Spreitzer, Matjaž

Link to this page

Authority KeyName Variants
4b96cd01-caba-47ff-9653-f4195d6746b9
  • Spreitzer, Matjaž (9)
Projects

Author's Bibliography

Perpendicular magnetic anisotropy at room-temperature in sputtered a-Si/Ni/a-Si layered structure with thick Ni (nickel) layers

Tadić, Marin; Panjan, Matjaž; Čekada, Miha; Jagličić, Zvonko; Pregelj, Matej; Spreitzer, Matjaž; Panjan, Peter

(2023)

TY  - JOUR
AU  - Tadić, Marin
AU  - Panjan, Matjaž
AU  - Čekada, Miha
AU  - Jagličić, Zvonko
AU  - Pregelj, Matej
AU  - Spreitzer, Matjaž
AU  - Panjan, Peter
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12839
AB  - In the literature, a magnetic “easy” axis perpendicular to the film plane at room temperature (i.e., perpendicular magnetic anisotropy - PMA) has been reported in Ni (nickel) layers with thicknesses below ≈15 nm. In this work, we observed room-temperature PMA in a-Si/Ni/a-Si (where a-Si denotes amorphous silicon) thin film structures with nickel layer thicker than 15 nm. Two layered structures were prepared by DC/RF triode sputtering: [a-Si/Ni/a-Si] sandwich structure and [a-Si/Ni/a-Si]5 multilayer structure. The cross sectional STEM revealed uniform Ni layers with thicknesses of ≈17 nm in [a-Si/Ni/a-Si]5 – multilayer and ≈28 nm in [a-Si/Ni/a-Si] – single-layer whereas amorphous Si layers were ≈15 nm and 170 nm thick, respectively. An amorphous Ni–Si interphase was also observed in the layered structures. The XRD showed patterns for fcc-Ni with dominant (111) orientation. No other crystalline phases were observed in the XRD patterns. To our knowledge, there are no literature reports of easy magnetization direction perpendicular to the film plane at room temperature for Ni layers with thickness of ≈28 nm as presented in this work. The origin of PMA in a-Si/Ni/a-Si films may be mainly attributed to the magnetoelastic anisotropy whereas the secondary source of PMA is believed to be the surface anisotropy and magnetocrystalline anisotropy of [111] columnar grains. Amorphous silicon layers (substrate) do not have a well-defined lattice structure like crystalline substrates. Therefore, they do not induce strains in the nickel layers through lattice mismatch as in the case of epitaxy. The strains can be caused by other factors such as diffusion-induced strain, thermal expansion mismatch or intrinsic stresses during the growth process. These results could be important for applications in memory devices, sensors, logic chips, magneto-optic, magneto-electronic and spintronic devices and in fundamental research, as well as first step toward preparation and understanding of the PMA in thick nickel layers.
T2  - Ceramics International
T1  - Perpendicular magnetic anisotropy at room-temperature in sputtered a-Si/Ni/a-Si layered structure with thick Ni (nickel) layers
VL  - 49
IS  - 19
SP  - 32068
EP  - 32077
DO  - 10.1016/j.ceramint.2023.07.174
ER  - 
@article{
author = "Tadić, Marin and Panjan, Matjaž and Čekada, Miha and Jagličić, Zvonko and Pregelj, Matej and Spreitzer, Matjaž and Panjan, Peter",
year = "2023",
abstract = "In the literature, a magnetic “easy” axis perpendicular to the film plane at room temperature (i.e., perpendicular magnetic anisotropy - PMA) has been reported in Ni (nickel) layers with thicknesses below ≈15 nm. In this work, we observed room-temperature PMA in a-Si/Ni/a-Si (where a-Si denotes amorphous silicon) thin film structures with nickel layer thicker than 15 nm. Two layered structures were prepared by DC/RF triode sputtering: [a-Si/Ni/a-Si] sandwich structure and [a-Si/Ni/a-Si]5 multilayer structure. The cross sectional STEM revealed uniform Ni layers with thicknesses of ≈17 nm in [a-Si/Ni/a-Si]5 – multilayer and ≈28 nm in [a-Si/Ni/a-Si] – single-layer whereas amorphous Si layers were ≈15 nm and 170 nm thick, respectively. An amorphous Ni–Si interphase was also observed in the layered structures. The XRD showed patterns for fcc-Ni with dominant (111) orientation. No other crystalline phases were observed in the XRD patterns. To our knowledge, there are no literature reports of easy magnetization direction perpendicular to the film plane at room temperature for Ni layers with thickness of ≈28 nm as presented in this work. The origin of PMA in a-Si/Ni/a-Si films may be mainly attributed to the magnetoelastic anisotropy whereas the secondary source of PMA is believed to be the surface anisotropy and magnetocrystalline anisotropy of [111] columnar grains. Amorphous silicon layers (substrate) do not have a well-defined lattice structure like crystalline substrates. Therefore, they do not induce strains in the nickel layers through lattice mismatch as in the case of epitaxy. The strains can be caused by other factors such as diffusion-induced strain, thermal expansion mismatch or intrinsic stresses during the growth process. These results could be important for applications in memory devices, sensors, logic chips, magneto-optic, magneto-electronic and spintronic devices and in fundamental research, as well as first step toward preparation and understanding of the PMA in thick nickel layers.",
journal = "Ceramics International",
title = "Perpendicular magnetic anisotropy at room-temperature in sputtered a-Si/Ni/a-Si layered structure with thick Ni (nickel) layers",
volume = "49",
number = "19",
pages = "32068-32077",
doi = "10.1016/j.ceramint.2023.07.174"
}
Tadić, M., Panjan, M., Čekada, M., Jagličić, Z., Pregelj, M., Spreitzer, M.,& Panjan, P.. (2023). Perpendicular magnetic anisotropy at room-temperature in sputtered a-Si/Ni/a-Si layered structure with thick Ni (nickel) layers. in Ceramics International, 49(19), 32068-32077.
https://doi.org/10.1016/j.ceramint.2023.07.174
Tadić M, Panjan M, Čekada M, Jagličić Z, Pregelj M, Spreitzer M, Panjan P. Perpendicular magnetic anisotropy at room-temperature in sputtered a-Si/Ni/a-Si layered structure with thick Ni (nickel) layers. in Ceramics International. 2023;49(19):32068-32077.
doi:10.1016/j.ceramint.2023.07.174 .
Tadić, Marin, Panjan, Matjaž, Čekada, Miha, Jagličić, Zvonko, Pregelj, Matej, Spreitzer, Matjaž, Panjan, Peter, "Perpendicular magnetic anisotropy at room-temperature in sputtered a-Si/Ni/a-Si layered structure with thick Ni (nickel) layers" in Ceramics International, 49, no. 19 (2023):32068-32077,
https://doi.org/10.1016/j.ceramint.2023.07.174 . .
1
1

