTB140 cells were 0.93+/-0.01 for gamma-rays and 0.86+/-0.01 for protons. Relative biological effectiveness of protons, being 2.47+/-0.22 for 59M and 2.08+/-0.36 for HTB140, indicated that protons provoked better cell elimination than gamma-rays. After proton irradiation proliferation capacity of the two cell lines was slightly higher as compared to gamma-rays. Proliferation was higher for 59M than for HTB140 cells after both types of irradiation. Induction of apoptosis and G2 arrest detected after proton irradiation were more prominent in 59M cells. Conclusions: The obtained results suggest that protons exert better antitumour effects on ovarian carcinoma and melanoma cells than gamma-rays. The dissimilar response of these cells to radiation is related to their different features.
T2  - Archives of Medical Science
T1  - Radiosensitivity of human ovarian carcinoma and melanoma cells to gamma-rays and protons
VL  - 10
IS  - 3
SP  - 578
EP  - 586
DO  - 10.5114/aoms.2014.43751
ER  - 
@article{
author = "Keta, Otilija D. and Todorović, Danijela V. and Popović, Nataša M. and Korićanac, Lela and Cuttone, Giacomo and Petrović, Ivan M. and Ristić-Fira, Aleksandra",
year = "2014",
abstract = "Introduction: Proton radiation offers physical advantages over conventional radiation. Radiosensitivity of human 59M ovarian cancer and HTB140 melanoma cells was investigated after exposure to gamma-rays and protons. Material and methods: Irradiations were performed in the middle of a 62 MeV therapeutic proton spread out Bragg peak with doses ranging from 2 to 16 Gy. The mean energy of protons was 34.88+/-2.15 MeV, corresponding to the linear energy transfer of 4.7+/-0.2 keV/mu m. Irradiations with gamma-rays were performed using the same doses. Viability, proliferation and survival were assessed 7 days after both types of irradiation while analyses of cell cycle and apoptosis were performed 48 h after irradiation. Results: Results showed that gamma-rays and protons reduced the number of viable cells for both cell lines, with stronger inactivation achieved after irradiation with protons. Surviving fractions for 59M were 0.91+/-0.01 for gamma-rays and 0.81+/-0.01 for protons, while those for HTB140 cells were 0.93+/-0.01 for gamma-rays and 0.86+/-0.01 for protons. Relative biological effectiveness of protons, being 2.47+/-0.22 for 59M and 2.08+/-0.36 for HTB140, indicated that protons provoked better cell elimination than gamma-rays. After proton irradiation proliferation capacity of the two cell lines was slightly higher as compared to gamma-rays. Proliferation was higher for 59M than for HTB140 cells after both types of irradiation. Induction of apoptosis and G2 arrest detected after proton irradiation were more prominent in 59M cells. Conclusions: The obtained results suggest that protons exert better antitumour effects on ovarian carcinoma and melanoma cells than gamma-rays. The dissimilar response of these cells to radiation is related to their different features.",
journal = "Archives of Medical Science",
title = "Radiosensitivity of human ovarian carcinoma and melanoma cells to gamma-rays and protons",
volume = "10",
number = "3",
pages = "578-586",
doi = "10.5114/aoms.2014.43751"
}
Keta, O. D., Todorović, D. V., Popović, N. M., Korićanac, L., Cuttone, G., Petrović, I. M.,& Ristić-Fira, A.. (2014). Radiosensitivity of human ovarian carcinoma and melanoma cells to gamma-rays and protons. in Archives of Medical Science, 10(3), 578-586.
https://doi.org/10.5114/aoms.2014.43751
Keta OD, Todorović DV, Popović NM, Korićanac L, Cuttone G, Petrović IM, Ristić-Fira A. Radiosensitivity of human ovarian carcinoma and melanoma cells to gamma-rays and protons. in Archives of Medical Science. 2014;10(3):578-586.
doi:10.5114/aoms.2014.43751 .
Keta, Otilija D., Todorović, Danijela V., Popović, Nataša M., Korićanac, Lela, Cuttone, Giacomo, Petrović, Ivan M., Ristić-Fira, Aleksandra, "Radiosensitivity of human ovarian carcinoma and melanoma cells to gamma-rays and protons" in Archives of Medical Science, 10, no. 3 (2014):578-586,
https://doi.org/10.5114/aoms.2014.43751 . .
11
8
13

Radiosensitization of Non-Small Cell Lung Carcinoma By EGFR Inhibition

Keta, Otilija D.; Bulat, Tanja M.; Korićanac, Lela; Žakula, Jelena; Cuttone, Giacomo; Privitera, Giuseppe; Petrović, Ivan M.; Ristić-Fira, Aleksandra

(2014)

TY  - JOUR
AU  - Keta, Otilija D.
AU  - Bulat, Tanja M.
AU  - Korićanac, Lela
AU  - Žakula, Jelena
AU  - Cuttone, Giacomo
AU  - Privitera, Giuseppe
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/167
AB  - Molecular targeted cancer therapy is a promising treatment strategy. Considering the central role of the epidermal growth factor receptor in cell proliferation and survival, there are indications that targeted agents like tyrosine kinase inhibitors, i. e., erlotinib, may enhance the antitumor treatment by radiation. The aim of this study is to analyze the inactivation effects of gamma-rays and to test the radiosensitizing potential of erlotinib on human lung adenocarcinoma cells in vitro. Irradiations were performed with doses ranging from 1 Gy to 8 Gy. In order to increase the radiosensitivity of CRL-5876 lung adenocarcinoma cells, the cells were treated with a clinically relevant concentration of 2 mu M erlotinib. The effects of single and combined treatments were monitored using clonogenic survival, cell viability and proliferation assays at different time points. For the detection and visualization of the phosphorylated histone H2AX (gamma-H2AX), an important biological marker of DNA double-strand break formation, fluorescence inununocytochemistry, was performed. The response to the treatment was monitored at four time points: 30 min, 2, 6, and 24 h. Irradiations with gamma-rays resulted in significant cell inactivation regarding all analyzed biological endpoints. Combined treatments revealed consistent cell inactivation. Moreover, compared to gamma-rays alone, elevated levels of gamma-H2AX foci were observed after pretreatment with erlotinib, indicating radiosensitization through impaired DNA repair.
T2  - Nuclear technology and radiation protection
T1  - Radiosensitization of Non-Small Cell Lung Carcinoma By EGFR Inhibition
VL  - 29
IS  - 3
SP  - 233
EP  - 241
DO  - 10.2298/NTRP1403233K
ER  - 
@article{
author = "Keta, Otilija D. and Bulat, Tanja M. and Korićanac, Lela and Žakula, Jelena and Cuttone, Giacomo and Privitera, Giuseppe and Petrović, Ivan M. and Ristić-Fira, Aleksandra",
year = "2014",
abstract = "Molecular targeted cancer therapy is a promising treatment strategy. Considering the central role of the epidermal growth factor receptor in cell proliferation and survival, there are indications that targeted agents like tyrosine kinase inhibitors, i. e., erlotinib, may enhance the antitumor treatment by radiation. The aim of this study is to analyze the inactivation effects of gamma-rays and to test the radiosensitizing potential of erlotinib on human lung adenocarcinoma cells in vitro. Irradiations were performed with doses ranging from 1 Gy to 8 Gy. In order to increase the radiosensitivity of CRL-5876 lung adenocarcinoma cells, the cells were treated with a clinically relevant concentration of 2 mu M erlotinib. The effects of single and combined treatments were monitored using clonogenic survival, cell viability and proliferation assays at different time points. For the detection and visualization of the phosphorylated histone H2AX (gamma-H2AX), an important biological marker of DNA double-strand break formation, fluorescence inununocytochemistry, was performed. The response to the treatment was monitored at four time points: 30 min, 2, 6, and 24 h. Irradiations with gamma-rays resulted in significant cell inactivation regarding all analyzed biological endpoints. Combined treatments revealed consistent cell inactivation. Moreover, compared to gamma-rays alone, elevated levels of gamma-H2AX foci were observed after pretreatment with erlotinib, indicating radiosensitization through impaired DNA repair.",
journal = "Nuclear technology and radiation protection",
title = "Radiosensitization of Non-Small Cell Lung Carcinoma By EGFR Inhibition",
volume = "29",
number = "3",
pages = "233-241",
doi = "10.2298/NTRP1403233K"
}
Keta, O. D., Bulat, T. M., Korićanac, L., Žakula, J., Cuttone, G., Privitera, G., Petrović, I. M.,& Ristić-Fira, A.. (2014). Radiosensitization of Non-Small Cell Lung Carcinoma By EGFR Inhibition. in Nuclear technology and radiation protection, 29(3), 233-241.
https://doi.org/10.2298/NTRP1403233K
Keta OD, Bulat TM, Korićanac L, Žakula J, Cuttone G, Privitera G, Petrović IM, Ristić-Fira A. Radiosensitization of Non-Small Cell Lung Carcinoma By EGFR Inhibition. in Nuclear technology and radiation protection. 2014;29(3):233-241.
doi:10.2298/NTRP1403233K .
Keta, Otilija D., Bulat, Tanja M., Korićanac, Lela, Žakula, Jelena, Cuttone, Giacomo, Privitera, Giuseppe, Petrović, Ivan M., Ristić-Fira, Aleksandra, "Radiosensitization of Non-Small Cell Lung Carcinoma By EGFR Inhibition" in Nuclear technology and radiation protection, 29, no. 3 (2014):233-241,
https://doi.org/10.2298/NTRP1403233K . .
2
2
2

ELIMED, MEDical and multidisciplinary applications at ELI-Beamlines

Schillaci, F.; Anzalone, A.; Cirrone, Giuseppe Antonio Pablo; Carpinelli, M.; Cuttone, Giacomo; Cutroneo, M.; De Martinis, C.; Giove, D.; Korn, G.; Maggiore, M.; Manti, L.; Margarone, D.; Musumarra, A.; Perozziello, F. M.; Petrović, Ivan M.; Pisciotta, P.; Renis, M.; Ristić-Fira, Aleksandra; Romano, Francesco; Romano, Francesco; Schettino, G.; Scuderi, V.; Torrisi, L.; Tramontana, A.; Tudisco, S.

(2014)

