Jakovac, Josip

Link to this page

Authority KeyName Variants
28a82a83-071a-455c-b546-3c19be472d4a
  • Jakovac, Josip (2)
Projects

Author's Bibliography

Modeling of the interband transitions in the optical conductivity of doped two-dimensional materials in the terahertz to the infrared frequency range: the case studies of graphene and phosphorene

Mišković, Zoran L.; Moshayedi, Milad; Preciado-Rivas, Maria Rosa; Jakovac, Josip; Radović, Ivan; Despoja, Vito

(2023)

TY  - JOUR
AU  - Mišković, Zoran L.
AU  - Moshayedi, Milad
AU  - Preciado-Rivas, Maria Rosa
AU  - Jakovac, Josip
AU  - Radović, Ivan
AU  - Despoja, Vito
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11030
AB  - We use Kramers-Kronig analysis and ab initio calculations to develop a simple analytical method for including the effects of high-energy interband electron transitions in the density polarization function of doped graphene and doped phosphorene in the optical limit. The resulting formulas are suitable for applications in the terahertz to the mid-infrared range of frequencies, where the interband electron transitions are shown to give rise to static screening with a suitably chosen in-plane polarizability. In the case of phosphorene, each component of its static polarizability tensor can be computed from a sum-rule–like formula using the ab initio data for the real part of the corresponding component of the full optical interband conductivity tensor of that material.
T2  - Radiation Effects and Defects in Solids
T1  - Modeling of the interband transitions in the optical conductivity of doped two-dimensional materials in the terahertz to the infrared frequency range: the case studies of graphene and phosphorene
VL  - 178
IS  - 1-2
SP  - 54
EP  - 71
DO  - 10.1080/10420150.2023.2186870
ER  - 
@article{
author = "Mišković, Zoran L. and Moshayedi, Milad and Preciado-Rivas, Maria Rosa and Jakovac, Josip and Radović, Ivan and Despoja, Vito",
year = "2023",
abstract = "We use Kramers-Kronig analysis and ab initio calculations to develop a simple analytical method for including the effects of high-energy interband electron transitions in the density polarization function of doped graphene and doped phosphorene in the optical limit. The resulting formulas are suitable for applications in the terahertz to the mid-infrared range of frequencies, where the interband electron transitions are shown to give rise to static screening with a suitably chosen in-plane polarizability. In the case of phosphorene, each component of its static polarizability tensor can be computed from a sum-rule–like formula using the ab initio data for the real part of the corresponding component of the full optical interband conductivity tensor of that material.",
journal = "Radiation Effects and Defects in Solids",
title = "Modeling of the interband transitions in the optical conductivity of doped two-dimensional materials in the terahertz to the infrared frequency range: the case studies of graphene and phosphorene",
volume = "178",
number = "1-2",
pages = "54-71",
doi = "10.1080/10420150.2023.2186870"
}
Mišković, Z. L., Moshayedi, M., Preciado-Rivas, M. R., Jakovac, J., Radović, I.,& Despoja, V.. (2023). Modeling of the interband transitions in the optical conductivity of doped two-dimensional materials in the terahertz to the infrared frequency range: the case studies of graphene and phosphorene. in Radiation Effects and Defects in Solids, 178(1-2), 54-71.
https://doi.org/10.1080/10420150.2023.2186870
Mišković ZL, Moshayedi M, Preciado-Rivas MR, Jakovac J, Radović I, Despoja V. Modeling of the interband transitions in the optical conductivity of doped two-dimensional materials in the terahertz to the infrared frequency range: the case studies of graphene and phosphorene. in Radiation Effects and Defects in Solids. 2023;178(1-2):54-71.
doi:10.1080/10420150.2023.2186870 .
Mišković, Zoran L., Moshayedi, Milad, Preciado-Rivas, Maria Rosa, Jakovac, Josip, Radović, Ivan, Despoja, Vito, "Modeling of the interband transitions in the optical conductivity of doped two-dimensional materials in the terahertz to the infrared frequency range: the case studies of graphene and phosphorene" in Radiation Effects and Defects in Solids, 178, no. 1-2 (2023):54-71,
https://doi.org/10.1080/10420150.2023.2186870 . .
2
2