Tiling the Silicon for Added Functionality: PLD Growth of Highly Crystalline STO and PZT on Graphene Oxide-Buffered Silicon Surface

Jovanović, Zoran M.; Trstenjak, Urška; Ho, Hsin-Chia; Butsyk, Olena; Chen, Binbin; Tchernychova, Elena; Borodavka, Fedir; Koster, Gertjan; Hlinka, Jiří; Spreitzer, Matjaž

(2023)

TY  - JOUR
AU  - Jovanović, Zoran M.
AU  - Trstenjak, Urška
AU  - Ho, Hsin-Chia
AU  - Butsyk, Olena
AU  - Chen, Binbin
AU  - Tchernychova, Elena
AU  - Borodavka, Fedir
AU  - Koster, Gertjan
AU  - Hlinka, Jiří
AU  - Spreitzer, Matjaž
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10623
AB  - The application of two-dimensional (2D) materials
has alleviated a number of challenges of traditional epitaxy and
pushed forward the integration of dissimilar materials. Besides
acting as a seed layer for van der Waals epitaxy, the 2D materials�
being atom(s) thick�have also enabled wetting transparency in
which the potential field of the substrate, although partially
screened, is still capable of imposing epitaxial overgrowth. One of
the crucial steps in this technology is the preservation of the quality
of 2D materials during and after their transfer to a substrate of
interest. In the present study, we show that by honing the
achievements of traditional epitaxy and wet chemistry a hybrid
approach can be devised that offers a unique perspective for the
integration of functional oxides with a silicon platform. It is based
on SrO-assisted deoxidation and controllable coverage of silicon surface with a layer(s) of spin-coated graphene oxide, thus
simultaneously allowing both direct and van der Waals epitaxy of SrTiO3 (STO). We were able to grow a high-quality STO pseudosubstrate suitable for further overgrowth of functional oxides, such as PbZr1−xTixO3 (PZT). Given that the quality of the films grown
on a reduced graphene oxide-buffer layer was almost identical to that obtained on SiC-derived graphene, we believe that this
approach may provide new routes for direct and “remote” epitaxy or layer-transfer techniques of dissimilar material systems.
T2  - ACS Applied Materials and Interfaces
T1  - Tiling the Silicon for Added Functionality: PLD Growth of Highly
Crystalline STO and PZT on Graphene Oxide-Buffered Silicon Surface
VL  - 15
SP  - 6058
EP  - 6068
DO  - 10.1021/acsami.2c17351
ER  - 
@article{
author = "Jovanović, Zoran M. and Trstenjak, Urška and Ho, Hsin-Chia and Butsyk, Olena and Chen, Binbin and Tchernychova, Elena and Borodavka, Fedir and Koster, Gertjan and Hlinka, Jiří and Spreitzer, Matjaž",
year = "2023",
abstract = "The application of two-dimensional (2D) materials
has alleviated a number of challenges of traditional epitaxy and
pushed forward the integration of dissimilar materials. Besides
acting as a seed layer for van der Waals epitaxy, the 2D materials�
being atom(s) thick�have also enabled wetting transparency in
which the potential field of the substrate, although partially
screened, is still capable of imposing epitaxial overgrowth. One of
the crucial steps in this technology is the preservation of the quality
of 2D materials during and after their transfer to a substrate of
interest. In the present study, we show that by honing the
achievements of traditional epitaxy and wet chemistry a hybrid
approach can be devised that offers a unique perspective for the
integration of functional oxides with a silicon platform. It is based
on SrO-assisted deoxidation and controllable coverage of silicon surface with a layer(s) of spin-coated graphene oxide, thus
simultaneously allowing both direct and van der Waals epitaxy of SrTiO3 (STO). We were able to grow a high-quality STO pseudosubstrate suitable for further overgrowth of functional oxides, such as PbZr1−xTixO3 (PZT). Given that the quality of the films grown
on a reduced graphene oxide-buffer layer was almost identical to that obtained on SiC-derived graphene, we believe that this
approach may provide new routes for direct and “remote” epitaxy or layer-transfer techniques of dissimilar material systems.",
journal = "ACS Applied Materials and Interfaces",
title = "Tiling the Silicon for Added Functionality: PLD Growth of Highly
Crystalline STO and PZT on Graphene Oxide-Buffered Silicon Surface",
volume = "15",
pages = "6058-6068",
doi = "10.1021/acsami.2c17351"
}
Jovanović, Z. M., Trstenjak, U., Ho, H., Butsyk, O., Chen, B., Tchernychova, E., Borodavka, F., Koster, G., Hlinka, J.,& Spreitzer, M.. (2023). Tiling the Silicon for Added Functionality: PLD Growth of Highly
Crystalline STO and PZT on Graphene Oxide-Buffered Silicon Surface. in ACS Applied Materials and Interfaces, 15, 6058-6068.
https://doi.org/10.1021/acsami.2c17351
Jovanović ZM, Trstenjak U, Ho H, Butsyk O, Chen B, Tchernychova E, Borodavka F, Koster G, Hlinka J, Spreitzer M. Tiling the Silicon for Added Functionality: PLD Growth of Highly
Crystalline STO and PZT on Graphene Oxide-Buffered Silicon Surface. in ACS Applied Materials and Interfaces. 2023;15:6058-6068.
doi:10.1021/acsami.2c17351 .
Jovanović, Zoran M., Trstenjak, Urška, Ho, Hsin-Chia, Butsyk, Olena, Chen, Binbin, Tchernychova, Elena, Borodavka, Fedir, Koster, Gertjan, Hlinka, Jiří, Spreitzer, Matjaž, "Tiling the Silicon for Added Functionality: PLD Growth of Highly
Crystalline STO and PZT on Graphene Oxide-Buffered Silicon Surface" in ACS Applied Materials and Interfaces, 15 (2023):6058-6068,
https://doi.org/10.1021/acsami.2c17351 . .
1
2
1

Robust SrTiO3 Passivation of Silicon Photocathode by Reduced Graphene Oxide for Solar Water Splitting

Ho, Hsin-Chia; Smiljanić, Milutin; Jovanović, Zoran M.; Čekada, Miha; Kovač, Janez; Koster, Gertjan; Hlinka, Jiří; Hodnik, Nejc; Spreitzer, Matjaž

(2023)

