Bolognesi, Guido

Link to this page

Authority KeyName Variants
b83beebc-3661-461a-aa01-2127bfcef06c
  • Bolognesi, Guido (2)
Projects

Author's Bibliography

Selective Adsorption of Ionic Species Using Macroporous Monodispersed Polyethylene Glycol Diacrylate/Acrylic Acid Microgels with Tunable Negative Charge

Chen, Minjun; Kumrić, Ksenija; Thacker, Conner; Prodanović, Radivoje; Bolognesi, Guido; Vladisavljević, Goran T.

(2023)

TY  - JOUR
AU  - Chen, Minjun
AU  - Kumrić, Ksenija
AU  - Thacker, Conner
AU  - Prodanović, Radivoje
AU  - Bolognesi, Guido
AU  - Vladisavljević, Goran T.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12210
AB  - In this work, the possibility of fabricating composite magneto-optical ceramics by electrophoretic deposition (EPD) of nanopowders and high-temperature vacuum sintering of the compacts was investigated. Holmium oxide was chosen as a magneto-optical material for the study because of its transparency in the mid-IR range. Nanopowders of magneto-optical (Ho0.95La0.05)2O3 (HoLa) material were made by self-propagating high-temperature synthesis. Nanopowders of (Y0.9La0.1)2O3 (YLa) were made by laser synthesis for an inactive matrix. The process of formation of one- and two-layer compacts by EPD of the nanopowders from alcohol suspensions was studied in detail. Acetylacetone was shown to be a good dispersant to obtain alcohol suspensions of the nanopowders, characterized by high zeta potential values (+29–+80 mV), and to carry out a stable EPD process. One-layer compacts were made from the HoLa and YLa nanopowders with a density of 30–43%. It was found out that the introduction of polyvinyl butyral (PVB) into the suspension leads to a decrease in the mass and thickness of the green bodies deposited, but does not significantly affect their density. The possibility of making two-layer (YLa/HoLa) compacts with a thickness of up to 2.6 mm and a density of up to 46% was demonstrated. Sintering such compacts in a vacuum at a temperature of 1750 °C for 10 h leads to the formation of ceramics with a homogeneous boundary between the YLa/HoLa layers and a thickness of the interdiffused ion layer of about 30 μm.
T2  - Gels
T1  - Selective Adsorption of Ionic Species Using Macroporous Monodispersed Polyethylene Glycol Diacrylate/Acrylic Acid Microgels with Tunable Negative Charge
VL  - 9
IS  - 11
SP  - 849
DO  - 10.3390/gels9110849
DO  - 10.3390/gels9110849
ER  - 
@article{
author = "Chen, Minjun and Kumrić, Ksenija and Thacker, Conner and Prodanović, Radivoje and Bolognesi, Guido and Vladisavljević, Goran T.",
year = "2023",
abstract = "In this work, the possibility of fabricating composite magneto-optical ceramics by electrophoretic deposition (EPD) of nanopowders and high-temperature vacuum sintering of the compacts was investigated. Holmium oxide was chosen as a magneto-optical material for the study because of its transparency in the mid-IR range. Nanopowders of magneto-optical (Ho0.95La0.05)2O3 (HoLa) material were made by self-propagating high-temperature synthesis. Nanopowders of (Y0.9La0.1)2O3 (YLa) were made by laser synthesis for an inactive matrix. The process of formation of one- and two-layer compacts by EPD of the nanopowders from alcohol suspensions was studied in detail. Acetylacetone was shown to be a good dispersant to obtain alcohol suspensions of the nanopowders, characterized by high zeta potential values (+29–+80 mV), and to carry out a stable EPD process. One-layer compacts were made from the HoLa and YLa nanopowders with a density of 30–43%. It was found out that the introduction of polyvinyl butyral (PVB) into the suspension leads to a decrease in the mass and thickness of the green bodies deposited, but does not significantly affect their density. The possibility of making two-layer (YLa/HoLa) compacts with a thickness of up to 2.6 mm and a density of up to 46% was demonstrated. Sintering such compacts in a vacuum at a temperature of 1750 °C for 10 h leads to the formation of ceramics with a homogeneous boundary between the YLa/HoLa layers and a thickness of the interdiffused ion layer of about 30 μm.",
journal = "Gels",
title = "Selective Adsorption of Ionic Species Using Macroporous Monodispersed Polyethylene Glycol Diacrylate/Acrylic Acid Microgels with Tunable Negative Charge",
volume = "9",
number = "11",
pages = "849",
doi = "10.3390/gels9110849, 10.3390/gels9110849"
}
Chen, M., Kumrić, K., Thacker, C., Prodanović, R., Bolognesi, G.,& Vladisavljević, G. T.. (2023). Selective Adsorption of Ionic Species Using Macroporous Monodispersed Polyethylene Glycol Diacrylate/Acrylic Acid Microgels with Tunable Negative Charge. in Gels, 9(11), 849.
https://doi.org/10.3390/gels9110849
Chen M, Kumrić K, Thacker C, Prodanović R, Bolognesi G, Vladisavljević GT. Selective Adsorption of Ionic Species Using Macroporous Monodispersed Polyethylene Glycol Diacrylate/Acrylic Acid Microgels with Tunable Negative Charge. in Gels. 2023;9(11):849.
doi:10.3390/gels9110849 .
Chen, Minjun, Kumrić, Ksenija, Thacker, Conner, Prodanović, Radivoje, Bolognesi, Guido, Vladisavljević, Goran T., "Selective Adsorption of Ionic Species Using Macroporous Monodispersed Polyethylene Glycol Diacrylate/Acrylic Acid Microgels with Tunable Negative Charge" in Gels, 9, no. 11 (2023):849,
https://doi.org/10.3390/gels9110849 . .
1
1

