Blažeka, Damjan

Link to this page

Authority KeyName Variants
orcid::0000-0002-0890-6486
  • Blažeka, Damjan (2)
Projects

Author's Bibliography

Enhancement of Methylene Blue Photodegradation Rate Using Laser Synthesized Ag-Doped ZnO Nanoparticles

Blažeka, Damjan; Radičić, Rafaela; Maletić, Dejan; Živković, Sanja; Momčilović, Miloš; Krstulović, Nikša

(2022)

TY  - JOUR
AU  - Blažeka, Damjan
AU  - Radičić, Rafaela
AU  - Maletić, Dejan
AU  - Živković, Sanja
AU  - Momčilović, Miloš
AU  - Krstulović, Nikša
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10407
AB  - In this work, Ag-doped ZnO nanoparticles are obtained via pulsed laser ablation of the Ag-coated ZnO target in water. The ratio of Ag dopant in ZnO nanoparticles strongly depends on the thickness of the Ag layer at the ZnO target. Synthesized nanoparticles were characterized by XRD, XPS, SEM, EDS, ICP-OES, and UV–VIS spectrophotometry to obtain their crystal structure, elemental composition, morphology and size distribution, mass concentration, and optical properties, respectively. The photocatalytic studies showed photodegradation of methylene blue (MB) under UV irradiation. Different ratios of Ag dopant in ZnO nanoparticles influence the photodegradation rate. The ZnO nanoparticles doped with 0.32% silver show the most efficient photodegradation rate, with the chemical reaction constant of 0.0233 min−1. It exhibits an almost twice as large photodegradation rate compared to pure ZnO nanoparticles, showing the doping effect on the photocatalytic activity.
T2  - Nanomaterials
T1  - Enhancement of Methylene Blue Photodegradation Rate Using Laser Synthesized Ag-Doped ZnO Nanoparticles
VL  - 12
IS  - 15
SP  - 2677
DO  - 10.3390/nano12152677
ER  - 
@article{
author = "Blažeka, Damjan and Radičić, Rafaela and Maletić, Dejan and Živković, Sanja and Momčilović, Miloš and Krstulović, Nikša",
year = "2022",
abstract = "In this work, Ag-doped ZnO nanoparticles are obtained via pulsed laser ablation of the Ag-coated ZnO target in water. The ratio of Ag dopant in ZnO nanoparticles strongly depends on the thickness of the Ag layer at the ZnO target. Synthesized nanoparticles were characterized by XRD, XPS, SEM, EDS, ICP-OES, and UV–VIS spectrophotometry to obtain their crystal structure, elemental composition, morphology and size distribution, mass concentration, and optical properties, respectively. The photocatalytic studies showed photodegradation of methylene blue (MB) under UV irradiation. Different ratios of Ag dopant in ZnO nanoparticles influence the photodegradation rate. The ZnO nanoparticles doped with 0.32% silver show the most efficient photodegradation rate, with the chemical reaction constant of 0.0233 min−1. It exhibits an almost twice as large photodegradation rate compared to pure ZnO nanoparticles, showing the doping effect on the photocatalytic activity.",
journal = "Nanomaterials",
title = "Enhancement of Methylene Blue Photodegradation Rate Using Laser Synthesized Ag-Doped ZnO Nanoparticles",
volume = "12",
number = "15",
pages = "2677",
doi = "10.3390/nano12152677"
}
Blažeka, D., Radičić, R., Maletić, D., Živković, S., Momčilović, M.,& Krstulović, N.. (2022). Enhancement of Methylene Blue Photodegradation Rate Using Laser Synthesized Ag-Doped ZnO Nanoparticles. in Nanomaterials, 12(15), 2677.
https://doi.org/10.3390/nano12152677
Blažeka D, Radičić R, Maletić D, Živković S, Momčilović M, Krstulović N. Enhancement of Methylene Blue Photodegradation Rate Using Laser Synthesized Ag-Doped ZnO Nanoparticles. in Nanomaterials. 2022;12(15):2677.
doi:10.3390/nano12152677 .
Blažeka, Damjan, Radičić, Rafaela, Maletić, Dejan, Živković, Sanja, Momčilović, Miloš, Krstulović, Nikša, "Enhancement of Methylene Blue Photodegradation Rate Using Laser Synthesized Ag-Doped ZnO Nanoparticles" in Nanomaterials, 12, no. 15 (2022):2677,
https://doi.org/10.3390/nano12152677 . .
14
16

Structural, magnetic and photocatalytic properties of ZnO nanopowder

Maletić, Dejan; Čebela, Maria; Blažeka, Damjan; Radičić, Rafaela; Šenjug, Pavla; Barišić, Dario; Pajić, Damir