TY  - JOUR
AU  - Ho, Hsin-Chia
AU  - Smiljanić, Milutin
AU  - Jovanović, Zoran M.
AU  - Čekada, Miha
AU  - Kovač, Janez
AU  - Koster, Gertjan
AU  - Hlinka, Jiří
AU  - Hodnik, Nejc
AU  - Spreitzer, Matjaž
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11587
AB  - Development of a robust photocathode using lowcost and high-performing materials, e.g., p-Si, to produce clean fuel hydrogen has remained challenging since the semiconductor substrate is easily susceptible to (photo)corrosion under photoelectrochemical (PEC) operational conditions. A protective layer over the substrate to simultaneously provide corrosion resistance and maintain efficient charge transfer across the device is therefore needed. To this end, in the present work, we utilized pulsed laser deposition (PLD) to prepare a high-quality SrTiO3 (STO) layer to passivate the p-Si substrate using a buffer layer of reduced graphene oxide (rGO). Specifically, a very thin (3.9 nm ∼10 unit cells) STO layer epitaxially overgrown on rGO-buffered Si showed the highest onset potential (0.326 V vs RHE) in comparison to the counterparts with thicker and/or nonepitaxial STO. The photovoltage, flat-band potential, and electrochemical impedance spectroscopy measurements revealed that the epitaxial photocathode was more beneficial for charge separation, charge transfer, and targeted redox reaction than the nonepitaxial one. The STO/rGO/Si with a smooth and highly epitaxial STO layer outperforming the directly contacted STO/Si with a textured and polycrystalline STO layer showed the importance of having a well-defined passivation layer. In addition, the numerous pinholes formed in the directly contacted STO/Si led to the rapid degradation of the photocathode during the PEC measurements. The stability tests demonstrated the soundness of the epitaxial STO layer in passivating Si against corrosion. This study provided a facile approach for preparing a robust protection layer over a photoelectrode substrate in realizing an efficient and, at the same time, durable PEC device.
T2  - ACS Applied Materials & Interfaces
T1  - Robust SrTiO3 Passivation of Silicon Photocathode by Reduced Graphene Oxide for Solar Water Splitting
VL  - 15
IS  - 37
SP  - 44482
EP  - 44492
DO  - 10.1021/acsami.3c07747
ER  - 
@article{
author = "Ho, Hsin-Chia and Smiljanić, Milutin and Jovanović, Zoran M. and Čekada, Miha and Kovač, Janez and Koster, Gertjan and Hlinka, Jiří and Hodnik, Nejc and Spreitzer, Matjaž",
year = "2023",
abstract = "Development of a robust photocathode using lowcost and high-performing materials, e.g., p-Si, to produce clean fuel hydrogen has remained challenging since the semiconductor substrate is easily susceptible to (photo)corrosion under photoelectrochemical (PEC) operational conditions. A protective layer over the substrate to simultaneously provide corrosion resistance and maintain efficient charge transfer across the device is therefore needed. To this end, in the present work, we utilized pulsed laser deposition (PLD) to prepare a high-quality SrTiO3 (STO) layer to passivate the p-Si substrate using a buffer layer of reduced graphene oxide (rGO). Specifically, a very thin (3.9 nm ∼10 unit cells) STO layer epitaxially overgrown on rGO-buffered Si showed the highest onset potential (0.326 V vs RHE) in comparison to the counterparts with thicker and/or nonepitaxial STO. The photovoltage, flat-band potential, and electrochemical impedance spectroscopy measurements revealed that the epitaxial photocathode was more beneficial for charge separation, charge transfer, and targeted redox reaction than the nonepitaxial one. The STO/rGO/Si with a smooth and highly epitaxial STO layer outperforming the directly contacted STO/Si with a textured and polycrystalline STO layer showed the importance of having a well-defined passivation layer. In addition, the numerous pinholes formed in the directly contacted STO/Si led to the rapid degradation of the photocathode during the PEC measurements. The stability tests demonstrated the soundness of the epitaxial STO layer in passivating Si against corrosion. This study provided a facile approach for preparing a robust protection layer over a photoelectrode substrate in realizing an efficient and, at the same time, durable PEC device.",
journal = "ACS Applied Materials & Interfaces",
title = "Robust SrTiO3 Passivation of Silicon Photocathode by Reduced Graphene Oxide for Solar Water Splitting",
volume = "15",
number = "37",
pages = "44482-44492",
doi = "10.1021/acsami.3c07747"
}
Ho, H., Smiljanić, M., Jovanović, Z. M., Čekada, M., Kovač, J., Koster, G., Hlinka, J., Hodnik, N.,& Spreitzer, M.. (2023). Robust SrTiO3 Passivation of Silicon Photocathode by Reduced Graphene Oxide for Solar Water Splitting. in ACS Applied Materials & Interfaces, 15(37), 44482-44492.
https://doi.org/10.1021/acsami.3c07747
Ho H, Smiljanić M, Jovanović ZM, Čekada M, Kovač J, Koster G, Hlinka J, Hodnik N, Spreitzer M. Robust SrTiO3 Passivation of Silicon Photocathode by Reduced Graphene Oxide for Solar Water Splitting. in ACS Applied Materials & Interfaces. 2023;15(37):44482-44492.
doi:10.1021/acsami.3c07747 .
Ho, Hsin-Chia, Smiljanić, Milutin, Jovanović, Zoran M., Čekada, Miha, Kovač, Janez, Koster, Gertjan, Hlinka, Jiří, Hodnik, Nejc, Spreitzer, Matjaž, "Robust SrTiO3 Passivation of Silicon Photocathode by Reduced Graphene Oxide for Solar Water Splitting" in ACS Applied Materials & Interfaces, 15, no. 37 (2023):44482-44492,
https://doi.org/10.1021/acsami.3c07747 . .
1
1
1

PLD growth of strontium titanate thin films on SrO-deoxidized and rGO-buffered Si(001) substrate

Petković, Darija; Chia-Ho, Hsin; Trstenjak, Urška; Kovač, Janez; Vengust, Damjan; Spreitzer, Matjaž; Jovanović, Zoran

(Belgrade : Institute of Technical Sciences of SASA, 2023)