TY  - CONF
AU  - Schillaci, F.
AU  - Anzalone, A.
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Carpinelli, M.
AU  - Cuttone, Giacomo
AU  - Cutroneo, M.
AU  - De Martinis, C.
AU  - Giove, D.
AU  - Korn, G.
AU  - Maggiore, M.
AU  - Manti, L.
AU  - Margarone, D.
AU  - Musumarra, A.
AU  - Perozziello, F. M.
AU  - Petrović, Ivan M.
AU  - Pisciotta, P.
AU  - Renis, M.
AU  - Ristić-Fira, Aleksandra
AU  - Romano, Francesco
AU  - Romano, Francesco
AU  - Schettino, G.
AU  - Scuderi, V.
AU  - Torrisi, L.
AU  - Tramontana, A.
AU  - Tudisco, S.
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7029
AB  - ELI-Beamlines is one of the pillars of the pan-European project ELI (Extreme Light Infrastructure). It will be an ultra high-intensity, high repetition-rate, femtosecond laser facility whose main goal is generation and applications of high-brightness X-ray sources and accelerated charged particles in different fields. Particular care will be devoted to the potential applicability of laser-driven ion beams for medical treatments of tumors. Indeed, such kind of beams show very interesting peculiarities and, moreover, laser-driven based accelerators can really represent a competitive alternative to conventional machines since they are expected to be more compact in size and less expensive. The ELIMED project was launched thanks to a collaboration established between FZU-ASCR (ELI-Beamlines) and INFN-LNS researchers. Several European institutes have already shown a great interest in the project aiming to explore the possibility to use laser-driven ion (mostly proton) beams for several applications with a particular regard for medical ones. To reach the project goal several tasks need to be fulfilled, starting from the optimization of laser-target interaction to dosimetric studies at the irradiation point at the end of a proper designed transport beam-line. Researchers from LNS have already developed and successfully tested a high-dispersive power Thomson Parabola Spectrometer, which is the first prototype of a more performing device to be used within the ELIMED project. Also a Magnetic Selection System able to produce a small pencil beam out of a wide energy distribution of ions produced in laser-target interaction has been realized and some preliminary work for its testing and characterization is in progress. In this contribution the status of the project will be reported together with a short description of the of the features of device recently developed.
C3  - Journal of Physics: Conference Series
T1  - ELIMED, MEDical and multidisciplinary applications at ELI-Beamlines
VL  - 508
DO  - 10.1088/1742-6596/508/1/012010
ER  - 
@conference{
author = "Schillaci, F. and Anzalone, A. and Cirrone, Giuseppe Antonio Pablo and Carpinelli, M. and Cuttone, Giacomo and Cutroneo, M. and De Martinis, C. and Giove, D. and Korn, G. and Maggiore, M. and Manti, L. and Margarone, D. and Musumarra, A. and Perozziello, F. M. and Petrović, Ivan M. and Pisciotta, P. and Renis, M. and Ristić-Fira, Aleksandra and Romano, Francesco and Romano, Francesco and Schettino, G. and Scuderi, V. and Torrisi, L. and Tramontana, A. and Tudisco, S.",
year = "2014",
abstract = "ELI-Beamlines is one of the pillars of the pan-European project ELI (Extreme Light Infrastructure). It will be an ultra high-intensity, high repetition-rate, femtosecond laser facility whose main goal is generation and applications of high-brightness X-ray sources and accelerated charged particles in different fields. Particular care will be devoted to the potential applicability of laser-driven ion beams for medical treatments of tumors. Indeed, such kind of beams show very interesting peculiarities and, moreover, laser-driven based accelerators can really represent a competitive alternative to conventional machines since they are expected to be more compact in size and less expensive. The ELIMED project was launched thanks to a collaboration established between FZU-ASCR (ELI-Beamlines) and INFN-LNS researchers. Several European institutes have already shown a great interest in the project aiming to explore the possibility to use laser-driven ion (mostly proton) beams for several applications with a particular regard for medical ones. To reach the project goal several tasks need to be fulfilled, starting from the optimization of laser-target interaction to dosimetric studies at the irradiation point at the end of a proper designed transport beam-line. Researchers from LNS have already developed and successfully tested a high-dispersive power Thomson Parabola Spectrometer, which is the first prototype of a more performing device to be used within the ELIMED project. Also a Magnetic Selection System able to produce a small pencil beam out of a wide energy distribution of ions produced in laser-target interaction has been realized and some preliminary work for its testing and characterization is in progress. In this contribution the status of the project will be reported together with a short description of the of the features of device recently developed.",
journal = "Journal of Physics: Conference Series",
title = "ELIMED, MEDical and multidisciplinary applications at ELI-Beamlines",
volume = "508",
doi = "10.1088/1742-6596/508/1/012010"
}
Schillaci, F., Anzalone, A., Cirrone, G. A. P., Carpinelli, M., Cuttone, G., Cutroneo, M., De Martinis, C., Giove, D., Korn, G., Maggiore, M., Manti, L., Margarone, D., Musumarra, A., Perozziello, F. M., Petrović, I. M., Pisciotta, P., Renis, M., Ristić-Fira, A., Romano, F., Romano, F., Schettino, G., Scuderi, V., Torrisi, L., Tramontana, A.,& Tudisco, S.. (2014). ELIMED, MEDical and multidisciplinary applications at ELI-Beamlines. in Journal of Physics: Conference Series, 508.
https://doi.org/10.1088/1742-6596/508/1/012010
Schillaci F, Anzalone A, Cirrone GAP, Carpinelli M, Cuttone G, Cutroneo M, De Martinis C, Giove D, Korn G, Maggiore M, Manti L, Margarone D, Musumarra A, Perozziello FM, Petrović IM, Pisciotta P, Renis M, Ristić-Fira A, Romano F, Romano F, Schettino G, Scuderi V, Torrisi L, Tramontana A, Tudisco S. ELIMED, MEDical and multidisciplinary applications at ELI-Beamlines. in Journal of Physics: Conference Series. 2014;508.
doi:10.1088/1742-6596/508/1/012010 .
Schillaci, F., Anzalone, A., Cirrone, Giuseppe Antonio Pablo, Carpinelli, M., Cuttone, Giacomo, Cutroneo, M., De Martinis, C., Giove, D., Korn, G., Maggiore, M., Manti, L., Margarone, D., Musumarra, A., Perozziello, F. M., Petrović, Ivan M., Pisciotta, P., Renis, M., Ristić-Fira, Aleksandra, Romano, Francesco, Romano, Francesco, Schettino, G., Scuderi, V., Torrisi, L., Tramontana, A., Tudisco, S., "ELIMED, MEDical and multidisciplinary applications at ELI-Beamlines" in Journal of Physics: Conference Series, 508 (2014),
https://doi.org/10.1088/1742-6596/508/1/012010 . .
1
23
17
23

A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line

Romano, Francesco; Cirrone, Giuseppe Antonio Pablo; Cuttone, Giacomo; Di Rosa, F.; Mazzaglia, S. E.; Petrović, Ivan M.; Ristić-Fira, Aleksandra; Varisano, A.

(2014)

TY  - JOUR
AU  - Romano, Francesco
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Cuttone, Giacomo
AU  - Di Rosa, F.
AU  - Mazzaglia, S. E.
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
AU  - Varisano, A.
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/6037
AB  - Fluence, depth absorbed dose and linear energy transfer (LET) distributions of proton and carbon ion beams have been investigated using the Monte Carlo code Geant4 (GEometry ANd Tracking). An open source application was developed with the aim to simulate two typical transport beam lines, one used for ocular therapy and cell irradiations with protons and the other for cell irradiations with carbon ions. This tool allows evaluation of the primary and total dose averaged LET and predict their spatial distribution in voxelized or sliced geometries. In order to reproduce the LET distributions in a realistic way, and also the secondary particles contributions due to nuclear interactions were considered in the computations. Pristine and spread-out Bragg peaks were taken into account both for proton and carbon ion beams, with the maximum energy of 62 MeV/n. Depth dose distributions were compared with experimental data, showing good agreement. Primary and total LET distributions were analysed in order to study the influence of contributions of secondary particles in regions at different depths. A non-negligible influence of high-LET components was found in the entrance channel for proton beams, determining the total dose averaged LET by the factor 3 higher than the primary one. A completely different situation was obtained for carbon ions. In this case, secondary particles mainly contributed in the tail that is after the peak. The results showed how the weight of light and heavy secondary ions can considerably influence the computation of LET depth distributions. This has an important role in the interpretation of results coming from radiobiological experiments and, therefore, in hadron treatment planning procedures.
T2  - Physics in Medicine and Biology
T1  - A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line
VL  - 59
IS  - 12
SP  - 2863
EP  - 2882
DO  - 10.1088/0031-9155/59/12/2863
ER  - 
@article{
author = "Romano, Francesco and Cirrone, Giuseppe Antonio Pablo and Cuttone, Giacomo and Di Rosa, F. and Mazzaglia, S. E. and Petrović, Ivan M. and Ristić-Fira, Aleksandra and Varisano, A.",
year = "2014",
abstract = "Fluence, depth absorbed dose and linear energy transfer (LET) distributions of proton and carbon ion beams have been investigated using the Monte Carlo code Geant4 (GEometry ANd Tracking). An open source application was developed with the aim to simulate two typical transport beam lines, one used for ocular therapy and cell irradiations with protons and the other for cell irradiations with carbon ions. This tool allows evaluation of the primary and total dose averaged LET and predict their spatial distribution in voxelized or sliced geometries. In order to reproduce the LET distributions in a realistic way, and also the secondary particles contributions due to nuclear interactions were considered in the computations. Pristine and spread-out Bragg peaks were taken into account both for proton and carbon ion beams, with the maximum energy of 62 MeV/n. Depth dose distributions were compared with experimental data, showing good agreement. Primary and total LET distributions were analysed in order to study the influence of contributions of secondary particles in regions at different depths. A non-negligible influence of high-LET components was found in the entrance channel for proton beams, determining the total dose averaged LET by the factor 3 higher than the primary one. A completely different situation was obtained for carbon ions. In this case, secondary particles mainly contributed in the tail that is after the peak. The results showed how the weight of light and heavy secondary ions can considerably influence the computation of LET depth distributions. This has an important role in the interpretation of results coming from radiobiological experiments and, therefore, in hadron treatment planning procedures.",
journal = "Physics in Medicine and Biology",
title = "A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line",
volume = "59",
number = "12",
pages = "2863-2882",
doi = "10.1088/0031-9155/59/12/2863"
}
Romano, F., Cirrone, G. A. P., Cuttone, G., Di Rosa, F., Mazzaglia, S. E., Petrović, I. M., Ristić-Fira, A.,& Varisano, A.. (2014). A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line. in Physics in Medicine and Biology, 59(12), 2863-2882.
https://doi.org/10.1088/0031-9155/59/12/2863
Romano F, Cirrone GAP, Cuttone G, Di Rosa F, Mazzaglia SE, Petrović IM, Ristić-Fira A, Varisano A. A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line. in Physics in Medicine and Biology. 2014;59(12):2863-2882.
doi:10.1088/0031-9155/59/12/2863 .
Romano, Francesco, Cirrone, Giuseppe Antonio Pablo, Cuttone, Giacomo, Di Rosa, F., Mazzaglia, S. E., Petrović, Ivan M., Ristić-Fira, Aleksandra, Varisano, A., "A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line" in Physics in Medicine and Biology, 59, no. 12 (2014):2863-2882,
https://doi.org/10.1088/0031-9155/59/12/2863 . .
4
70
48
63

Carbon Ions Induce DNA Double Strand Breaks and Apoptosis in Htb140 Melanoma Cells

Korićanac, Lela; Žakula, Jelena; Keta, Otilija D.; Cirrone, Giuseppe Antonio Pablo; Cuttone, Giacomo; Ristić-Fira, Aleksandra; Petrović, Ivan M.

(2013)