Dispersive Solid–Liquid Microextraction Based on the Poly(HDDA)/Graphene Sorbent Followed by ICP-MS for the Determination of Rare Earth Elements in Coal Fly Ash Leachate

Slavković-Beškoski, Latinka; Ignjatović, Ljubiša; Bolognesi, Guido; Maksin, Danijela; Savić, Aleksandra; Vladisavljević, Goran; Onjia, Antonije E.

(2022)

TY  - JOUR
AU  - Slavković-Beškoski, Latinka
AU  - Ignjatović, Ljubiša
AU  - Bolognesi, Guido
AU  - Maksin, Danijela
AU  - Savić, Aleksandra
AU  - Vladisavljević, Goran
AU  - Onjia, Antonije E.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10251
AB  - A dispersive solid-phase microextraction (DSPME) sorbent consisting of poly(1,6-hexanedi-ol diacrylate)-based polymer microspheres, with embedded graphene microparticles (poly(HDDA)/g-raphene), was synthesized by microfluidic emulsification/photopolymerization and characterized by optical microscopy and X-ray fluorescence spectrometry. This sorbent was applied for simple, fast, and sensitive vortex-assisted DSPME of rare earth elements (RREs) in coal fly ash (CFA) leachate, prior to their quantification by inductively coupled plasma mass spectrometry (ICP-MS). Among nine DSPME variables, the Plackett–Burman screening design (PBD), followed by the central composite optimization design (CCD) using the Derringer desirability function (D), identified the eluent type as the most influencing DSPME variable. The optimum conditions with maximum D (0.65) for the chelating agent di-(2-ethylhexyl) phosphoric acid (D2EHPA) amount, the sorbent amount, the eluting solvent, the extraction temperature, the centrifuge speed, the vortexing time, the elution time, the centrifugation time, and pH, were set to 60 µL, 30 mg, 2 M HNO3, 25◦ C, 6000 rpm, 1 min, 1 min, 5 min, and 4.2, respectively. Analytical validation of the DSPME method for 16 REEs (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) in CFA leachate samples estimated the detection limits at the low ppt level, the recovery range 43–112%, and relative standard deviation within ± 22%. This method was applied to a water extraction procedure (EP) and acetic acid toxicity characteristic leaching procedure (TCLP) for leachate of CFA, from five different coal-fired thermoelectric power plants. The most abundant REEs in leachate (20 ÷ 1 solid-to-liquid ratio) are Ce, Y, and La, which were found in the range of 22–194 ng/L, 35–105 ng/L, 48–95 ng/L, and 9.6–51 µg/L, 7.3–22 µg/L, 2.4–17 µg/L, for EP and TCLP leachate, respectively. The least present REE in TCLP leachate was Lu (42–125 ng/L), which was not detected in EP leachate.
T2  - Metals
T1  - Dispersive Solid–Liquid Microextraction Based on the Poly(HDDA)/Graphene Sorbent Followed by ICP-MS for the Determination of Rare Earth Elements in Coal Fly Ash Leachate
VL  - 12
SP  - 5
SP  - 791
DO  - 10.3390/met12050791
ER  - 
@article{
author = "Slavković-Beškoski, Latinka and Ignjatović, Ljubiša and Bolognesi, Guido and Maksin, Danijela and Savić, Aleksandra and Vladisavljević, Goran and Onjia, Antonije E.",
year = "2022",