TY  - CONF
AU  - Petković, Darija
AU  - Chia-Ho, Hsin
AU  - Trstenjak, Urška
AU  - Kovač, Janez
AU  - Vengust, Damjan
AU  - Spreitzer, Matjaž
AU  - Jovanović, Zoran
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12327
AB  - Epitaxy represents a process of crystal growth or material deposition in which the new created layers have a high degree of crystallographic alignment with the substrate lattice. In this research 10 nm-thick thin films of strontium titanate (STO) were grown using pulsed laser deposition (PLD) method on Si(001) whose surface was either deoxidized with strontium oxide (SrO) or buffered by reduced graphene oxide (rGO) in combination with SrO deoxidation. In addition to differently prepared Si(001) surface, the effect of deposition temperature on the crystalline structure of the STO thin films was also examined. Reflection high energy electron diffraction (RHEED), atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray reflectivity (XRR) and X-ray photoelectron spectroscopy (XPS) methods were used to examine the properties of the grown films. It was concluded that the STO thin film grown on the rGO-coated Si substrate at 515 °C shows the highest crystallinity with a smooth surface, while the film deposited on the bare silicon has amorphous structure. The STO films grown at 700 °C show textured or polycrystalline structure. Good crystallinity, epitaxial alignment, and clean interface are the major requirements for STO/Si and the STO/rGO/Si heterostructure for making an efficient and stable Si photocathode for the photoelectrochemical (PEC) water splitting. Our future work will be directed toward understanding how the obtained interfaces and crystalline structure of STO films are influencing the PEC process.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts
T1  - PLD growth of strontium titanate thin films on SrO-deoxidized and rGO-buffered Si(001) substrate
SP  - 60
EP  - 60
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12327
ER  - 
@conference{
author = "Petković, Darija and Chia-Ho, Hsin and Trstenjak, Urška and Kovač, Janez and Vengust, Damjan and Spreitzer, Matjaž and Jovanović, Zoran",
year = "2023",
abstract = "Epitaxy represents a process of crystal growth or material deposition in which the new created layers have a high degree of crystallographic alignment with the substrate lattice. In this research 10 nm-thick thin films of strontium titanate (STO) were grown using pulsed laser deposition (PLD) method on Si(001) whose surface was either deoxidized with strontium oxide (SrO) or buffered by reduced graphene oxide (rGO) in combination with SrO deoxidation. In addition to differently prepared Si(001) surface, the effect of deposition temperature on the crystalline structure of the STO thin films was also examined. Reflection high energy electron diffraction (RHEED), atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray reflectivity (XRR) and X-ray photoelectron spectroscopy (XPS) methods were used to examine the properties of the grown films. It was concluded that the STO thin film grown on the rGO-coated Si substrate at 515 °C shows the highest crystallinity with a smooth surface, while the film deposited on the bare silicon has amorphous structure. The STO films grown at 700 °C show textured or polycrystalline structure. Good crystallinity, epitaxial alignment, and clean interface are the major requirements for STO/Si and the STO/rGO/Si heterostructure for making an efficient and stable Si photocathode for the photoelectrochemical (PEC) water splitting. Our future work will be directed toward understanding how the obtained interfaces and crystalline structure of STO films are influencing the PEC process.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts",
title = "PLD growth of strontium titanate thin films on SrO-deoxidized and rGO-buffered Si(001) substrate",
pages = "60-60",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12327"
}
Petković, D., Chia-Ho, H., Trstenjak, U., Kovač, J., Vengust, D., Spreitzer, M.,& Jovanović, Z.. (2023). PLD growth of strontium titanate thin films on SrO-deoxidized and rGO-buffered Si(001) substrate. in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts
Belgrade : Institute of Technical Sciences of SASA., 60-60.
https://hdl.handle.net/21.15107/rcub_vinar_12327
Petković D, Chia-Ho H, Trstenjak U, Kovač J, Vengust D, Spreitzer M, Jovanović Z. PLD growth of strontium titanate thin films on SrO-deoxidized and rGO-buffered Si(001) substrate. in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts. 2023;:60-60.
https://hdl.handle.net/21.15107/rcub_vinar_12327 .
Petković, Darija, Chia-Ho, Hsin, Trstenjak, Urška, Kovač, Janez, Vengust, Damjan, Spreitzer, Matjaž, Jovanović, Zoran, "PLD growth of strontium titanate thin films on SrO-deoxidized and rGO-buffered Si(001) substrate" in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts (2023):60-60,
https://hdl.handle.net/21.15107/rcub_vinar_12327 .

PLD growth of strontium titanate thin films on silicon substrate for photoelectrochemical water-splitting

Petković, Darija; Chia-Ho, Hsin; Trstenjak, Urška; Kovač, Janez; Vengust, Damjan; Jovanović, Zoran; Spreitzer, Matjaž

(EU COST Action OPERA, 2023)

TY  - CONF
AU  - Petković, Darija
AU  - Chia-Ho, Hsin
AU  - Trstenjak, Urška
AU  - Kovač, Janez
AU  - Vengust, Damjan
AU  - Jovanović, Zoran
AU  - Spreitzer, Matjaž
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12333
AB  - Epitaxial films of metal oxides deposited on silicon substrates represent a new type of material that could be used as protective (or electroactive) layer in the photoelectrochemical water splitting. To understand the influence of crystalline and interfacial properties of oxide layer on the water splitting process a ~10 nm strontium titanate (STO) films have been grown using the PLD method on bare and reduced graphene oxide (rGO) buffered silicon substrate. Our approach relied on the oxide-silicon integration using combination of SrO-assisted deoxidation and controllable coverage of silicon surface with a mono- to threelayer of spin-coated GO. The STO films have been grown at 515 and 700 °C and various experimental techniques were used to examine the surface and crystalline properties of grown films (reflection high energy electron diffraction, atomic force microscopy, scanning electron microscopy, X-ray diffraction, X-ray reflectivity and X-ray photoelectron spectroscopy). The results show that the best the crystallinity of the STO thin films was obtained on rGO/SrO deoxidized silicon surface at 515 °C. Future studies will be devoted to electrochemical characterization of the grown films, that will help to establish clearer link on how the interface and crystalline parameters affect the water splitting process.
PB  - EU COST Action OPERA
C3  - Workshop “Application-oriented material development” : Book of abstracts
T1  - PLD growth of strontium titanate thin films on silicon substrate for photoelectrochemical water-splitting
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12333
ER  - 
@conference{
author = "Petković, Darija and Chia-Ho, Hsin and Trstenjak, Urška and Kovač, Janez and Vengust, Damjan and Jovanović, Zoran and Spreitzer, Matjaž",
year = "2023",
abstract = "Epitaxial films of metal oxides deposited on silicon substrates represent a new type of material that could be used as protective (or electroactive) layer in the photoelectrochemical water splitting. To understand the influence of crystalline and interfacial properties of oxide layer on the water splitting process a ~10 nm strontium titanate (STO) films have been grown using the PLD method on bare and reduced graphene oxide (rGO) buffered silicon substrate. Our approach relied on the oxide-silicon integration using combination of SrO-assisted deoxidation and controllable coverage of silicon surface with a mono- to threelayer of spin-coated GO. The STO films have been grown at 515 and 700 °C and various experimental techniques were used to examine the surface and crystalline properties of grown films (reflection high energy electron diffraction, atomic force microscopy, scanning electron microscopy, X-ray diffraction, X-ray reflectivity and X-ray photoelectron spectroscopy). The results show that the best the crystallinity of the STO thin films was obtained on rGO/SrO deoxidized silicon surface at 515 °C. Future studies will be devoted to electrochemical characterization of the grown films, that will help to establish clearer link on how the interface and crystalline parameters affect the water splitting process.",
publisher = "EU COST Action OPERA",
journal = "Workshop “Application-oriented material development” : Book of abstracts",
title = "PLD growth of strontium titanate thin films on silicon substrate for photoelectrochemical water-splitting",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12333"
}
Petković, D., Chia-Ho, H., Trstenjak, U., Kovač, J., Vengust, D., Jovanović, Z.,& Spreitzer, M.. (2023). PLD growth of strontium titanate thin films on silicon substrate for photoelectrochemical water-splitting. in Workshop “Application-oriented material development” : Book of abstracts
EU COST Action OPERA..
https://hdl.handle.net/21.15107/rcub_vinar_12333
Petković D, Chia-Ho H, Trstenjak U, Kovač J, Vengust D, Jovanović Z, Spreitzer M. PLD growth of strontium titanate thin films on silicon substrate for photoelectrochemical water-splitting. in Workshop “Application-oriented material development” : Book of abstracts. 2023;.
https://hdl.handle.net/21.15107/rcub_vinar_12333 .
Petković, Darija, Chia-Ho, Hsin, Trstenjak, Urška, Kovač, Janez, Vengust, Damjan, Jovanović, Zoran, Spreitzer, Matjaž, "PLD growth of strontium titanate thin films on silicon substrate for photoelectrochemical water-splitting" in Workshop “Application-oriented material development” : Book of abstracts (2023),
https://hdl.handle.net/21.15107/rcub_vinar_12333 .