TY  - JOUR
AU  - Korićanac, Lela
AU  - Žakula, Jelena
AU  - Keta, Otilija D.
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Cuttone, Giacomo
AU  - Ristić-Fira, Aleksandra
AU  - Petrović, Ivan M.
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5593
AB  - This study was conducted in order to evaluate the ability of carbon ions to induce DNA double-strand breaks and apoptosis in the radio-resistant human HTB140 melanoma cells. The cells were irradiated with C-12 ions having the linear energy transfer of 258 keV/mu m. Irradiations were performed in the dose range from 2 to 16 Gy. Induction of DNA double-strand breaks was evaluated 2 hour after irradiation through expression of gamma H2AX protein. Increased level of gamma H2AX detected in irradiated samples was especially high after irradiation with 12 and 16 Gy. Dose dependent increase of apoptosis was detected 48 hour after irradiation by flow-cytometry, with the maximum value of 20.4% after irradiation with 16 Gy, and the apoptotic index of 9.3. Pro-apoptotic effects of carbon ion beams were confirmed by changes of key molecules of the mitochondrial apoptotic pathway, p53 protein expression, Bax/Bcl-2 ratio and caspase-3 activation.
T2  - Nuclear technology and radiation protection
T1  - Carbon Ions Induce DNA Double Strand Breaks and Apoptosis in Htb140 Melanoma Cells
VL  - 28
IS  - 2
SP  - 195
EP  - 203
DO  - 10.2298/NTRP1302195K
ER  - 
@article{
author = "Korićanac, Lela and Žakula, Jelena and Keta, Otilija D. and Cirrone, Giuseppe Antonio Pablo and Cuttone, Giacomo and Ristić-Fira, Aleksandra and Petrović, Ivan M.",
year = "2013",
abstract = "This study was conducted in order to evaluate the ability of carbon ions to induce DNA double-strand breaks and apoptosis in the radio-resistant human HTB140 melanoma cells. The cells were irradiated with C-12 ions having the linear energy transfer of 258 keV/mu m. Irradiations were performed in the dose range from 2 to 16 Gy. Induction of DNA double-strand breaks was evaluated 2 hour after irradiation through expression of gamma H2AX protein. Increased level of gamma H2AX detected in irradiated samples was especially high after irradiation with 12 and 16 Gy. Dose dependent increase of apoptosis was detected 48 hour after irradiation by flow-cytometry, with the maximum value of 20.4% after irradiation with 16 Gy, and the apoptotic index of 9.3. Pro-apoptotic effects of carbon ion beams were confirmed by changes of key molecules of the mitochondrial apoptotic pathway, p53 protein expression, Bax/Bcl-2 ratio and caspase-3 activation.",
journal = "Nuclear technology and radiation protection",
title = "Carbon Ions Induce DNA Double Strand Breaks and Apoptosis in Htb140 Melanoma Cells",
volume = "28",
number = "2",
pages = "195-203",
doi = "10.2298/NTRP1302195K"
}
Korićanac, L., Žakula, J., Keta, O. D., Cirrone, G. A. P., Cuttone, G., Ristić-Fira, A.,& Petrović, I. M.. (2013). Carbon Ions Induce DNA Double Strand Breaks and Apoptosis in Htb140 Melanoma Cells. in Nuclear technology and radiation protection, 28(2), 195-203.
https://doi.org/10.2298/NTRP1302195K
Korićanac L, Žakula J, Keta OD, Cirrone GAP, Cuttone G, Ristić-Fira A, Petrović IM. Carbon Ions Induce DNA Double Strand Breaks and Apoptosis in Htb140 Melanoma Cells. in Nuclear technology and radiation protection. 2013;28(2):195-203.
doi:10.2298/NTRP1302195K .
Korićanac, Lela, Žakula, Jelena, Keta, Otilija D., Cirrone, Giuseppe Antonio Pablo, Cuttone, Giacomo, Ristić-Fira, Aleksandra, Petrović, Ivan M., "Carbon Ions Induce DNA Double Strand Breaks and Apoptosis in Htb140 Melanoma Cells" in Nuclear technology and radiation protection, 28, no. 2 (2013):195-203,
https://doi.org/10.2298/NTRP1302195K . .
2
2
2

Spatio-Temporal Radiation Biology with Conventionally or Laser-Accelerated Particles for ELIMED

Ristić-Fira, Aleksandra; Bulat, Tanja M.; Keta, Otilija D.; Romano, Francesco; Cirrone, Giuseppe Antonio Pablo; Cuttone, Giacomo; Petrović, Ivan M.

(2013)

TY  - CONF
AU  - Ristić-Fira, Aleksandra
AU  - Bulat, Tanja M.
AU  - Keta, Otilija D.
AU  - Romano, Francesco
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Cuttone, Giacomo
AU  - Petrović, Ivan M.
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7005
AB  - The aim of this study is to investigate the behavior of radio-resistant human malignant cells, thus enabling better understanding of radiobiological effects of ions in such a case. Radiation sources such as accelerated continuous ion beams and laser technology-based ultra short radiation sources with energy of around 10 MeV will be used. The HTB140 melanoma cells are chosen since it has been shown that they represent the limit case of cellular radio-resistance among the studied tumour cell lines. These cells are particularly interesting as they provide data on the very edge of inactivation capacity of each beam line that is tested. After exposing the cell monolayers to continuous radiations of low (gamma-rays) and high (protons) linear energy transfer, the kinetics of disappearance of the phosphorylated histone H2AX (gamma-H2AX) foci per cell will be determined. The same procedure will be performed with the pulsed high dose rate protons. Detection and quantification of gamma-H2AX foci will be performed by immunohistochemical 3D time-dependent imaging analyses using laser scanning confocal microscopy. Immunoblotting will enable the follow-up of the relation between gamma-H2AX and cell cycle arrest via the p53/p21 pathway. In such a way the spatio-temporal changes on sub-cellular level will be visualized, quantified and compared. These results will show whether there is a difference in the effects on cells between continuous and pulsed irradiation mode. Therefore, they will contribute to the database that might promote pulsed sources for medical treatments of malignant growths.
C3  - AIP Conference Proceedings
T1  - Spatio-Temporal Radiation Biology with Conventionally or Laser-Accelerated Particles for ELIMED
VL  - 1546
SP  - 101
EP  - 104
DO  - 10.1063/1.4816616
ER  - 
@conference{
author = "Ristić-Fira, Aleksandra and Bulat, Tanja M. and Keta, Otilija D. and Romano, Francesco and Cirrone, Giuseppe Antonio Pablo and Cuttone, Giacomo and Petrović, Ivan M.",
year = "2013",
abstract = "The aim of this study is to investigate the behavior of radio-resistant human malignant cells, thus enabling better understanding of radiobiological effects of ions in such a case. Radiation sources such as accelerated continuous ion beams and laser technology-based ultra short radiation sources with energy of around 10 MeV will be used. The HTB140 melanoma cells are chosen since it has been shown that they represent the limit case of cellular radio-resistance among the studied tumour cell lines. These cells are particularly interesting as they provide data on the very edge of inactivation capacity of each beam line that is tested. After exposing the cell monolayers to continuous radiations of low (gamma-rays) and high (protons) linear energy transfer, the kinetics of disappearance of the phosphorylated histone H2AX (gamma-H2AX) foci per cell will be determined. The same procedure will be performed with the pulsed high dose rate protons. Detection and quantification of gamma-H2AX foci will be performed by immunohistochemical 3D time-dependent imaging analyses using laser scanning confocal microscopy. Immunoblotting will enable the follow-up of the relation between gamma-H2AX and cell cycle arrest via the p53/p21 pathway. In such a way the spatio-temporal changes on sub-cellular level will be visualized, quantified and compared. These results will show whether there is a difference in the effects on cells between continuous and pulsed irradiation mode. Therefore, they will contribute to the database that might promote pulsed sources for medical treatments of malignant growths.",
journal = "AIP Conference Proceedings",
title = "Spatio-Temporal Radiation Biology with Conventionally or Laser-Accelerated Particles for ELIMED",
volume = "1546",
pages = "101-104",
doi = "10.1063/1.4816616"
}
Ristić-Fira, A., Bulat, T. M., Keta, O. D., Romano, F., Cirrone, G. A. P., Cuttone, G.,& Petrović, I. M.. (2013). Spatio-Temporal Radiation Biology with Conventionally or Laser-Accelerated Particles for ELIMED. in AIP Conference Proceedings, 1546, 101-104.
https://doi.org/10.1063/1.4816616
Ristić-Fira A, Bulat TM, Keta OD, Romano F, Cirrone GAP, Cuttone G, Petrović IM. Spatio-Temporal Radiation Biology with Conventionally or Laser-Accelerated Particles for ELIMED. in AIP Conference Proceedings. 2013;1546:101-104.
doi:10.1063/1.4816616 .
Ristić-Fira, Aleksandra, Bulat, Tanja M., Keta, Otilija D., Romano, Francesco, Cirrone, Giuseppe Antonio Pablo, Cuttone, Giacomo, Petrović, Ivan M., "Spatio-Temporal Radiation Biology with Conventionally or Laser-Accelerated Particles for ELIMED" in AIP Conference Proceedings, 1546 (2013):101-104,
https://doi.org/10.1063/1.4816616 . .

Response of human lung adenocarcinoma cells to proton radiation and erlotinib

Ristić-Fira, Aleksandra; Petrović, Ivan M.; Todorović, Dragana; Korićanac, Lela; Keta, Otilija D.; Bulat, Tanja M.; Cirrone, Giuseppe Antonio Pablo; Romano, Francesco; Cuttone, Giacomo

(2012)

TY  - CONF
AU  - Ristić-Fira, Aleksandra
AU  - Petrović, Ivan M.
AU  - Todorović, Dragana
AU  - Korićanac, Lela
AU  - Keta, Otilija D.
AU  - Bulat, Tanja M.
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Romano, Francesco
AU  - Cuttone, Giacomo
PY  - 2012
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8642
C3  - Radiotherapy and Oncology
T1  - Response of human lung adenocarcinoma cells to proton radiation and erlotinib
VL  - 102
SP  - S106
EP  - S107
DO  - 10.1016/S0167-8140(12)70182-2
ER  - 
@conference{
author = "Ristić-Fira, Aleksandra and Petrović, Ivan M. and Todorović, Dragana and Korićanac, Lela and Keta, Otilija D. and Bulat, Tanja M. and Cirrone, Giuseppe Antonio Pablo and Romano, Francesco and Cuttone, Giacomo",
year = "2012",
journal = "Radiotherapy and Oncology",
title = "Response of human lung adenocarcinoma cells to proton radiation and erlotinib",
volume = "102",
pages = "S106-S107",
doi = "10.1016/S0167-8140(12)70182-2"
}
Ristić-Fira, A., Petrović, I. M., Todorović, D., Korićanac, L., Keta, O. D., Bulat, T. M., Cirrone, G. A. P., Romano, F.,& Cuttone, G.. (2012). Response of human lung adenocarcinoma cells to proton radiation and erlotinib. in Radiotherapy and Oncology, 102, S106-S107.
https://doi.org/10.1016/S0167-8140(12)70182-2
Ristić-Fira A, Petrović IM, Todorović D, Korićanac L, Keta OD, Bulat TM, Cirrone GAP, Romano F, Cuttone G. Response of human lung adenocarcinoma cells to proton radiation and erlotinib. in Radiotherapy and Oncology. 2012;102:S106-S107.
doi:10.1016/S0167-8140(12)70182-2 .
Ristić-Fira, Aleksandra, Petrović, Ivan M., Todorović, Dragana, Korićanac, Lela, Keta, Otilija D., Bulat, Tanja M., Cirrone, Giuseppe Antonio Pablo, Romano, Francesco, Cuttone, Giacomo, "Response of human lung adenocarcinoma cells to proton radiation and erlotinib" in Radiotherapy and Oncology, 102 (2012):S106-S107,
https://doi.org/10.1016/S0167-8140(12)70182-2 . .

Radio-resistant human malignant cells after irradiations with 1H and 12C ions of different LET

Petrović, Ivan M.; Ristić-Fira, Aleksandra; Todorović, Dragana; Korićanac, Lela; Žakula, Jelena; Cirrone, Giuseppe Antonio Pablo; Romano, Francesco; Cuttone, Giacomo

(2012)

TY  - CONF
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
AU  - Todorović, Dragana
AU  - Korićanac, Lela
AU  - Žakula, Jelena
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Romano, Francesco
AU  - Cuttone, Giacomo
PY  - 2012
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8643
C3  - Radiotherapy and Oncology
T1  - Radio-resistant human malignant cells after irradiations with 1H and 12C ions of different LET
VL  - 102
SP  - S108
EP  - S109
DO  - 10.1016/S0167-8140(12)70185-8
ER  - 
@conference{
author = "Petrović, Ivan M. and Ristić-Fira, Aleksandra and Todorović, Dragana and Korićanac, Lela and Žakula, Jelena and Cirrone, Giuseppe Antonio Pablo and Romano, Francesco and Cuttone, Giacomo",
year = "2012",
journal = "Radiotherapy and Oncology",
title = "Radio-resistant human malignant cells after irradiations with 1H and 12C ions of different LET",
volume = "102",
pages = "S108-S109",
doi = "10.1016/S0167-8140(12)70185-8"
}
Petrović, I. M., Ristić-Fira, A., Todorović, D., Korićanac, L., Žakula, J., Cirrone, G. A. P., Romano, F.,& Cuttone, G.. (2012). Radio-resistant human malignant cells after irradiations with 1H and 12C ions of different LET. in Radiotherapy and Oncology, 102, S108-S109.
https://doi.org/10.1016/S0167-8140(12)70185-8
Petrović IM, Ristić-Fira A, Todorović D, Korićanac L, Žakula J, Cirrone GAP, Romano F, Cuttone G. Radio-resistant human malignant cells after irradiations with 1H and 12C ions of different LET. in Radiotherapy and Oncology. 2012;102:S108-S109.
doi:10.1016/S0167-8140(12)70185-8 .
Petrović, Ivan M., Ristić-Fira, Aleksandra, Todorović, Dragana, Korićanac, Lela, Žakula, Jelena, Cirrone, Giuseppe Antonio Pablo, Romano, Francesco, Cuttone, Giacomo, "Radio-resistant human malignant cells after irradiations with 1H and 12C ions of different LET" in Radiotherapy and Oncology, 102 (2012):S108-S109,
https://doi.org/10.1016/S0167-8140(12)70185-8 . .
1