Resolving the Mechanism of Acoustic Plasmon Instability in Graphene Doped by Alkali Metals

Marušić, Leonardo; Kalinić, Ana; Radović, Ivan; Jakovac, Josip; Mišković, Zoran L.; Despoja, Vito

(2022)

TY  - JOUR
AU  - Marušić, Leonardo
AU  - Kalinić, Ana
AU  - Radović, Ivan
AU  - Jakovac, Josip
AU  - Mišković, Zoran L.
AU  - Despoja, Vito
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10245
AB  - Graphene doped by alkali atoms (ACx) supports two heavily populated bands (π and σ) crossing the Fermi level, which enables the formation of two intense two-dimensional plasmons: the Dirac plasmon (DP) and the acoustic plasmon (AP). Although the mechanism of the formation of these plasmons in electrostatically biased graphene or at noble metal surfaces is well known, the mechanism of their formation in alkali-doped graphenes is still not completely understood. We shall demonstrate that two isoelectronic systems, KC8 and CsC8, support substantially different plasmonic spectra: the KC8 supports a sharp DP and a well-defined AP, while the CsC8 supports a broad DP and does not support an AP at all. We shall demonstrate that the AP in an ACx is not, as previously believed, just a consequence of the interplay of the π and σ intraband transitions, but a very subtle interplay between these transitions and the background screening, caused by the out-of-plane interband C(π)→A(σ) transitions.
T2  - International Journal of Molecular Sciences
T1  - Resolving the Mechanism of Acoustic Plasmon Instability in Graphene Doped by Alkali Metals
VL  - 23
IS  - 9
SP  - 4770
DO  - 10.3390/ijms23094770
ER  - 
@article{
author = "Marušić, Leonardo and Kalinić, Ana and Radović, Ivan and Jakovac, Josip and Mišković, Zoran L. and Despoja, Vito",
year = "2022",
abstract = "Graphene doped by alkali atoms (ACx) supports two heavily populated bands (π and σ) crossing the Fermi level, which enables the formation of two intense two-dimensional plasmons: the Dirac plasmon (DP) and the acoustic plasmon (AP). Although the mechanism of the formation of these plasmons in electrostatically biased graphene or at noble metal surfaces is well known, the mechanism of their formation in alkali-doped graphenes is still not completely understood. We shall demonstrate that two isoelectronic systems, KC8 and CsC8, support substantially different plasmonic spectra: the KC8 supports a sharp DP and a well-defined AP, while the CsC8 supports a broad DP and does not support an AP at all. We shall demonstrate that the AP in an ACx is not, as previously believed, just a consequence of the interplay of the π and σ intraband transitions, but a very subtle interplay between these transitions and the background screening, caused by the out-of-plane interband C(π)→A(σ) transitions.",
journal = "International Journal of Molecular Sciences",
title = "Resolving the Mechanism of Acoustic Plasmon Instability in Graphene Doped by Alkali Metals",
volume = "23",
number = "9",
pages = "4770",
doi = "10.3390/ijms23094770"
}
Marušić, L., Kalinić, A., Radović, I., Jakovac, J., Mišković, Z. L.,& Despoja, V.. (2022). Resolving the Mechanism of Acoustic Plasmon Instability in Graphene Doped by Alkali Metals. in International Journal of Molecular Sciences, 23(9), 4770.
https://doi.org/10.3390/ijms23094770
Marušić L, Kalinić A, Radović I, Jakovac J, Mišković ZL, Despoja V. Resolving the Mechanism of Acoustic Plasmon Instability in Graphene Doped by Alkali Metals. in International Journal of Molecular Sciences. 2022;23(9):4770.
doi:10.3390/ijms23094770 .
Marušić, Leonardo, Kalinić, Ana, Radović, Ivan, Jakovac, Josip, Mišković, Zoran L., Despoja, Vito, "Resolving the Mechanism of Acoustic Plasmon Instability in Graphene Doped by Alkali Metals" in International Journal of Molecular Sciences, 23, no. 9 (2022):4770,
https://doi.org/10.3390/ijms23094770 . .
5
1
4