Solvothermal synthesis of zinc- and gallium-substituted cobalt ferrite nanoparticles

Jovanović, Sonja; Grujičić, Marija; Jelić, Marko; Vukomanović, Marija; Spreitzer, Matjaž; Maček-Kržmanc, Marjeta; Peddis, Davide

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2022)

TY  - CONF
AU  - Jovanović, Sonja
AU  - Grujičić, Marija
AU  - Jelić, Marko
AU  - Vukomanović, Marija
AU  - Spreitzer, Matjaž
AU  - Maček-Kržmanc, Marjeta
AU  - Peddis, Davide
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12297
AB  - In the last two decades, cobalt ferrite (CoFe2O4, CFO) has attracted extensive attention due to its applicability in data storage, catalysis, energy, environment, and in particular, biomedicine. To further extend applicability and improve understanding of fundamental processes, the present work investigates the influence of heteroatoms on physicochemical properties of CFO. Solvothermal method was used for designing a non-agglomerated particles with uniform morpho-structural properties. The physicochemical properties of Zn2+ and Ga3+ substituted CFO nanoparticles were examined (Co(1-x)ZnxFe2O4 and CoGaxFe(2-x)O4; x=0, 0.1, 0.3 and 0.5). In order to isolate the contribution of heteroatoms, the synthesis condition were optimized to allow preparation of nonagglomerated particles with the narrow particle size and shape distribution, including the constant amount of capping agent. The X-ray diffraction (XRD) measurements confirmed the presence of pure cubic spinel phase in all samples, while the transmission electron microscopy (TEM) showed sphere-like nanoparticles with a mean diameter of 6±1 nm. The amount of adsorbed oleic acid on the surface of the nanoparticles, determined by thermogravimetric (TG) analysis, is 22-28 %, which indicates the formation of a complete monolayer of surfactant. The FT-IR analysis substantiated the presence of oleic acid on the surface of the nanoparticles and discovered its covalent bonding to the metal atoms. Substitution of host-atoms was also confirmed by Raman spectroscopy. Magnetic measurements revealed the influence of heteroatoms on saturation magnetization and magnetic anisotropy, showing for all the samples superparamagnetic behavior at room temperature. The substitution of Co2+ and Fe3+ ions with Zn2+ and Ga3+, respectively, leads to the change in chemical composition and cationic distribution of CFO and consequently to variation of its magnetic properties that can be tuned for different applications.
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC 2022 : 1st Intentational conference on innovativ materials in extreme conditions : Program and Book of abstracts
T1  - Solvothermal synthesis of zinc- and gallium-substituted cobalt ferrite nanoparticles
SP  - 57
EP  - 57
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12297
ER  - 
@conference{
author = "Jovanović, Sonja and Grujičić, Marija and Jelić, Marko and Vukomanović, Marija and Spreitzer, Matjaž and Maček-Kržmanc, Marjeta and Peddis, Davide",
year = "2022",
abstract = "In the last two decades, cobalt ferrite (CoFe2O4, CFO) has attracted extensive attention due to its applicability in data storage, catalysis, energy, environment, and in particular, biomedicine. To further extend applicability and improve understanding of fundamental processes, the present work investigates the influence of heteroatoms on physicochemical properties of CFO. Solvothermal method was used for designing a non-agglomerated particles with uniform morpho-structural properties. The physicochemical properties of Zn2+ and Ga3+ substituted CFO nanoparticles were examined (Co(1-x)ZnxFe2O4 and CoGaxFe(2-x)O4; x=0, 0.1, 0.3 and 0.5). In order to isolate the contribution of heteroatoms, the synthesis condition were optimized to allow preparation of nonagglomerated particles with the narrow particle size and shape distribution, including the constant amount of capping agent. The X-ray diffraction (XRD) measurements confirmed the presence of pure cubic spinel phase in all samples, while the transmission electron microscopy (TEM) showed sphere-like nanoparticles with a mean diameter of 6±1 nm. The amount of adsorbed oleic acid on the surface of the nanoparticles, determined by thermogravimetric (TG) analysis, is 22-28 %, which indicates the formation of a complete monolayer of surfactant. The FT-IR analysis substantiated the presence of oleic acid on the surface of the nanoparticles and discovered its covalent bonding to the metal atoms. Substitution of host-atoms was also confirmed by Raman spectroscopy. Magnetic measurements revealed the influence of heteroatoms on saturation magnetization and magnetic anisotropy, showing for all the samples superparamagnetic behavior at room temperature. The substitution of Co2+ and Fe3+ ions with Zn2+ and Ga3+, respectively, leads to the change in chemical composition and cationic distribution of CFO and consequently to variation of its magnetic properties that can be tuned for different applications.",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC 2022 : 1st Intentational conference on innovativ materials in extreme conditions : Program and Book of abstracts",
title = "Solvothermal synthesis of zinc- and gallium-substituted cobalt ferrite nanoparticles",
pages = "57-57",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12297"
}
Jovanović, S., Grujičić, M., Jelić, M., Vukomanović, M., Spreitzer, M., Maček-Kržmanc, M.,& Peddis, D.. (2022). Solvothermal synthesis of zinc- and gallium-substituted cobalt ferrite nanoparticles. in IMEC 2022 : 1st Intentational conference on innovativ materials in extreme conditions : Program and Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 57-57.
https://hdl.handle.net/21.15107/rcub_vinar_12297
Jovanović S, Grujičić M, Jelić M, Vukomanović M, Spreitzer M, Maček-Kržmanc M, Peddis D. Solvothermal synthesis of zinc- and gallium-substituted cobalt ferrite nanoparticles. in IMEC 2022 : 1st Intentational conference on innovativ materials in extreme conditions : Program and Book of abstracts. 2022;:57-57.
https://hdl.handle.net/21.15107/rcub_vinar_12297 .
Jovanović, Sonja, Grujičić, Marija, Jelić, Marko, Vukomanović, Marija, Spreitzer, Matjaž, Maček-Kržmanc, Marjeta, Peddis, Davide, "Solvothermal synthesis of zinc- and gallium-substituted cobalt ferrite nanoparticles" in IMEC 2022 : 1st Intentational conference on innovativ materials in extreme conditions : Program and Book of abstracts (2022):57-57,
https://hdl.handle.net/21.15107/rcub_vinar_12297 .