Variation of Apoptotic Pathway Regulators by Fotemustine and Protons in a Human Melanoma Cell Line

Korićanac, Lela; Žakula, Jelena; Cirrone, Giuseppe Antonio Pablo; Privitera, Giuseppe; Cuttone, Giacomo; Petrović, Ivan M.; Ristić-Fira, Aleksandra

(2012)

TY  - JOUR
AU  - Korićanac, Lela
AU  - Žakula, Jelena
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Privitera, Giuseppe
AU  - Cuttone, Giacomo
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
PY  - 2012
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8644
AB  - The effects of combined treatments with fotemustine and proton radiation on cell proliferation and induction of apoptosis have been analyzed in this study. HTB140 human melanoma cells were treated with fotemustine (100, 250 M) 24 h prior to irradiation (12, 16 Gy). The cells were irradiated in the middle of a therapeutic 62 MeV proton spread-out Bragg peak. An efficiency of applied treatments was observed throughout the evaluation of the cell proliferation 7 days after proton irradiation. The combined treatments with fotemustine and protons resulted in a greater antiproliferative response than each treatment alone. The number of apoptotic cells was estimated after 6 or 48 h using flow cytometry. The highest percentage of apoptotic cells was obtained 48 h after treatment with 250 M fotemustine and protons. Western blot analysis showed that induction of apoptosis was associated with p53 and Bax up regulation, and Bcl-2 down regulation. The induction of a caspase-3 activity and cleavage of PARP were clearly observed. These data indicate that a combined application of FM and proton irradiation is more effective in reducing melanoma cell proliferation and the induction of apoptosis, suggesting that FM can increase the radio-sensitivity of HTB140 melanoma cells.
T2  - Advanced Science Letters
T1  - Variation of Apoptotic Pathway Regulators by Fotemustine and Protons in a Human Melanoma Cell Line
VL  - 5
IS  - 2
SP  - 552
EP  - 559
DO  - 10.1166/asl.2012.2150
ER  - 
@article{
author = "Korićanac, Lela and Žakula, Jelena and Cirrone, Giuseppe Antonio Pablo and Privitera, Giuseppe and Cuttone, Giacomo and Petrović, Ivan M. and Ristić-Fira, Aleksandra",
year = "2012",
abstract = "The effects of combined treatments with fotemustine and proton radiation on cell proliferation and induction of apoptosis have been analyzed in this study. HTB140 human melanoma cells were treated with fotemustine (100, 250 M) 24 h prior to irradiation (12, 16 Gy). The cells were irradiated in the middle of a therapeutic 62 MeV proton spread-out Bragg peak. An efficiency of applied treatments was observed throughout the evaluation of the cell proliferation 7 days after proton irradiation. The combined treatments with fotemustine and protons resulted in a greater antiproliferative response than each treatment alone. The number of apoptotic cells was estimated after 6 or 48 h using flow cytometry. The highest percentage of apoptotic cells was obtained 48 h after treatment with 250 M fotemustine and protons. Western blot analysis showed that induction of apoptosis was associated with p53 and Bax up regulation, and Bcl-2 down regulation. The induction of a caspase-3 activity and cleavage of PARP were clearly observed. These data indicate that a combined application of FM and proton irradiation is more effective in reducing melanoma cell proliferation and the induction of apoptosis, suggesting that FM can increase the radio-sensitivity of HTB140 melanoma cells.",
journal = "Advanced Science Letters",
title = "Variation of Apoptotic Pathway Regulators by Fotemustine and Protons in a Human Melanoma Cell Line",
volume = "5",
number = "2",
pages = "552-559",
doi = "10.1166/asl.2012.2150"
}
Korićanac, L., Žakula, J., Cirrone, G. A. P., Privitera, G., Cuttone, G., Petrović, I. M.,& Ristić-Fira, A.. (2012). Variation of Apoptotic Pathway Regulators by Fotemustine and Protons in a Human Melanoma Cell Line. in Advanced Science Letters, 5(2), 552-559.
https://doi.org/10.1166/asl.2012.2150
Korićanac L, Žakula J, Cirrone GAP, Privitera G, Cuttone G, Petrović IM, Ristić-Fira A. Variation of Apoptotic Pathway Regulators by Fotemustine and Protons in a Human Melanoma Cell Line. in Advanced Science Letters. 2012;5(2):552-559.
doi:10.1166/asl.2012.2150 .
Korićanac, Lela, Žakula, Jelena, Cirrone, Giuseppe Antonio Pablo, Privitera, Giuseppe, Cuttone, Giacomo, Petrović, Ivan M., Ristić-Fira, Aleksandra, "Variation of Apoptotic Pathway Regulators by Fotemustine and Protons in a Human Melanoma Cell Line" in Advanced Science Letters, 5, no. 2 (2012):552-559,
https://doi.org/10.1166/asl.2012.2150 . .
1
1

Proton inactivation of melanoma cells enhanced by fotemustine

Ristić-Fira, Aleksandra; Korićanac, Lela; Žakula, Jelena; Keta, Otilija D.; Iannolo, Gioacchin; Cuttone, Giacomo; Petrović, Ivan M.

(2011)

TY  - JOUR
AU  - Ristić-Fira, Aleksandra
AU  - Korićanac, Lela
AU  - Žakula, Jelena
AU  - Keta, Otilija D.
AU  - Iannolo, Gioacchin
AU  - Cuttone, Giacomo
AU  - Petrović, Ivan M.
PY  - 2011
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/6905
AB  - Response of human HTB140 melanoma cells to proton irradiation in combination with fotemustine (FM) was investigated. Effects of these agents were analysed on cell proliferation and induction of apoptosis. Cells pretreated with 100- or 250-mu M of FM were irradiated in the middle of the therapeutic 62-MeV proton spread-out Bragg peak, with a dose of 16 Gy. All treatments reduced proliferation and survival of melanoma cells. The most pronounced effects of the combined treatment were obtained for cell survivals. The level of apoptosis increased after all applied treatments. Particularly good pro-apoptotic effect was achieved when proton irradiation was combined with 250 mu M of FM. This was followed by the increased expression of p53 gene. The obtained results have shown that combined application of FM and protons significantly reduced growth of this resistant melanoma cell line.
T2  - Radiation Protection Dosimetry
T1  - Proton inactivation of melanoma cells enhanced by fotemustine
VL  - 143
IS  - 2-4
SP  - 503
EP  - 507
DO  - 10.1093/rpd/ncq527
ER  - 
@article{
author = "Ristić-Fira, Aleksandra and Korićanac, Lela and Žakula, Jelena and Keta, Otilija D. and Iannolo, Gioacchin and Cuttone, Giacomo and Petrović, Ivan M.",
year = "2011",
abstract = "Response of human HTB140 melanoma cells to proton irradiation in combination with fotemustine (FM) was investigated. Effects of these agents were analysed on cell proliferation and induction of apoptosis. Cells pretreated with 100- or 250-mu M of FM were irradiated in the middle of the therapeutic 62-MeV proton spread-out Bragg peak, with a dose of 16 Gy. All treatments reduced proliferation and survival of melanoma cells. The most pronounced effects of the combined treatment were obtained for cell survivals. The level of apoptosis increased after all applied treatments. Particularly good pro-apoptotic effect was achieved when proton irradiation was combined with 250 mu M of FM. This was followed by the increased expression of p53 gene. The obtained results have shown that combined application of FM and protons significantly reduced growth of this resistant melanoma cell line.",
journal = "Radiation Protection Dosimetry",
title = "Proton inactivation of melanoma cells enhanced by fotemustine",
volume = "143",
number = "2-4",
pages = "503-507",
doi = "10.1093/rpd/ncq527"
}
Ristić-Fira, A., Korićanac, L., Žakula, J., Keta, O. D., Iannolo, G., Cuttone, G.,& Petrović, I. M.. (2011). Proton inactivation of melanoma cells enhanced by fotemustine. in Radiation Protection Dosimetry, 143(2-4), 503-507.
https://doi.org/10.1093/rpd/ncq527
Ristić-Fira A, Korićanac L, Žakula J, Keta OD, Iannolo G, Cuttone G, Petrović IM. Proton inactivation of melanoma cells enhanced by fotemustine. in Radiation Protection Dosimetry. 2011;143(2-4):503-507.
doi:10.1093/rpd/ncq527 .
Ristić-Fira, Aleksandra, Korićanac, Lela, Žakula, Jelena, Keta, Otilija D., Iannolo, Gioacchin, Cuttone, Giacomo, Petrović, Ivan M., "Proton inactivation of melanoma cells enhanced by fotemustine" in Radiation Protection Dosimetry, 143, no. 2-4 (2011):503-507,
https://doi.org/10.1093/rpd/ncq527 . .
1
2
2

Response of Human HTB140 Melanoma Cells to Conventional Radiation and Hadrons

Ristić-Fira, Aleksandra; Todorović, Danijela V.; Žakula, Jelena; Keta, Otilija D.; Cirrone, Giuseppe Antonio Pablo; Cuttone, Giacomo; Petrović, Ivan M.

(2011)

TY  - JOUR
AU  - Ristić-Fira, Aleksandra
AU  - Todorović, Danijela V.
AU  - Žakula, Jelena
AU  - Keta, Otilija D.
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Cuttone, Giacomo
AU  - Petrović, Ivan M.
PY  - 2011
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/4537
AB  - Conventional radiotherapy with X-and gamma-rays is one of the common and effective treatments of cancer. High energy hadrons, i.e., charged particles like protons and (12)C ions, due to their specific physics and radiobiological advantages are increasingly used. In this study, effectiveness of different radiation types is evaluated on the radio-resistant human HTB140 melanoma cells. The cells were irradiated with gamma-rays, the 62 MeV protons at the Bragg peak and in the middle of the spread-out Bragg peak (SOBP), as well as with the 62 MeV/u (12)C ions. The doses ranged from 2 to 24 Gy. Cell survival and proliferation were assessed 7 days after irradiation, whereas apoptosis was evaluated after 48 h. The acquired results confirmed the high radio-resistance of cells, showing better effectiveness of protons than gamma-rays. The best efficiency was obtained with (12)C ions due to higher linear energy transfer. All analyzed radiation qualities reduced cell proliferation. The highest proliferation was detected for (12)C ions because of their large killing capacity followed by small induction of reparable lesions. This enabled unharmed cells to preserve proliferative activity. Irradiations with protons and (12)C ions revealed similar moderate pro-apoptotic ability that is in agreement with the level of cellular radio-resistance.
T2  - Physiological Research
T1  - Response of Human HTB140 Melanoma Cells to Conventional Radiation and Hadrons
VL  - 60
SP  - S129
EP  - S135
UR  - https://hdl.handle.net/21.15107/rcub_vinar_4537
ER  - 
@article{
author = "Ristić-Fira, Aleksandra and Todorović, Danijela V. and Žakula, Jelena and Keta, Otilija D. and Cirrone, Giuseppe Antonio Pablo and Cuttone, Giacomo and Petrović, Ivan M.",
year = "2011",
abstract = "Conventional radiotherapy with X-and gamma-rays is one of the common and effective treatments of cancer. High energy hadrons, i.e., charged particles like protons and (12)C ions, due to their specific physics and radiobiological advantages are increasingly used. In this study, effectiveness of different radiation types is evaluated on the radio-resistant human HTB140 melanoma cells. The cells were irradiated with gamma-rays, the 62 MeV protons at the Bragg peak and in the middle of the spread-out Bragg peak (SOBP), as well as with the 62 MeV/u (12)C ions. The doses ranged from 2 to 24 Gy. Cell survival and proliferation were assessed 7 days after irradiation, whereas apoptosis was evaluated after 48 h. The acquired results confirmed the high radio-resistance of cells, showing better effectiveness of protons than gamma-rays. The best efficiency was obtained with (12)C ions due to higher linear energy transfer. All analyzed radiation qualities reduced cell proliferation. The highest proliferation was detected for (12)C ions because of their large killing capacity followed by small induction of reparable lesions. This enabled unharmed cells to preserve proliferative activity. Irradiations with protons and (12)C ions revealed similar moderate pro-apoptotic ability that is in agreement with the level of cellular radio-resistance.",
journal = "Physiological Research",
title = "Response of Human HTB140 Melanoma Cells to Conventional Radiation and Hadrons",
volume = "60",
pages = "S129-S135",
url = "https://hdl.handle.net/21.15107/rcub_vinar_4537"
}
Ristić-Fira, A., Todorović, D. V., Žakula, J., Keta, O. D., Cirrone, G. A. P., Cuttone, G.,& Petrović, I. M.. (2011). Response of Human HTB140 Melanoma Cells to Conventional Radiation and Hadrons. in Physiological Research, 60, S129-S135.
https://hdl.handle.net/21.15107/rcub_vinar_4537
Ristić-Fira A, Todorović DV, Žakula J, Keta OD, Cirrone GAP, Cuttone G, Petrović IM. Response of Human HTB140 Melanoma Cells to Conventional Radiation and Hadrons. in Physiological Research. 2011;60:S129-S135.
https://hdl.handle.net/21.15107/rcub_vinar_4537 .
Ristić-Fira, Aleksandra, Todorović, Danijela V., Žakula, Jelena, Keta, Otilija D., Cirrone, Giuseppe Antonio Pablo, Cuttone, Giacomo, Petrović, Ivan M., "Response of Human HTB140 Melanoma Cells to Conventional Radiation and Hadrons" in Physiological Research, 60 (2011):S129-S135,
https://hdl.handle.net/21.15107/rcub_vinar_4537 .
6