abstract = "A dispersive solid-phase microextraction (DSPME) sorbent consisting of poly(1,6-hexanedi-ol diacrylate)-based polymer microspheres, with embedded graphene microparticles (poly(HDDA)/g-raphene), was synthesized by microfluidic emulsification/photopolymerization and characterized by optical microscopy and X-ray fluorescence spectrometry. This sorbent was applied for simple, fast, and sensitive vortex-assisted DSPME of rare earth elements (RREs) in coal fly ash (CFA) leachate, prior to their quantification by inductively coupled plasma mass spectrometry (ICP-MS). Among nine DSPME variables, the Plackett–Burman screening design (PBD), followed by the central composite optimization design (CCD) using the Derringer desirability function (D), identified the eluent type as the most influencing DSPME variable. The optimum conditions with maximum D (0.65) for the chelating agent di-(2-ethylhexyl) phosphoric acid (D2EHPA) amount, the sorbent amount, the eluting solvent, the extraction temperature, the centrifuge speed, the vortexing time, the elution time, the centrifugation time, and pH, were set to 60 µL, 30 mg, 2 M HNO3, 25◦ C, 6000 rpm, 1 min, 1 min, 5 min, and 4.2, respectively. Analytical validation of the DSPME method for 16 REEs (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) in CFA leachate samples estimated the detection limits at the low ppt level, the recovery range 43–112%, and relative standard deviation within ± 22%. This method was applied to a water extraction procedure (EP) and acetic acid toxicity characteristic leaching procedure (TCLP) for leachate of CFA, from five different coal-fired thermoelectric power plants. The most abundant REEs in leachate (20 ÷ 1 solid-to-liquid ratio) are Ce, Y, and La, which were found in the range of 22–194 ng/L, 35–105 ng/L, 48–95 ng/L, and 9.6–51 µg/L, 7.3–22 µg/L, 2.4–17 µg/L, for EP and TCLP leachate, respectively. The least present REE in TCLP leachate was Lu (42–125 ng/L), which was not detected in EP leachate.",
journal = "Metals",
title = "Dispersive Solid–Liquid Microextraction Based on the Poly(HDDA)/Graphene Sorbent Followed by ICP-MS for the Determination of Rare Earth Elements in Coal Fly Ash Leachate",
volume = "12",
pages = "5-791",
doi = "10.3390/met12050791"
}
Slavković-Beškoski, L., Ignjatović, L., Bolognesi, G., Maksin, D., Savić, A., Vladisavljević, G.,& Onjia, A. E.. (2022). Dispersive Solid–Liquid Microextraction Based on the Poly(HDDA)/Graphene Sorbent Followed by ICP-MS for the Determination of Rare Earth Elements in Coal Fly Ash Leachate. in Metals, 12, 5.
https://doi.org/10.3390/met12050791
Slavković-Beškoski L, Ignjatović L, Bolognesi G, Maksin D, Savić A, Vladisavljević G, Onjia AE. Dispersive Solid–Liquid Microextraction Based on the Poly(HDDA)/Graphene Sorbent Followed by ICP-MS for the Determination of Rare Earth Elements in Coal Fly Ash Leachate. in Metals. 2022;12:5.
doi:10.3390/met12050791 .
Slavković-Beškoski, Latinka, Ignjatović, Ljubiša, Bolognesi, Guido, Maksin, Danijela, Savić, Aleksandra, Vladisavljević, Goran, Onjia, Antonije E., "Dispersive Solid–Liquid Microextraction Based on the Poly(HDDA)/Graphene Sorbent Followed by ICP-MS for the Determination of Rare Earth Elements in Coal Fly Ash Leachate" in Metals, 12 (2022):5,
https://doi.org/10.3390/met12050791 . .
11
2
6