Innovative Gold/Cobalt Ferrite Nanocomposite: Physicochemical and Cytotoxicity Properties

Motorzhina, Anna; Jovanović, Sonja; Belyaev, Victor K.; Murzin, Dmitry; Pshenichnikov, Stanislav; Kolesnikova, Valeria G.; Omelyanchik, Alexander S.; Gazvoda, Lea; Spreitzer, Matjaž; Panina, Larissa; Rodionova, Valeria; Vukomanović, Marija; Levada, Kateryna

(2021)

TY  - JOUR
AU  - Motorzhina, Anna
AU  - Jovanović, Sonja
AU  - Belyaev, Victor K.
AU  - Murzin, Dmitry
AU  - Pshenichnikov, Stanislav
AU  - Kolesnikova, Valeria G.
AU  - Omelyanchik, Alexander S.
AU  - Gazvoda, Lea
AU  - Spreitzer, Matjaž
AU  - Panina, Larissa
AU  - Rodionova, Valeria
AU  - Vukomanović, Marija
AU  - Levada, Kateryna
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10099
AB  - The combination of plasmonic material and magnetic metal oxide nanoparticles is widely used in multifunctional nanosystems. Here we propose a method for the fabrication of a gold/cobalt ferrite nanocomposite for biomedical applications. The composite includes gold cores of ~10 nm in diameter coated with arginine, which are surrounded by small cobalt ferrite nanoparticles with diameters of ~5 nm covered with dihydrocaffeic acid. The structure and elemental composition, morphology and dimensions, magnetic and optical properties, and biocompatibility of new nanocomposite were studied. The magnetic properties of the composite are mostly determined by the superparamagnetic state of cobalt ferrite nanoparticles, and optical properties are influenced by the localized plasmon resonance in gold nanoparticles. The cytotoxicity of gold/cobalt ferrite nanocomposite was tested using T-lymphoblastic leukemia and peripheral blood mononuclear cells. Studied composite has selective citotoxic effect on cancerous cells while it has no cytotoxic effect on healtly cells. The results suggest that this material can be explored in the future for combined photothermal treatment and magnetic theranostic.
T2  - Processes
T1  - Innovative Gold/Cobalt Ferrite Nanocomposite: Physicochemical and Cytotoxicity Properties
VL  - 9
IS  - 12
SP  - 2264
DO  - 10.3390/pr9122264
ER  - 
@article{
author = "Motorzhina, Anna and Jovanović, Sonja and Belyaev, Victor K. and Murzin, Dmitry and Pshenichnikov, Stanislav and Kolesnikova, Valeria G. and Omelyanchik, Alexander S. and Gazvoda, Lea and Spreitzer, Matjaž and Panina, Larissa and Rodionova, Valeria and Vukomanović, Marija and Levada, Kateryna",
year = "2021",
abstract = "The combination of plasmonic material and magnetic metal oxide nanoparticles is widely used in multifunctional nanosystems. Here we propose a method for the fabrication of a gold/cobalt ferrite nanocomposite for biomedical applications. The composite includes gold cores of ~10 nm in diameter coated with arginine, which are surrounded by small cobalt ferrite nanoparticles with diameters of ~5 nm covered with dihydrocaffeic acid. The structure and elemental composition, morphology and dimensions, magnetic and optical properties, and biocompatibility of new nanocomposite were studied. The magnetic properties of the composite are mostly determined by the superparamagnetic state of cobalt ferrite nanoparticles, and optical properties are influenced by the localized plasmon resonance in gold nanoparticles. The cytotoxicity of gold/cobalt ferrite nanocomposite was tested using T-lymphoblastic leukemia and peripheral blood mononuclear cells. Studied composite has selective citotoxic effect on cancerous cells while it has no cytotoxic effect on healtly cells. The results suggest that this material can be explored in the future for combined photothermal treatment and magnetic theranostic.",
journal = "Processes",
title = "Innovative Gold/Cobalt Ferrite Nanocomposite: Physicochemical and Cytotoxicity Properties",
volume = "9",
number = "12",
pages = "2264",
doi = "10.3390/pr9122264"
}
Motorzhina, A., Jovanović, S., Belyaev, V. K., Murzin, D., Pshenichnikov, S., Kolesnikova, V. G., Omelyanchik, A. S., Gazvoda, L., Spreitzer, M., Panina, L., Rodionova, V., Vukomanović, M.,& Levada, K.. (2021). Innovative Gold/Cobalt Ferrite Nanocomposite: Physicochemical and Cytotoxicity Properties. in Processes, 9(12), 2264.
https://doi.org/10.3390/pr9122264
Motorzhina A, Jovanović S, Belyaev VK, Murzin D, Pshenichnikov S, Kolesnikova VG, Omelyanchik AS, Gazvoda L, Spreitzer M, Panina L, Rodionova V, Vukomanović M, Levada K. Innovative Gold/Cobalt Ferrite Nanocomposite: Physicochemical and Cytotoxicity Properties. in Processes. 2021;9(12):2264.
doi:10.3390/pr9122264 .
Motorzhina, Anna, Jovanović, Sonja, Belyaev, Victor K., Murzin, Dmitry, Pshenichnikov, Stanislav, Kolesnikova, Valeria G., Omelyanchik, Alexander S., Gazvoda, Lea, Spreitzer, Matjaž, Panina, Larissa, Rodionova, Valeria, Vukomanović, Marija, Levada, Kateryna, "Innovative Gold/Cobalt Ferrite Nanocomposite: Physicochemical and Cytotoxicity Properties" in Processes, 9, no. 12 (2021):2264,
https://doi.org/10.3390/pr9122264 . .
4
4