Hadrontherapy: a Geant4-Based Tool for Proton/Ion-Therapy Studies

Cirrone, Giuseppe Antonio Pablo; Cuttone, Giacomo; Mazzaglia, Enrico S.; Romano, Francesco; Sardina, Daniele; Agodi, Clementina; Attili, Andrea; Blancato, A. Alessandra; De Napoli, Marzio; Di Rosa, Francesco; Kaitaniemi, Pekka; Marchetto, Flavio; Petrović, Ivan M.; Ristić-Fira, Aleksandra; Shin, Jungwook; Tarnavsky, Nikolai; Tropea, Stefania; Zacharatou, Christina

(2011)

TY  - JOUR
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Cuttone, Giacomo
AU  - Mazzaglia, Enrico S.
AU  - Romano, Francesco
AU  - Sardina, Daniele
AU  - Agodi, Clementina
AU  - Attili, Andrea
AU  - Blancato, A. Alessandra
AU  - De Napoli, Marzio
AU  - Di Rosa, Francesco
AU  - Kaitaniemi, Pekka
AU  - Marchetto, Flavio
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
AU  - Shin, Jungwook
AU  - Tarnavsky, Nikolai
AU  - Tropea, Stefania
AU  - Zacharatou, Christina
PY  - 2011
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8640
AB  - Hadrontherapy is a C++, free and open source application developed using the Geant4 Monte Carlo libraries The basic version of Hadrontherapy is contained in the official Geant4 distribution (wwwcernch/Geant4/download), inside the category of the advanced examples This version permits the simulation of a typical proton/ion transport beam line and the calculation of dose and fluence distributions inside a test phantom A more complete version of the program is separately maintained and released by the authors and it offers a wider set of tools useful for Users interested in proton/ion-therapy studies It gives the possibility to retrieve ion stopping powers in arbitrary geometrical configuration, to calculate 3D distributions of fluences, dose deposited and LET of primary and of the generated secondary beams, to simulate typical nuclear physics experiments, to interactively switch between different implemented geometries, etc In this work the main characteristics of the actual full version of Hadrontherapy will be reported and results discussed and compared with the available experimental data For more information the reader can refer to the Hadrontherapy website (author)
T2  - Progress in Nuclear Science and Technology
T1  - Hadrontherapy: a Geant4-Based Tool for Proton/Ion-Therapy Studies
VL  - 2
SP  - 207
EP  - 212
DO  - 10.15669/pnst.2.207
ER  - 
@article{
author = "Cirrone, Giuseppe Antonio Pablo and Cuttone, Giacomo and Mazzaglia, Enrico S. and Romano, Francesco and Sardina, Daniele and Agodi, Clementina and Attili, Andrea and Blancato, A. Alessandra and De Napoli, Marzio and Di Rosa, Francesco and Kaitaniemi, Pekka and Marchetto, Flavio and Petrović, Ivan M. and Ristić-Fira, Aleksandra and Shin, Jungwook and Tarnavsky, Nikolai and Tropea, Stefania and Zacharatou, Christina",
year = "2011",
abstract = "Hadrontherapy is a C++, free and open source application developed using the Geant4 Monte Carlo libraries The basic version of Hadrontherapy is contained in the official Geant4 distribution (wwwcernch/Geant4/download), inside the category of the advanced examples This version permits the simulation of a typical proton/ion transport beam line and the calculation of dose and fluence distributions inside a test phantom A more complete version of the program is separately maintained and released by the authors and it offers a wider set of tools useful for Users interested in proton/ion-therapy studies It gives the possibility to retrieve ion stopping powers in arbitrary geometrical configuration, to calculate 3D distributions of fluences, dose deposited and LET of primary and of the generated secondary beams, to simulate typical nuclear physics experiments, to interactively switch between different implemented geometries, etc In this work the main characteristics of the actual full version of Hadrontherapy will be reported and results discussed and compared with the available experimental data For more information the reader can refer to the Hadrontherapy website (author)",
journal = "Progress in Nuclear Science and Technology",
title = "Hadrontherapy: a Geant4-Based Tool for Proton/Ion-Therapy Studies",
volume = "2",
pages = "207-212",
doi = "10.15669/pnst.2.207"
}
Cirrone, G. A. P., Cuttone, G., Mazzaglia, E. S., Romano, F., Sardina, D., Agodi, C., Attili, A., Blancato, A. A., De Napoli, M., Di Rosa, F., Kaitaniemi, P., Marchetto, F., Petrović, I. M., Ristić-Fira, A., Shin, J., Tarnavsky, N., Tropea, S.,& Zacharatou, C.. (2011). Hadrontherapy: a Geant4-Based Tool for Proton/Ion-Therapy Studies. in Progress in Nuclear Science and Technology, 2, 207-212.
https://doi.org/10.15669/pnst.2.207
Cirrone GAP, Cuttone G, Mazzaglia ES, Romano F, Sardina D, Agodi C, Attili A, Blancato AA, De Napoli M, Di Rosa F, Kaitaniemi P, Marchetto F, Petrović IM, Ristić-Fira A, Shin J, Tarnavsky N, Tropea S, Zacharatou C. Hadrontherapy: a Geant4-Based Tool for Proton/Ion-Therapy Studies. in Progress in Nuclear Science and Technology. 2011;2:207-212.
doi:10.15669/pnst.2.207 .
Cirrone, Giuseppe Antonio Pablo, Cuttone, Giacomo, Mazzaglia, Enrico S., Romano, Francesco, Sardina, Daniele, Agodi, Clementina, Attili, Andrea, Blancato, A. Alessandra, De Napoli, Marzio, Di Rosa, Francesco, Kaitaniemi, Pekka, Marchetto, Flavio, Petrović, Ivan M., Ristić-Fira, Aleksandra, Shin, Jungwook, Tarnavsky, Nikolai, Tropea, Stefania, Zacharatou, Christina, "Hadrontherapy: a Geant4-Based Tool for Proton/Ion-Therapy Studies" in Progress in Nuclear Science and Technology, 2 (2011):207-212,
https://doi.org/10.15669/pnst.2.207 . .
70

Recent Improvements in Geant4 Electromagnetic Physics Models and Interfaces

Ivanchenko, Vladimir; Apostolakis, John; Bagulya, Alexander V.; Abdelouahed, Haifa Ben; Black, Rachel; Bogdanov, Alexey; Burkhard, Helmut; Chauvie, Stéphane; Cirrone, Giuseppe Antonio Pablo; Cuttone, Giacomo; Depaola, Gerardo O.; Di Rosa, Francesco; Elles, Sabine; Francis, Ziad; Grichine, Vladimir; Gumplinger, Peter; Gueye, Paul; Incerti, Sebastien; Ivanchenko, Anton; Jacquemier, Jean; Lechner, Anton; Longo, Francesco; Kadri, Omrane; Karakatsanis, Nicolas; Karamitros, Mathieu; Kokoulin, Rostislav; Kurashige, Hisaya; Maire, Michel; Mantero, Alfonso; Mascialino, Barbara; Moscicki, Jakub; Pandola, Luciano; Perl, Joseph M.; Petrović, Ivan M.; Ristić-Fira, Aleksandra; Romano, Francesco; Russo, Giorgio; Santin, Giovanni; Schaelicke, Andreas; Toshito, Toshiyuki; Tran, Hoang; Urban, Laszlo; Yamashita, Tomohiro; Zacharatou, Christina

(2011)