(Belgrade : Serbian Ceramic Society, 2021)

TY  - CONF
AU  - Maletić, Dejan
AU  - Čebela, Maria
AU  - Blažeka, Damjan
AU  - Radičić, Rafaela
AU  - Šenjug, Pavla
AU  - Barišić, Dario
AU  - Pajić, Damir
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10837
AB  - Removal of organic pollutants from the waste water will bethemost challenging objective in the future. The photodegradation using the zinc oxide (ZnO)is one of the bestpromising material due to low price and high efficiency. Zinc oxide nanoparticles were synthetized by self propagatingroom temperature reaction of zincnitratewith sodium hydroxide.After reaction powder wascalcinated at 1100°C for 4 h in furnace. The diffraction patterns were recorded at room temperature and atmospheric pressure in the absence of any re-heating of the samples. The temperature dependence of magnetization was measured in the field of 1000 Oe and temperature range from 2 to 300 K using MPMS5 SQUID magnetometer. Photocatalytic properties were determined using the degradation of organic dye Methylene Blue (MB). Hg UV lap was used for irradiating the solution of MB and ZnOnanopowder. The photodegradation of MB was monitored by decreasing 664 nm peak during 120 min, after this period of time we observed 95% of reduction from the starting dye concentration. Nanopowder of ZnO show strong photocatalytic performance and can be used for further investigation and applications.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application : 9th Serbian Ceramic Society Conference : program and the book of abstracts; September 20-21, 2021; Belgrade
T1  - Structural, magnetic and photocatalytic properties of ZnO nanopowder
SP  - 78
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10837
ER  - 
@conference{
author = "Maletić, Dejan and Čebela, Maria and Blažeka, Damjan and Radičić, Rafaela and Šenjug, Pavla and Barišić, Dario and Pajić, Damir",
year = "2021",
abstract = "Removal of organic pollutants from the waste water will bethemost challenging objective in the future. The photodegradation using the zinc oxide (ZnO)is one of the bestpromising material due to low price and high efficiency. Zinc oxide nanoparticles were synthetized by self propagatingroom temperature reaction of zincnitratewith sodium hydroxide.After reaction powder wascalcinated at 1100°C for 4 h in furnace. The diffraction patterns were recorded at room temperature and atmospheric pressure in the absence of any re-heating of the samples. The temperature dependence of magnetization was measured in the field of 1000 Oe and temperature range from 2 to 300 K using MPMS5 SQUID magnetometer. Photocatalytic properties were determined using the degradation of organic dye Methylene Blue (MB). Hg UV lap was used for irradiating the solution of MB and ZnOnanopowder. The photodegradation of MB was monitored by decreasing 664 nm peak during 120 min, after this period of time we observed 95% of reduction from the starting dye concentration. Nanopowder of ZnO show strong photocatalytic performance and can be used for further investigation and applications.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application : 9th Serbian Ceramic Society Conference : program and the book of abstracts; September 20-21, 2021; Belgrade",
title = "Structural, magnetic and photocatalytic properties of ZnO nanopowder",
pages = "78",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10837"
}
Maletić, D., Čebela, M., Blažeka, D., Radičić, R., Šenjug, P., Barišić, D.,& Pajić, D.. (2021). Structural, magnetic and photocatalytic properties of ZnO nanopowder. in Advanced Ceramics and Application : 9th Serbian Ceramic Society Conference : program and the book of abstracts; September 20-21, 2021; Belgrade
Belgrade : Serbian Ceramic Society., 78.
https://hdl.handle.net/21.15107/rcub_vinar_10837
Maletić D, Čebela M, Blažeka D, Radičić R, Šenjug P, Barišić D, Pajić D. Structural, magnetic and photocatalytic properties of ZnO nanopowder. in Advanced Ceramics and Application : 9th Serbian Ceramic Society Conference : program and the book of abstracts; September 20-21, 2021; Belgrade. 2021;:78.
https://hdl.handle.net/21.15107/rcub_vinar_10837 .
Maletić, Dejan, Čebela, Maria, Blažeka, Damjan, Radičić, Rafaela, Šenjug, Pavla, Barišić, Dario, Pajić, Damir, "Structural, magnetic and photocatalytic properties of ZnO nanopowder" in Advanced Ceramics and Application : 9th Serbian Ceramic Society Conference : program and the book of abstracts; September 20-21, 2021; Belgrade (2021):78,
https://hdl.handle.net/21.15107/rcub_vinar_10837 .