The influence of heteroatoms on physicochemical properties of cobalt ferrite nanoparticles

Jovanović, Sonja; Vukomanović, Marija; Spreitzer, Matjaž; Jovanović, Zoran; Maček- Kržmanc, Marjeta; Grujičić, Marija; Peddis, Davide

(Belgrade : Materials Research Society of Serbia – MRS-Serbia, 2021)

TY  - CONF
AU  - Jovanović, Sonja
AU  - Vukomanović, Marija
AU  - Spreitzer, Matjaž
AU  - Jovanović, Zoran
AU  - Maček- Kržmanc, Marjeta
AU  - Grujičić, Marija
AU  - Peddis, Davide
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12532
AB  - In the last two decades, cobalt ferrite (CoFe2O4, CFO) has attracted extensive attention due to its applicability in data storage, catalysis, energy, environment, and in particular, biomedicine. To further extend applicability and improve understanding of fundamental processes, the present work investigates the influence of heteroatoms on physicochemical properties of CFO. Solvothermal method was used for designing a non-agglomerated particles with uniform morpho-structural properties. The physicochemical properties of Zn2+ and Ga3+ substituted CFO nanoparticles were examined (Co(1-x)ZnxFe2O4 and CoGaxFe(2-x)O4; x=0, 0.1, 0.3 and 0.5). The X-ray diffraction (XRD) measurements confirmed the presence of pure cubic spinel phase in all samples, while the transmission electron microscopy (TEM) showed sphere-like nanoparticles with a mean diameter of 6±1 nm. The amount of adsorbed oleic acid on the surface of the nanoparticles, determined by thermogravimetric (TG) analysis indicates the formation of a complete monolayer of surfactant. The FT-IR analysis substantiated the presence of oleic acid on the surface of the nanoparticles and discovered its covalent bonding to the metal atoms. Substitution of host-atoms was also confirmed by Raman spectroscopy. Magnetic measurements revealed the influence of heteroatoms on saturation magnetization and magnetic anisotropy, showing for all the samples superparamagnetic behaviour at room temperature. The substitution of Co2+ and Fe3+ ions with Zn2+ and Ga3+, respectively, leads to the change in chemical composition and cationic distribution of CFO and consequently to variation of its magnetic properties.
PB  - Belgrade : Materials Research Society of Serbia – MRS-Serbia
C3  - YUCOMAT 2021 : Twenty-second Annual Conference YUCOMAT 2021 : Programme and the Book of abstracts
T1  - The influence of heteroatoms on physicochemical properties of cobalt ferrite nanoparticles
SP  - 107
EP  - 107
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12532
ER  - 
@conference{
author = "Jovanović, Sonja and Vukomanović, Marija and Spreitzer, Matjaž and Jovanović, Zoran and Maček- Kržmanc, Marjeta and Grujičić, Marija and Peddis, Davide",
year = "2021",
abstract = "In the last two decades, cobalt ferrite (CoFe2O4, CFO) has attracted extensive attention due to its applicability in data storage, catalysis, energy, environment, and in particular, biomedicine. To further extend applicability and improve understanding of fundamental processes, the present work investigates the influence of heteroatoms on physicochemical properties of CFO. Solvothermal method was used for designing a non-agglomerated particles with uniform morpho-structural properties. The physicochemical properties of Zn2+ and Ga3+ substituted CFO nanoparticles were examined (Co(1-x)ZnxFe2O4 and CoGaxFe(2-x)O4; x=0, 0.1, 0.3 and 0.5). The X-ray diffraction (XRD) measurements confirmed the presence of pure cubic spinel phase in all samples, while the transmission electron microscopy (TEM) showed sphere-like nanoparticles with a mean diameter of 6±1 nm. The amount of adsorbed oleic acid on the surface of the nanoparticles, determined by thermogravimetric (TG) analysis indicates the formation of a complete monolayer of surfactant. The FT-IR analysis substantiated the presence of oleic acid on the surface of the nanoparticles and discovered its covalent bonding to the metal atoms. Substitution of host-atoms was also confirmed by Raman spectroscopy. Magnetic measurements revealed the influence of heteroatoms on saturation magnetization and magnetic anisotropy, showing for all the samples superparamagnetic behaviour at room temperature. The substitution of Co2+ and Fe3+ ions with Zn2+ and Ga3+, respectively, leads to the change in chemical composition and cationic distribution of CFO and consequently to variation of its magnetic properties.",
publisher = "Belgrade : Materials Research Society of Serbia – MRS-Serbia",
journal = "YUCOMAT 2021 : Twenty-second Annual Conference YUCOMAT 2021 : Programme and the Book of abstracts",
title = "The influence of heteroatoms on physicochemical properties of cobalt ferrite nanoparticles",
pages = "107-107",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12532"
}
Jovanović, S., Vukomanović, M., Spreitzer, M., Jovanović, Z., Maček- Kržmanc, M., Grujičić, M.,& Peddis, D.. (2021). The influence of heteroatoms on physicochemical properties of cobalt ferrite nanoparticles. in YUCOMAT 2021 : Twenty-second Annual Conference YUCOMAT 2021 : Programme and the Book of abstracts
Belgrade : Materials Research Society of Serbia – MRS-Serbia., 107-107.
https://hdl.handle.net/21.15107/rcub_vinar_12532
Jovanović S, Vukomanović M, Spreitzer M, Jovanović Z, Maček- Kržmanc M, Grujičić M, Peddis D. The influence of heteroatoms on physicochemical properties of cobalt ferrite nanoparticles. in YUCOMAT 2021 : Twenty-second Annual Conference YUCOMAT 2021 : Programme and the Book of abstracts. 2021;:107-107.
https://hdl.handle.net/21.15107/rcub_vinar_12532 .
Jovanović, Sonja, Vukomanović, Marija, Spreitzer, Matjaž, Jovanović, Zoran, Maček- Kržmanc, Marjeta, Grujičić, Marija, Peddis, Davide, "The influence of heteroatoms on physicochemical properties of cobalt ferrite nanoparticles" in YUCOMAT 2021 : Twenty-second Annual Conference YUCOMAT 2021 : Programme and the Book of abstracts (2021):107-107,
https://hdl.handle.net/21.15107/rcub_vinar_12532 .