TY  - JOUR
AU  - Ivanchenko, Vladimir
AU  - Apostolakis, John
AU  - Bagulya, Alexander V.
AU  - Abdelouahed, Haifa Ben
AU  - Black, Rachel
AU  - Bogdanov, Alexey
AU  - Burkhard, Helmut
AU  - Chauvie, Stéphane
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Cuttone, Giacomo
AU  - Depaola, Gerardo O.
AU  - Di Rosa, Francesco
AU  - Elles, Sabine
AU  - Francis, Ziad
AU  - Grichine, Vladimir
AU  - Gumplinger, Peter
AU  - Gueye, Paul
AU  - Incerti, Sebastien
AU  - Ivanchenko, Anton
AU  - Jacquemier, Jean
AU  - Lechner, Anton
AU  - Longo, Francesco
AU  - Kadri, Omrane
AU  - Karakatsanis, Nicolas
AU  - Karamitros, Mathieu
AU  - Kokoulin, Rostislav
AU  - Kurashige, Hisaya
AU  - Maire, Michel
AU  - Mantero, Alfonso
AU  - Mascialino, Barbara
AU  - Moscicki, Jakub
AU  - Pandola, Luciano
AU  - Perl, Joseph M.
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
AU  - Romano, Francesco
AU  - Russo, Giorgio
AU  - Santin, Giovanni
AU  - Schaelicke, Andreas
AU  - Toshito, Toshiyuki
AU  - Tran, Hoang
AU  - Urban, Laszlo
AU  - Yamashita, Tomohiro
AU  - Zacharatou, Christina
PY  - 2011
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8641
AB  - An overview of the electromagnetic (EM) physics of the Geant4 toolkit is presented Two sets of EM models are available: the 'Standard' initially focused on high energy physics (HEP) while the 'Low-energy' was developed for medical, space and other applications The 'Standard' models provide a faster computation but are less accurate for keV energies, the 'Low-energy' models are more CPU time consuming A common interface to EM physics models has been developed allowing a natural combination of ultra-relativistic, relativistic and low-energy models for the same run providing both precision and CPU performance Due to this migration additional capabilities become available The new developments include relativistic models for bremsstrahlung and e+e- pair production, models of multiple and single scattering, hadron/ion ionization, microdosimetry for very low energies and also improvements in existing Geant4 models In parallel, validation suites and benchmarks have been intensively developed (author)
T2  - Progress in Nuclear Science and Technology
T1  - Recent Improvements in Geant4 Electromagnetic Physics Models and Interfaces
VL  - 2
SP  - 898
EP  - 903
DO  - 10.15669/pnst.2.898
ER  - 
@article{
author = "Ivanchenko, Vladimir and Apostolakis, John and Bagulya, Alexander V. and Abdelouahed, Haifa Ben and Black, Rachel and Bogdanov, Alexey and Burkhard, Helmut and Chauvie, Stéphane and Cirrone, Giuseppe Antonio Pablo and Cuttone, Giacomo and Depaola, Gerardo O. and Di Rosa, Francesco and Elles, Sabine and Francis, Ziad and Grichine, Vladimir and Gumplinger, Peter and Gueye, Paul and Incerti, Sebastien and Ivanchenko, Anton and Jacquemier, Jean and Lechner, Anton and Longo, Francesco and Kadri, Omrane and Karakatsanis, Nicolas and Karamitros, Mathieu and Kokoulin, Rostislav and Kurashige, Hisaya and Maire, Michel and Mantero, Alfonso and Mascialino, Barbara and Moscicki, Jakub and Pandola, Luciano and Perl, Joseph M. and Petrović, Ivan M. and Ristić-Fira, Aleksandra and Romano, Francesco and Russo, Giorgio and Santin, Giovanni and Schaelicke, Andreas and Toshito, Toshiyuki and Tran, Hoang and Urban, Laszlo and Yamashita, Tomohiro and Zacharatou, Christina",
year = "2011",
abstract = "An overview of the electromagnetic (EM) physics of the Geant4 toolkit is presented Two sets of EM models are available: the 'Standard' initially focused on high energy physics (HEP) while the 'Low-energy' was developed for medical, space and other applications The 'Standard' models provide a faster computation but are less accurate for keV energies, the 'Low-energy' models are more CPU time consuming A common interface to EM physics models has been developed allowing a natural combination of ultra-relativistic, relativistic and low-energy models for the same run providing both precision and CPU performance Due to this migration additional capabilities become available The new developments include relativistic models for bremsstrahlung and e+e- pair production, models of multiple and single scattering, hadron/ion ionization, microdosimetry for very low energies and also improvements in existing Geant4 models In parallel, validation suites and benchmarks have been intensively developed (author)",
journal = "Progress in Nuclear Science and Technology",
title = "Recent Improvements in Geant4 Electromagnetic Physics Models and Interfaces",
volume = "2",
pages = "898-903",
doi = "10.15669/pnst.2.898"
}
Ivanchenko, V., Apostolakis, J., Bagulya, A. V., Abdelouahed, H. B., Black, R., Bogdanov, A., Burkhard, H., Chauvie, S., Cirrone, G. A. P., Cuttone, G., Depaola, G. O., Di Rosa, F., Elles, S., Francis, Z., Grichine, V., Gumplinger, P., Gueye, P., Incerti, S., Ivanchenko, A., Jacquemier, J., Lechner, A., Longo, F., Kadri, O., Karakatsanis, N., Karamitros, M., Kokoulin, R., Kurashige, H., Maire, M., Mantero, A., Mascialino, B., Moscicki, J., Pandola, L., Perl, J. M., Petrović, I. M., Ristić-Fira, A., Romano, F., Russo, G., Santin, G., Schaelicke, A., Toshito, T., Tran, H., Urban, L., Yamashita, T.,& Zacharatou, C.. (2011). Recent Improvements in Geant4 Electromagnetic Physics Models and Interfaces. in Progress in Nuclear Science and Technology, 2, 898-903.
https://doi.org/10.15669/pnst.2.898
Ivanchenko V, Apostolakis J, Bagulya AV, Abdelouahed HB, Black R, Bogdanov A, Burkhard H, Chauvie S, Cirrone GAP, Cuttone G, Depaola GO, Di Rosa F, Elles S, Francis Z, Grichine V, Gumplinger P, Gueye P, Incerti S, Ivanchenko A, Jacquemier J, Lechner A, Longo F, Kadri O, Karakatsanis N, Karamitros M, Kokoulin R, Kurashige H, Maire M, Mantero A, Mascialino B, Moscicki J, Pandola L, Perl JM, Petrović IM, Ristić-Fira A, Romano F, Russo G, Santin G, Schaelicke A, Toshito T, Tran H, Urban L, Yamashita T, Zacharatou C. Recent Improvements in Geant4 Electromagnetic Physics Models and Interfaces. in Progress in Nuclear Science and Technology. 2011;2:898-903.
doi:10.15669/pnst.2.898 .
Ivanchenko, Vladimir, Apostolakis, John, Bagulya, Alexander V., Abdelouahed, Haifa Ben, Black, Rachel, Bogdanov, Alexey, Burkhard, Helmut, Chauvie, Stéphane, Cirrone, Giuseppe Antonio Pablo, Cuttone, Giacomo, Depaola, Gerardo O., Di Rosa, Francesco, Elles, Sabine, Francis, Ziad, Grichine, Vladimir, Gumplinger, Peter, Gueye, Paul, Incerti, Sebastien, Ivanchenko, Anton, Jacquemier, Jean, Lechner, Anton, Longo, Francesco, Kadri, Omrane, Karakatsanis, Nicolas, Karamitros, Mathieu, Kokoulin, Rostislav, Kurashige, Hisaya, Maire, Michel, Mantero, Alfonso, Mascialino, Barbara, Moscicki, Jakub, Pandola, Luciano, Perl, Joseph M., Petrović, Ivan M., Ristić-Fira, Aleksandra, Romano, Francesco, Russo, Giorgio, Santin, Giovanni, Schaelicke, Andreas, Toshito, Toshiyuki, Tran, Hoang, Urban, Laszlo, Yamashita, Tomohiro, Zacharatou, Christina, "Recent Improvements in Geant4 Electromagnetic Physics Models and Interfaces" in Progress in Nuclear Science and Technology, 2 (2011):898-903,
https://doi.org/10.15669/pnst.2.898 . .
91

Radio-sensitivity of human melanoma, ovarian and lung carcinoma cells to gamma radiation

Keta, Otilija D.; Korićanac, Lela; Žakula, Jelena; Popović, Nataša M.; Cuttone, Giacomo; Petrović, Ivan M.; Ristić-Fira, Aleksandra

(Society of Physical Chemists of Serbia, 2010)

TY  - CONF
AU  - Keta, Otilija D.
AU  - Korićanac, Lela
AU  - Žakula, Jelena
AU  - Popović, Nataša M.
AU  - Cuttone, Giacomo
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
PY  - 2010
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9314
AB  - Radio-sensitivity of human melanoma, ovarian and lung cancer cells after the
exposure to gamma-rays was studied using three different methods. The results
showed that gamma rays reduce the number of viable cells for all analyzed cell
lines. However, these cells display high level of radio-resistance. The highest
radio-sensitivity was attained for the CRL5876 lung cells, while the most sensitive
assay was the clonogenic assay.
PB  - Society of Physical Chemists of Serbia
C3  - Physical chemistry 2010 : 10th international conference on fundamental and applied aspects of physical chemistry
T1  - Radio-sensitivity of human melanoma, ovarian and lung carcinoma cells to gamma radiation
UR  - https://hdl.handle.net/21.15107/rcub_vinar_9314
ER  - 
@conference{
author = "Keta, Otilija D. and Korićanac, Lela and Žakula, Jelena and Popović, Nataša M. and Cuttone, Giacomo and Petrović, Ivan M. and Ristić-Fira, Aleksandra",
year = "2010",
abstract = "Radio-sensitivity of human melanoma, ovarian and lung cancer cells after the
exposure to gamma-rays was studied using three different methods. The results
showed that gamma rays reduce the number of viable cells for all analyzed cell
lines. However, these cells display high level of radio-resistance. The highest
radio-sensitivity was attained for the CRL5876 lung cells, while the most sensitive
assay was the clonogenic assay.",
publisher = "Society of Physical Chemists of Serbia",
journal = "Physical chemistry 2010 : 10th international conference on fundamental and applied aspects of physical chemistry",
title = "Radio-sensitivity of human melanoma, ovarian and lung carcinoma cells to gamma radiation",
url = "https://hdl.handle.net/21.15107/rcub_vinar_9314"
}
Keta, O. D., Korićanac, L., Žakula, J., Popović, N. M., Cuttone, G., Petrović, I. M.,& Ristić-Fira, A.. (2010). Radio-sensitivity of human melanoma, ovarian and lung carcinoma cells to gamma radiation. in Physical chemistry 2010 : 10th international conference on fundamental and applied aspects of physical chemistry
Society of Physical Chemists of Serbia..
https://hdl.handle.net/21.15107/rcub_vinar_9314
Keta OD, Korićanac L, Žakula J, Popović NM, Cuttone G, Petrović IM, Ristić-Fira A. Radio-sensitivity of human melanoma, ovarian and lung carcinoma cells to gamma radiation. in Physical chemistry 2010 : 10th international conference on fundamental and applied aspects of physical chemistry. 2010;.
https://hdl.handle.net/21.15107/rcub_vinar_9314 .
Keta, Otilija D., Korićanac, Lela, Žakula, Jelena, Popović, Nataša M., Cuttone, Giacomo, Petrović, Ivan M., Ristić-Fira, Aleksandra, "Radio-sensitivity of human melanoma, ovarian and lung carcinoma cells to gamma radiation" in Physical chemistry 2010 : 10th international conference on fundamental and applied aspects of physical chemistry (2010),
https://hdl.handle.net/21.15107/rcub_vinar_9314 .

Carbon ion beam as inducer of melanoma cell apoptosis

Žakula, Jelena; Korićanac, Lela; Keta, Otilija D.; Cirrone, Giuseppe Antonio Pablo; Cuttone, Giacomo; Ristić-Fira, Aleksandra; Petrović, Ivan M.

(Society of Physical Chemists of Serbia, 2010)

TY  - CONF
AU  - Žakula, Jelena
AU  - Korićanac, Lela
AU  - Keta, Otilija D.
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Cuttone, Giacomo
AU  - Ristić-Fira, Aleksandra
AU  - Petrović, Ivan M.
PY  - 2010
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9325
AB  - In vitro effect of carbon ions on apoptosis was studied. The human melanoma
HTB140 cells were irradiated with the 62 MeV/u 12C ion beam. Percentage of
apoptotic cells was evaluated by flow-cytometry and the corresponding apoptotic
indexes were calculated. The expression of apoptosis-associated proteins, p53, Bax
and Bcl-2 was estimated by Western blot analyses. A dose dependent increase of
apoptosis was revealed, with the maximum value of 17 % after irradiation with 16
Gy, and the apoptotic index of 7.7. Pro-apoptotic effects of carbon ion beams were
confirmed by the detected changes of key regulators of the mitochondrial apoptotic
pathway, the p53 protein expression and the Bax/Bcl-2 ratio.
PB  - Society of Physical Chemists of Serbia
C3  - Physical chemistry 2010 : 10th international conference on fundamental and applied aspects of physical chemistry
T1  - Carbon ion beam as inducer of melanoma cell apoptosis
UR  - https://hdl.handle.net/21.15107/rcub_vinar_9325
ER  - 
@conference{
author = "Žakula, Jelena and Korićanac, Lela and Keta, Otilija D. and Cirrone, Giuseppe Antonio Pablo and Cuttone, Giacomo and Ristić-Fira, Aleksandra and Petrović, Ivan M.",
year = "2010",
abstract = "In vitro effect of carbon ions on apoptosis was studied. The human melanoma
HTB140 cells were irradiated with the 62 MeV/u 12C ion beam. Percentage of
apoptotic cells was evaluated by flow-cytometry and the corresponding apoptotic
indexes were calculated. The expression of apoptosis-associated proteins, p53, Bax
and Bcl-2 was estimated by Western blot analyses. A dose dependent increase of
apoptosis was revealed, with the maximum value of 17 % after irradiation with 16
Gy, and the apoptotic index of 7.7. Pro-apoptotic effects of carbon ion beams were
confirmed by the detected changes of key regulators of the mitochondrial apoptotic
pathway, the p53 protein expression and the Bax/Bcl-2 ratio.",
publisher = "Society of Physical Chemists of Serbia",
journal = "Physical chemistry 2010 : 10th international conference on fundamental and applied aspects of physical chemistry",
title = "Carbon ion beam as inducer of melanoma cell apoptosis",
url = "https://hdl.handle.net/21.15107/rcub_vinar_9325"
}
Žakula, J., Korićanac, L., Keta, O. D., Cirrone, G. A. P., Cuttone, G., Ristić-Fira, A.,& Petrović, I. M.. (2010). Carbon ion beam as inducer of melanoma cell apoptosis. in Physical chemistry 2010 : 10th international conference on fundamental and applied aspects of physical chemistry
Society of Physical Chemists of Serbia..
https://hdl.handle.net/21.15107/rcub_vinar_9325
Žakula J, Korićanac L, Keta OD, Cirrone GAP, Cuttone G, Ristić-Fira A, Petrović IM. Carbon ion beam as inducer of melanoma cell apoptosis. in Physical chemistry 2010 : 10th international conference on fundamental and applied aspects of physical chemistry. 2010;.
https://hdl.handle.net/21.15107/rcub_vinar_9325 .
Žakula, Jelena, Korićanac, Lela, Keta, Otilija D., Cirrone, Giuseppe Antonio Pablo, Cuttone, Giacomo, Ristić-Fira, Aleksandra, Petrović, Ivan M., "Carbon ion beam as inducer of melanoma cell apoptosis" in Physical chemistry 2010 : 10th international conference on fundamental and applied aspects of physical chemistry (2010),
https://hdl.handle.net/21.15107/rcub_vinar_9325 .

Apoptosis of HTBL40 melanoma cells induced by carbon ions of different let

Žakula, Jelena; Korićanac, Lela; Keta, Otilija D.; Romano, F.; Cirrone, G. A. P.; Cuttone, Giacomo; Petrović, Ivan M.; Ristić-Fira, Aleksandra

(2010)

TY  - JOUR
AU  - Žakula, Jelena
AU  - Korićanac, Lela
AU  - Keta, Otilija D.
AU  - Romano, F.
AU  - Cirrone, G. A. P.
AU  - Cuttone, Giacomo
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
PY  - 2010
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10625
AB  - Exposure to irradiation can trigger the p53 tumor suppressor to induce cell growth arrest or apoptosis. This study was conducted in order to evaluate the ability of carbon ions to induce apoptosis. The HTB140 melanoma cells were irradiated at three positions along the Bragg curve of the 62 MeV/u 12C ion beams. In this way the cells were exposed to different high linear energy transfer (LET) values. The percentage of apoptotic cells was evaluated by flow-cytometry and the corresponding apoptotic indexes were calculated. The expression of apoptosis-associated proteins, p53 and Bax was estimated by Western blot analyses. A dose dependent increase of apoptosis was noticed in all irradiation positions. When moving along the Bragg curve, i.e., with the raise of LET, the level of apoptosis increased, but was somewhat attenuated for the highest LET value. The corresponding apoptotic indexes ranged from 2.45 to 7.71. Moreover, the induction of apoptosis was associated with p53 and Bax up regulation
T2  - INFN-LNS Activity report 2009
T1  - Apoptosis of HTBL40 melanoma cells induced by carbon ions of different let
SP  - 238
EP  - 241
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10625
ER  - 
@article{
author = "Žakula, Jelena and Korićanac, Lela and Keta, Otilija D. and Romano, F. and Cirrone, G. A. P. and Cuttone, Giacomo and Petrović, Ivan M. and Ristić-Fira, Aleksandra",
year = "2010",
abstract = "Exposure to irradiation can trigger the p53 tumor suppressor to induce cell growth arrest or apoptosis. This study was conducted in order to evaluate the ability of carbon ions to induce apoptosis. The HTB140 melanoma cells were irradiated at three positions along the Bragg curve of the 62 MeV/u 12C ion beams. In this way the cells were exposed to different high linear energy transfer (LET) values. The percentage of apoptotic cells was evaluated by flow-cytometry and the corresponding apoptotic indexes were calculated. The expression of apoptosis-associated proteins, p53 and Bax was estimated by Western blot analyses. A dose dependent increase of apoptosis was noticed in all irradiation positions. When moving along the Bragg curve, i.e., with the raise of LET, the level of apoptosis increased, but was somewhat attenuated for the highest LET value. The corresponding apoptotic indexes ranged from 2.45 to 7.71. Moreover, the induction of apoptosis was associated with p53 and Bax up regulation",
journal = "INFN-LNS Activity report 2009",
title = "Apoptosis of HTBL40 melanoma cells induced by carbon ions of different let",
pages = "238-241",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10625"
}
Žakula, J., Korićanac, L., Keta, O. D., Romano, F., Cirrone, G. A. P., Cuttone, G., Petrović, I. M.,& Ristić-Fira, A.. (2010). Apoptosis of HTBL40 melanoma cells induced by carbon ions of different let. in INFN-LNS Activity report 2009, 238-241.
https://hdl.handle.net/21.15107/rcub_vinar_10625
Žakula J, Korićanac L, Keta OD, Romano F, Cirrone GAP, Cuttone G, Petrović IM, Ristić-Fira A. Apoptosis of HTBL40 melanoma cells induced by carbon ions of different let. in INFN-LNS Activity report 2009. 2010;:238-241.
https://hdl.handle.net/21.15107/rcub_vinar_10625 .
Žakula, Jelena, Korićanac, Lela, Keta, Otilija D., Romano, F., Cirrone, G. A. P., Cuttone, Giacomo, Petrović, Ivan M., Ristić-Fira, Aleksandra, "Apoptosis of HTBL40 melanoma cells induced by carbon ions of different let" in INFN-LNS Activity report 2009 (2010):238-241,
https://hdl.handle.net/21.15107/rcub_vinar_10625 .

Anti-Tumour Activity of Fotemustine and Protons in Combination with Bevacizumab

Korićanac, Lela; Žakula, Jelena; Petrović, Ivan M.; Valastro, Lucia M.; Cirrone, Giuseppe Antonio Pablo; Cuttone, Giacomo; Ristić-Fira, Aleksandra

(2010)

TY  - JOUR
AU  - Korićanac, Lela
AU  - Žakula, Jelena
AU  - Petrović, Ivan M.
AU  - Valastro, Lucia M.
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Cuttone, Giacomo
AU  - Ristić-Fira, Aleksandra
PY  - 2010
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/4021
AB  - Background: Metastatic melanoma is one of the most aggressive tumours and is also very resistant to current therapeutic approaches. The aim of this investigation was the in vitro study of the anti-proliferative effects of fotemustine (FM; 100 and 250 mu M), bevacizumab (5 mu g/ml) and proton irradiation (12 and 16 Gy) on resistant HTB140 human melanoma cells. Methods: Viability was estimated by sulphorhodamine B assay, while cell proliferation was analyzed by 5-bromo-2-deoxyuridine assay. Cell cycle distribution and apoptosis were examined using flow cytometry. Results: Cell viability and proliferation were reduced after all applied treatments. The level of apoptosis significantly increased after treatment with FM, protons or a combination of all agents, while the apoptotic index ranged from 1.2 to 9.2. Proton irradiation, as well as combined treatment with bevacizumab and protons or 100 mu M FM, bevacizumab and protons, have reduced melanoma cell proliferation through the induction of G1 phase arrest. Single FM (250 mu M) or bevacizumab treatment and their combination, as well as the joint application of these 2 agents with protons, reduced cell proliferation and provoked G2 phase accumulation. Conclusion: The analyzed treatments reduced cell viability and proliferation, triggered G1 or G2 cell cycle phase accumulation and stimulated apoptotic cell death. Copyright (C) 2010 S. Karger AG, Basel
T2  - Chemotherapy
T1  - Anti-Tumour Activity of Fotemustine and Protons in Combination with Bevacizumab
VL  - 56
IS  - 3
SP  - 214
EP  - 222
DO  - 10.1159/000316333
ER  - 
@article{
author = "Korićanac, Lela and Žakula, Jelena and Petrović, Ivan M. and Valastro, Lucia M. and Cirrone, Giuseppe Antonio Pablo and Cuttone, Giacomo and Ristić-Fira, Aleksandra",
year = "2010",
abstract = "Background: Metastatic melanoma is one of the most aggressive tumours and is also very resistant to current therapeutic approaches. The aim of this investigation was the in vitro study of the anti-proliferative effects of fotemustine (FM; 100 and 250 mu M), bevacizumab (5 mu g/ml) and proton irradiation (12 and 16 Gy) on resistant HTB140 human melanoma cells. Methods: Viability was estimated by sulphorhodamine B assay, while cell proliferation was analyzed by 5-bromo-2-deoxyuridine assay. Cell cycle distribution and apoptosis were examined using flow cytometry. Results: Cell viability and proliferation were reduced after all applied treatments. The level of apoptosis significantly increased after treatment with FM, protons or a combination of all agents, while the apoptotic index ranged from 1.2 to 9.2. Proton irradiation, as well as combined treatment with bevacizumab and protons or 100 mu M FM, bevacizumab and protons, have reduced melanoma cell proliferation through the induction of G1 phase arrest. Single FM (250 mu M) or bevacizumab treatment and their combination, as well as the joint application of these 2 agents with protons, reduced cell proliferation and provoked G2 phase accumulation. Conclusion: The analyzed treatments reduced cell viability and proliferation, triggered G1 or G2 cell cycle phase accumulation and stimulated apoptotic cell death. Copyright (C) 2010 S. Karger AG, Basel",
journal = "Chemotherapy",
title = "Anti-Tumour Activity of Fotemustine and Protons in Combination with Bevacizumab",
volume = "56",
number = "3",
pages = "214-222",
doi = "10.1159/000316333"
}
Korićanac, L., Žakula, J., Petrović, I. M., Valastro, L. M., Cirrone, G. A. P., Cuttone, G.,& Ristić-Fira, A.. (2010). Anti-Tumour Activity of Fotemustine and Protons in Combination with Bevacizumab. in Chemotherapy, 56(3), 214-222.
https://doi.org/10.1159/000316333
Korićanac L, Žakula J, Petrović IM, Valastro LM, Cirrone GAP, Cuttone G, Ristić-Fira A. Anti-Tumour Activity of Fotemustine and Protons in Combination with Bevacizumab. in Chemotherapy. 2010;56(3):214-222.
doi:10.1159/000316333 .
Korićanac, Lela, Žakula, Jelena, Petrović, Ivan M., Valastro, Lucia M., Cirrone, Giuseppe Antonio Pablo, Cuttone, Giacomo, Ristić-Fira, Aleksandra, "Anti-Tumour Activity of Fotemustine and Protons in Combination with Bevacizumab" in Chemotherapy, 56, no. 3 (2010):214-222,
https://doi.org/10.1159/000316333 . .
5
3
5

Response of a radioresistant human melanoma cell line along the proton spread-out Bragg peak

Petrović, Ivan M.; Ristić-Fira, Aleksandra; Todorović, Danijela V.; Korićanac, Lela; Valastro, Lucia; Cirrone, Giuseppe Antonio Pablo; Cuttone, Giacomo

(2010)