Strain-Engineered Metal-to-Insulator Transition and Orbital Polarization in Nickelate Superlattices Integrated on Silicon

Chen, Binbin; Gauquelin, Nicolas; Jannis, Daen; Cunha, Daniel M.; Halisdemir, Ufuk; Piamonteze, Cinthia; Lee, Jin Hong; Belhadi, Jamal; Eltes, Felix; Abel, Stefan; Jovanović, Zoran; Spreitzer, Matjaž; Fompeyrine, Jean; Verbeeck, Johan; Bibes, Manuel; Huijben, Mark; Rijnders, Guus; Koster, Gertjan

(2020)

TY  - JOUR
AU  - Chen, Binbin
AU  - Gauquelin, Nicolas
AU  - Jannis, Daen
AU  - Cunha, Daniel M.
AU  - Halisdemir, Ufuk
AU  - Piamonteze, Cinthia
AU  - Lee, Jin Hong
AU  - Belhadi, Jamal
AU  - Eltes, Felix
AU  - Abel, Stefan
AU  - Jovanović, Zoran
AU  - Spreitzer, Matjaž
AU  - Fompeyrine, Jean
AU  - Verbeeck, Johan
AU  - Bibes, Manuel
AU  - Huijben, Mark
AU  - Rijnders, Guus
AU  - Koster, Gertjan
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9759
AB  - Epitaxial growth of SrTiO3 (STO) on silicon greatly accelerates the monolithic integration of multifunctional oxides into the mainstream semiconductor electronics. However, oxide superlattices (SLs), the birthplace of many exciting discoveries, remain largely unexplored on silicon. In this work, LaNiO3/LaFeO3 SLs are synthesized on STO-buffered silicon (Si/STO) and STO single-crystal substrates, and their electronic properties are compared using dc transport and X-ray absorption spectroscopy. Both sets of SLs show a similar thickness-driven metal-to-insulator transition, albeit with resistivity and transition temperature modified by the different amounts of strain. In particular, the large tensile strain promotes a pronounced Ni (Formula presented.) orbital polarization for the SL grown on Si/STO, comparable to that reported for LaNiO3 SL epitaxially strained to DyScO3 substrate. Those results illustrate the ability to integrate oxide SLs on silicon with structure and property approaching their counterparts grown on STO single crystal, and also open up new prospects of strain engineering in functional oxides based on the Si platform. © 2020 The Authors. Advanced Materials published by Wiley-VCH GmbH
T2  - Advanced Materials
T1  - Strain-Engineered Metal-to-Insulator Transition and Orbital Polarization in Nickelate Superlattices Integrated on Silicon
DO  - 10.1002/adma.202004995
ER  - 
@article{
author = "Chen, Binbin and Gauquelin, Nicolas and Jannis, Daen and Cunha, Daniel M. and Halisdemir, Ufuk and Piamonteze, Cinthia and Lee, Jin Hong and Belhadi, Jamal and Eltes, Felix and Abel, Stefan and Jovanović, Zoran and Spreitzer, Matjaž and Fompeyrine, Jean and Verbeeck, Johan and Bibes, Manuel and Huijben, Mark and Rijnders, Guus and Koster, Gertjan",
year = "2020",
abstract = "Epitaxial growth of SrTiO3 (STO) on silicon greatly accelerates the monolithic integration of multifunctional oxides into the mainstream semiconductor electronics. However, oxide superlattices (SLs), the birthplace of many exciting discoveries, remain largely unexplored on silicon. In this work, LaNiO3/LaFeO3 SLs are synthesized on STO-buffered silicon (Si/STO) and STO single-crystal substrates, and their electronic properties are compared using dc transport and X-ray absorption spectroscopy. Both sets of SLs show a similar thickness-driven metal-to-insulator transition, albeit with resistivity and transition temperature modified by the different amounts of strain. In particular, the large tensile strain promotes a pronounced Ni (Formula presented.) orbital polarization for the SL grown on Si/STO, comparable to that reported for LaNiO3 SL epitaxially strained to DyScO3 substrate. Those results illustrate the ability to integrate oxide SLs on silicon with structure and property approaching their counterparts grown on STO single crystal, and also open up new prospects of strain engineering in functional oxides based on the Si platform. © 2020 The Authors. Advanced Materials published by Wiley-VCH GmbH",
journal = "Advanced Materials",
title = "Strain-Engineered Metal-to-Insulator Transition and Orbital Polarization in Nickelate Superlattices Integrated on Silicon",
doi = "10.1002/adma.202004995"
}
Chen, B., Gauquelin, N., Jannis, D., Cunha, D. M., Halisdemir, U., Piamonteze, C., Lee, J. H., Belhadi, J., Eltes, F., Abel, S., Jovanović, Z., Spreitzer, M., Fompeyrine, J., Verbeeck, J., Bibes, M., Huijben, M., Rijnders, G.,& Koster, G.. (2020). Strain-Engineered Metal-to-Insulator Transition and Orbital Polarization in Nickelate Superlattices Integrated on Silicon. in Advanced Materials.
https://doi.org/10.1002/adma.202004995
Chen B, Gauquelin N, Jannis D, Cunha DM, Halisdemir U, Piamonteze C, Lee JH, Belhadi J, Eltes F, Abel S, Jovanović Z, Spreitzer M, Fompeyrine J, Verbeeck J, Bibes M, Huijben M, Rijnders G, Koster G. Strain-Engineered Metal-to-Insulator Transition and Orbital Polarization in Nickelate Superlattices Integrated on Silicon. in Advanced Materials. 2020;.
doi:10.1002/adma.202004995 .
Chen, Binbin, Gauquelin, Nicolas, Jannis, Daen, Cunha, Daniel M., Halisdemir, Ufuk, Piamonteze, Cinthia, Lee, Jin Hong, Belhadi, Jamal, Eltes, Felix, Abel, Stefan, Jovanović, Zoran, Spreitzer, Matjaž, Fompeyrine, Jean, Verbeeck, Johan, Bibes, Manuel, Huijben, Mark, Rijnders, Guus, Koster, Gertjan, "Strain-Engineered Metal-to-Insulator Transition and Orbital Polarization in Nickelate Superlattices Integrated on Silicon" in Advanced Materials (2020),
https://doi.org/10.1002/adma.202004995 . .
7
21
4
18