TY  - JOUR
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
AU  - Todorović, Danijela V.
AU  - Korićanac, Lela
AU  - Valastro, Lucia
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Cuttone, Giacomo
PY  - 2010
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/4101
AB  - Purpose: To analyse changes of cell inactivation and proliferation under therapeutic irradiation conditions along the proton spread out Bragg peak (SOBP) with particular emphasis on its distal declining edge. Materials and methods: HTB140 cells were irradiated at four positions: plateau, middle, distal end and distal declining edge of the 62 MeV proton SOBP. Doses ranged from 2-16 Gy. They were normalised in the middle of SOBP and delivered following the axial physical dose profile. Survival, proliferation and cell cycle were assessed seven days after irradiation. Results: Moving from proximal to distal irradiation position surviving fractions at 2 Gy (SF2) decreased from 0.88-0.59. Increased radiosensitivity of the cells was noticed for the doses below 4 Gy, resulting in two gradients of cell inactivation, stronger for lower and weaker for higher doses. Relative biological effectiveness (RBE) increased from 1.68-2.84 at the distal end of SOBP. A further rise of RBE reaching 7.14 was at its distal declining edge. Following the axial physical dose profile of SOBP the strongest inactivation was attained at its distal end and was comparable to that at its declining edge. Conclusions: Survival data confirmed very high radioresistance of HTB140 cells. An effect similar to low-dose hyper radiosensitivity (HRS) was observed for order of magnitude larger doses. Better response of cells to protons than to gamma-rays was illustrated by rather high RBE. Strong killing ability at the SOBP distal declining edge was the consequence of increasing proton linear energy transfer.
T2  - International Journal of Radiation Biology
T1  - Response of a radioresistant human melanoma cell line along the proton spread-out Bragg peak
VL  - 86
IS  - 9
SP  - 742
EP  - 751
DO  - 10.3109/09553002.2010.481322
ER  - 
@article{
author = "Petrović, Ivan M. and Ristić-Fira, Aleksandra and Todorović, Danijela V. and Korićanac, Lela and Valastro, Lucia and Cirrone, Giuseppe Antonio Pablo and Cuttone, Giacomo",
year = "2010",
abstract = "Purpose: To analyse changes of cell inactivation and proliferation under therapeutic irradiation conditions along the proton spread out Bragg peak (SOBP) with particular emphasis on its distal declining edge. Materials and methods: HTB140 cells were irradiated at four positions: plateau, middle, distal end and distal declining edge of the 62 MeV proton SOBP. Doses ranged from 2-16 Gy. They were normalised in the middle of SOBP and delivered following the axial physical dose profile. Survival, proliferation and cell cycle were assessed seven days after irradiation. Results: Moving from proximal to distal irradiation position surviving fractions at 2 Gy (SF2) decreased from 0.88-0.59. Increased radiosensitivity of the cells was noticed for the doses below 4 Gy, resulting in two gradients of cell inactivation, stronger for lower and weaker for higher doses. Relative biological effectiveness (RBE) increased from 1.68-2.84 at the distal end of SOBP. A further rise of RBE reaching 7.14 was at its distal declining edge. Following the axial physical dose profile of SOBP the strongest inactivation was attained at its distal end and was comparable to that at its declining edge. Conclusions: Survival data confirmed very high radioresistance of HTB140 cells. An effect similar to low-dose hyper radiosensitivity (HRS) was observed for order of magnitude larger doses. Better response of cells to protons than to gamma-rays was illustrated by rather high RBE. Strong killing ability at the SOBP distal declining edge was the consequence of increasing proton linear energy transfer.",
journal = "International Journal of Radiation Biology",
title = "Response of a radioresistant human melanoma cell line along the proton spread-out Bragg peak",
volume = "86",
number = "9",
pages = "742-751",
doi = "10.3109/09553002.2010.481322"
}
Petrović, I. M., Ristić-Fira, A., Todorović, D. V., Korićanac, L., Valastro, L., Cirrone, G. A. P.,& Cuttone, G.. (2010). Response of a radioresistant human melanoma cell line along the proton spread-out Bragg peak. in International Journal of Radiation Biology, 86(9), 742-751.
https://doi.org/10.3109/09553002.2010.481322
Petrović IM, Ristić-Fira A, Todorović DV, Korićanac L, Valastro L, Cirrone GAP, Cuttone G. Response of a radioresistant human melanoma cell line along the proton spread-out Bragg peak. in International Journal of Radiation Biology. 2010;86(9):742-751.
doi:10.3109/09553002.2010.481322 .
Petrović, Ivan M., Ristić-Fira, Aleksandra, Todorović, Danijela V., Korićanac, Lela, Valastro, Lucia, Cirrone, Giuseppe Antonio Pablo, Cuttone, Giacomo, "Response of a radioresistant human melanoma cell line along the proton spread-out Bragg peak" in International Journal of Radiation Biology, 86, no. 9 (2010):742-751,
https://doi.org/10.3109/09553002.2010.481322 . .
38
36
39

Effects of fotemustine or dacarbasine on a melanoma cell line pretreated with therapeutic proton irradiation

Ristić-Fira, Aleksandra; Korićanac, Lela; Žakula, Jelena; Valastro, Lucia M.; Iannolo, Gioacchin; Privitera, Giuseppe; Cuttone, Giacomo; Petrović, Ivan M.

(2009)

TY  - JOUR
AU  - Ristić-Fira, Aleksandra
AU  - Korićanac, Lela
AU  - Žakula, Jelena
AU  - Valastro, Lucia M.
AU  - Iannolo, Gioacchin
AU  - Privitera, Giuseppe
AU  - Cuttone, Giacomo
AU  - Petrović, Ivan M.
PY  - 2009
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/3702
AB  - Background: Considering that HTB140 melanoma cells have shown a poor response to either protons or alkylating agents, the effects of a combined use of these agents have been analysed. Methods: Cells were irradiated in the middle of the therapeutic 62 MeV proton spread out Bragg peak (SOBP). Irradiation doses were 12 or 16 Gy and are those frequently used in proton therapy. Four days after irradiation cells were treated with fotemustine (FM) or dacarbazine (DTIC). Drug concentrations were 100 and 250 mu M, values close to those that produce 50% of growth inhibition. Cell viability, proliferation, survival and cell cycle distribution were assessed 7 days after irradiation that corresponds to more than six doubling times of HTB140 cells. In this way incubation periods providing the best single effects of drugs (3 days) and protons (7 days) coincided at the same time. Results: Single proton irradiations have reduced the number of cells to similar to 50%. FM caused stronger cell inactivation due to its high toxicity, while the effectiveness of DTIC, that was important at short term, almost vanished with the incubation of 7 days. Cellular mechanisms triggered by proton irradiation differently influenced the final effects of combined treatments. Combination of protons and FM did not improve cell inactivation level achieved by single treatments. A low efficiency of the single DTIC treatment was overcome when DTIC was introduced following proton irradiation, giving better inhibitory effects with respect to the single treatments. Most of the analysed cells were in G1/S phase, viable, active and able to replicate DNA. Conclusion: The obtained results are the consequence of a high resistance of HTB140 melanoma cells to protons and/or drugs. The inactivation level of the HTB140 human melanoma cells after protons, FM or DTIC treatments was not enhanced by their combined application.
T2  - Journal of Experimental and Clinical Cancer Research
T1  - Effects of fotemustine or dacarbasine on a melanoma cell line pretreated with therapeutic proton irradiation
VL  - 28
DO  - 10.1186/1756-9966-28-50
ER  - 
@article{
author = "Ristić-Fira, Aleksandra and Korićanac, Lela and Žakula, Jelena and Valastro, Lucia M. and Iannolo, Gioacchin and Privitera, Giuseppe and Cuttone, Giacomo and Petrović, Ivan M.",
year = "2009",
abstract = "Background: Considering that HTB140 melanoma cells have shown a poor response to either protons or alkylating agents, the effects of a combined use of these agents have been analysed. Methods: Cells were irradiated in the middle of the therapeutic 62 MeV proton spread out Bragg peak (SOBP). Irradiation doses were 12 or 16 Gy and are those frequently used in proton therapy. Four days after irradiation cells were treated with fotemustine (FM) or dacarbazine (DTIC). Drug concentrations were 100 and 250 mu M, values close to those that produce 50% of growth inhibition. Cell viability, proliferation, survival and cell cycle distribution were assessed 7 days after irradiation that corresponds to more than six doubling times of HTB140 cells. In this way incubation periods providing the best single effects of drugs (3 days) and protons (7 days) coincided at the same time. Results: Single proton irradiations have reduced the number of cells to similar to 50%. FM caused stronger cell inactivation due to its high toxicity, while the effectiveness of DTIC, that was important at short term, almost vanished with the incubation of 7 days. Cellular mechanisms triggered by proton irradiation differently influenced the final effects of combined treatments. Combination of protons and FM did not improve cell inactivation level achieved by single treatments. A low efficiency of the single DTIC treatment was overcome when DTIC was introduced following proton irradiation, giving better inhibitory effects with respect to the single treatments. Most of the analysed cells were in G1/S phase, viable, active and able to replicate DNA. Conclusion: The obtained results are the consequence of a high resistance of HTB140 melanoma cells to protons and/or drugs. The inactivation level of the HTB140 human melanoma cells after protons, FM or DTIC treatments was not enhanced by their combined application.",
journal = "Journal of Experimental and Clinical Cancer Research",
title = "Effects of fotemustine or dacarbasine on a melanoma cell line pretreated with therapeutic proton irradiation",
volume = "28",
doi = "10.1186/1756-9966-28-50"
}
Ristić-Fira, A., Korićanac, L., Žakula, J., Valastro, L. M., Iannolo, G., Privitera, G., Cuttone, G.,& Petrović, I. M.. (2009). Effects of fotemustine or dacarbasine on a melanoma cell line pretreated with therapeutic proton irradiation. in Journal of Experimental and Clinical Cancer Research, 28.
https://doi.org/10.1186/1756-9966-28-50
Ristić-Fira A, Korićanac L, Žakula J, Valastro LM, Iannolo G, Privitera G, Cuttone G, Petrović IM. Effects of fotemustine or dacarbasine on a melanoma cell line pretreated with therapeutic proton irradiation. in Journal of Experimental and Clinical Cancer Research. 2009;28.
doi:10.1186/1756-9966-28-50 .
Ristić-Fira, Aleksandra, Korićanac, Lela, Žakula, Jelena, Valastro, Lucia M., Iannolo, Gioacchin, Privitera, Giuseppe, Cuttone, Giacomo, Petrović, Ivan M., "Effects of fotemustine or dacarbasine on a melanoma cell line pretreated with therapeutic proton irradiation" in Journal of Experimental and Clinical Cancer Research, 28 (2009),
https://doi.org/10.1186/1756-9966-28-50 . .
4
6
6

Cell cycle distribution and induction apoptosis after joint treatment with fotemustine and protons

Korićanac, Lela; Petrović, Ivan M.; Požega, J. J.; Valastro, Lucia M.; Cirrone, Giuseppe Antonio Pablo; Cuttone, Giacomo; Ristić-Fira, Aleksandra

(2008)

TY  - CONF
AU  - Korićanac, Lela
AU  - Petrović, Ivan M.
AU  - Požega, J. J.
AU  - Valastro, Lucia M.
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Cuttone, Giacomo
AU  - Ristić-Fira, Aleksandra
PY  - 2008
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/6760
C3  - FEBS Journal
T1  - Cell cycle distribution and induction apoptosis after joint treatment with fotemustine and protons
VL  - 275
SP  - 409
EP  - 409
UR  - https://hdl.handle.net/21.15107/rcub_vinar_6760
ER  - 
@conference{
author = "Korićanac, Lela and Petrović, Ivan M. and Požega, J. J. and Valastro, Lucia M. and Cirrone, Giuseppe Antonio Pablo and Cuttone, Giacomo and Ristić-Fira, Aleksandra",
year = "2008",
journal = "FEBS Journal",
title = "Cell cycle distribution and induction apoptosis after joint treatment with fotemustine and protons",
volume = "275",
pages = "409-409",
url = "https://hdl.handle.net/21.15107/rcub_vinar_6760"
}
Korićanac, L., Petrović, I. M., Požega, J. J., Valastro, L. M., Cirrone, G. A. P., Cuttone, G.,& Ristić-Fira, A.. (2008). Cell cycle distribution and induction apoptosis after joint treatment with fotemustine and protons. in FEBS Journal, 275, 409-409.
https://hdl.handle.net/21.15107/rcub_vinar_6760
Korićanac L, Petrović IM, Požega JJ, Valastro LM, Cirrone GAP, Cuttone G, Ristić-Fira A. Cell cycle distribution and induction apoptosis after joint treatment with fotemustine and protons. in FEBS Journal. 2008;275:409-409.
https://hdl.handle.net/21.15107/rcub_vinar_6760 .
Korićanac, Lela, Petrović, Ivan M., Požega, J. J., Valastro, Lucia M., Cirrone, Giuseppe Antonio Pablo, Cuttone, Giacomo, Ristić-Fira, Aleksandra, "Cell cycle distribution and induction apoptosis after joint treatment with fotemustine and protons" in FEBS Journal, 275 (2008):409-409,
https://hdl.handle.net/21.15107/rcub_vinar_6760 .