Jelić, Aleksandra

Link to this page

Authority KeyName Variants
orcid::0000-0001-7151-6782
  • Jelić, Aleksandra (5)
Projects

Author's Bibliography

Prediction of thermal and mechanical properties of acrylate-based composites using artificial neural network modeling

Mališić, Vanja; Pezo, Milada; Jelić, Aleksandra; Patarić, Aleksandra; Putić, Slaviša

(2023)

TY  - JOUR
AU  - Mališić, Vanja
AU  - Pezo, Milada
AU  - Jelić, Aleksandra
AU  - Patarić, Aleksandra
AU  - Putić, Slaviša
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12281
AB  - Poly(methyl methacrylate) (PMMA) has a broad spectrum of uses, especially in medical applications. The role of fine-grained alumina particles of PMMA composites was investigated in this study. The composites were based on PMMA modified with dimethyl itaconate (DMI) as a matrix and alumina particles (Al2O3) and alumina doped with iron (Al2O3-Fe) modified with 3-aminopropyl-trimethoxysilane (AM) and flax oil fatty acid methyl esters (biodiesel) as reinforcements. Three particle sizes were measured (~0.4, ~0.6 and ~1.2 μm). The highest thermal conductivity values were measured for the composite 5 wt.% Al2O3-Fe-AM. With the addition of 3 wt.% Al2O3-AM to the PMMA/DMI matrix, mechanical properties were improved (tensile strength, strain, and modulus of elasticity). An artificial neural network model based on the Broyden-Fletcher-Goldfarb-Shanno iterative algorithm was investigated for prediction of thermal conductivity and mechanical properties of the composites showing satisfactory results. This is relevant for applications for optimization of dental materials to produce dentures, which were exposed to variations in temperature during the application.
AB  - Poli (metil metakrilata) (PMMA) ima široku upotrebu, posebno u stomatologiji i medicini. Kompoziti su napravljeni od PMMA modifikovanog dimetil itakonatom (DMI) kao matrice. Kao pojačanje korišćene su čestice glinice (Al2O3) i glinice dopirane oksidom gvožđa (Al2O3-Fe) modifikovanim sa 3-aminopropiltrimetoksilanom (AM) i metil estrima masnih kiselina lanenog ulja (biodizel – BD). Prema merenjima toplotne provodljivosti, najveće vrednosti toplotne provodljivosti imao je kompozit sa česticama glinice 5 wt.% Al2O3-Fe-AM. Dodatkom modifikovanih čestica glinice u PMMA/DMI matricu, poboljšane su mehaničke osobine (zatezna čvrstoća, deformacija i modul elastičnosti). Razvijen je model veštačke neuronske mreže zasnovan na iterativnom algoritmu predloženom u literaturi (Broiden-FletcherGoldfarb-Shanno), za predviđanje toplotne provodljivosti i mehaničkih svojstava kompozita na bazi akrilata u kombinaciji sa česticama na bazi glinice, u zavisnosti od masenog udela čestica, i dodatka oksida gvožđa i modifikatora. Pokazano je da ovi matematički modeli mogu predvideti mehanička i termička svojstva kompozitnih materijala. Ovo je posebno relevantno za predviđanje toplotne provodljivosti materijala koji se koriste u stomatologiji za izradu proteza i koji su izloženi temperaturnim promenama tokom primene.
T2  - Hemijska industrija
T1  - Prediction of thermal and mechanical properties of acrylate-based composites using artificial neural network modeling
T1  - Predviđanje termičkih i mehaničkih svojstava kompozita na bazi akrilata korišćenjem modela veštačke neuronske mreže
VL  - 77
IS  - 4
SP  - 293
EP  - 300
DO  - 10.2298/HEMIND230119029M
ER  - 
@article{
author = "Mališić, Vanja and Pezo, Milada and Jelić, Aleksandra and Patarić, Aleksandra and Putić, Slaviša",
year = "2023",
abstract = "Poly(methyl methacrylate) (PMMA) has a broad spectrum of uses, especially in medical applications. The role of fine-grained alumina particles of PMMA composites was investigated in this study. The composites were based on PMMA modified with dimethyl itaconate (DMI) as a matrix and alumina particles (Al2O3) and alumina doped with iron (Al2O3-Fe) modified with 3-aminopropyl-trimethoxysilane (AM) and flax oil fatty acid methyl esters (biodiesel) as reinforcements. Three particle sizes were measured (~0.4, ~0.6 and ~1.2 μm). The highest thermal conductivity values were measured for the composite 5 wt.% Al2O3-Fe-AM. With the addition of 3 wt.% Al2O3-AM to the PMMA/DMI matrix, mechanical properties were improved (tensile strength, strain, and modulus of elasticity). An artificial neural network model based on the Broyden-Fletcher-Goldfarb-Shanno iterative algorithm was investigated for prediction of thermal conductivity and mechanical properties of the composites showing satisfactory results. This is relevant for applications for optimization of dental materials to produce dentures, which were exposed to variations in temperature during the application., Poli (metil metakrilata) (PMMA) ima široku upotrebu, posebno u stomatologiji i medicini. Kompoziti su napravljeni od PMMA modifikovanog dimetil itakonatom (DMI) kao matrice. Kao pojačanje korišćene su čestice glinice (Al2O3) i glinice dopirane oksidom gvožđa (Al2O3-Fe) modifikovanim sa 3-aminopropiltrimetoksilanom (AM) i metil estrima masnih kiselina lanenog ulja (biodizel – BD). Prema merenjima toplotne provodljivosti, najveće vrednosti toplotne provodljivosti imao je kompozit sa česticama glinice 5 wt.% Al2O3-Fe-AM. Dodatkom modifikovanih čestica glinice u PMMA/DMI matricu, poboljšane su mehaničke osobine (zatezna čvrstoća, deformacija i modul elastičnosti). Razvijen je model veštačke neuronske mreže zasnovan na iterativnom algoritmu predloženom u literaturi (Broiden-FletcherGoldfarb-Shanno), za predviđanje toplotne provodljivosti i mehaničkih svojstava kompozita na bazi akrilata u kombinaciji sa česticama na bazi glinice, u zavisnosti od masenog udela čestica, i dodatka oksida gvožđa i modifikatora. Pokazano je da ovi matematički modeli mogu predvideti mehanička i termička svojstva kompozitnih materijala. Ovo je posebno relevantno za predviđanje toplotne provodljivosti materijala koji se koriste u stomatologiji za izradu proteza i koji su izloženi temperaturnim promenama tokom primene.",
journal = "Hemijska industrija",
title = "Prediction of thermal and mechanical properties of acrylate-based composites using artificial neural network modeling, Predviđanje termičkih i mehaničkih svojstava kompozita na bazi akrilata korišćenjem modela veštačke neuronske mreže",
volume = "77",
number = "4",
pages = "293-300",
doi = "10.2298/HEMIND230119029M"
}
Mališić, V., Pezo, M., Jelić, A., Patarić, A.,& Putić, S.. (2023). Prediction of thermal and mechanical properties of acrylate-based composites using artificial neural network modeling. in Hemijska industrija, 77(4), 293-300.
https://doi.org/10.2298/HEMIND230119029M
Mališić V, Pezo M, Jelić A, Patarić A, Putić S. Prediction of thermal and mechanical properties of acrylate-based composites using artificial neural network modeling. in Hemijska industrija. 2023;77(4):293-300.
doi:10.2298/HEMIND230119029M .
Mališić, Vanja, Pezo, Milada, Jelić, Aleksandra, Patarić, Aleksandra, Putić, Slaviša, "Prediction of thermal and mechanical properties of acrylate-based composites using artificial neural network modeling" in Hemijska industrija, 77, no. 4 (2023):293-300,
https://doi.org/10.2298/HEMIND230119029M . .

Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC)

Jelić, Aleksandra; Sekulić, Milica; Travica, Milan; Gržetić, Jelena; Ugrinović, Vukašin; Marinković, Aleksandar D.; Božić, Aleksandra; Stamenović, Marina; Putić, Slaviša

(2022)

TY  - JOUR
AU  - Jelić, Aleksandra
AU  - Sekulić, Milica
AU  - Travica, Milan
AU  - Gržetić, Jelena
AU  - Ugrinović, Vukašin
AU  - Marinković, Aleksandar D.
AU  - Božić, Aleksandra
AU  - Stamenović, Marina
AU  - Putić, Slaviša
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10237
AB  - In this study, silicate nanofillers; dicalcium silicate, magnesium silicate, tricalcium silicate, and wollastonite; were synthesized using four different methods and incorporated into the epoxy resin to improve its mechanical properties. Characterization of the newly synthesized nanofillers was performed using Fourier-transformation infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The purpose of this study was to analyze newly developed composite materials reinforced with silicate nanoparticles utilizing tensile testing and a full-field non-contact 3D Digital Image Correlation (DIC) method. Analysis of deformation and displacement fields gives precise material behavior during testing. Testing results allowed a more reliable assessment of the structural integrity of epoxy composite materials reinforced using different silicate nanofillers. It was concluded that the addition of 3% of dicalcium silicate, magnesium silicate, tricalcium silicate, and wollastonite lead to the increasement of tensile strength up to 31.5%, 29.0%, 27.5%, and 23.5% in comparison with neat epoxy, respectively. In order to offer more trustworthy information about the viscoelastic behavior of neat epoxy and composites, a dynamic mechanical analysis (DMA) was also performed and rheological measurements of uncured epoxy matrix and epoxy suspensions were obtained.
T2  - Polymers
T1  - Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC)
VL  - 14
IS  - 6
SP  - 1255
DO  - 10.3390/polym14061255
ER  - 
@article{
author = "Jelić, Aleksandra and Sekulić, Milica and Travica, Milan and Gržetić, Jelena and Ugrinović, Vukašin and Marinković, Aleksandar D. and Božić, Aleksandra and Stamenović, Marina and Putić, Slaviša",
year = "2022",
abstract = "In this study, silicate nanofillers; dicalcium silicate, magnesium silicate, tricalcium silicate, and wollastonite; were synthesized using four different methods and incorporated into the epoxy resin to improve its mechanical properties. Characterization of the newly synthesized nanofillers was performed using Fourier-transformation infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The purpose of this study was to analyze newly developed composite materials reinforced with silicate nanoparticles utilizing tensile testing and a full-field non-contact 3D Digital Image Correlation (DIC) method. Analysis of deformation and displacement fields gives precise material behavior during testing. Testing results allowed a more reliable assessment of the structural integrity of epoxy composite materials reinforced using different silicate nanofillers. It was concluded that the addition of 3% of dicalcium silicate, magnesium silicate, tricalcium silicate, and wollastonite lead to the increasement of tensile strength up to 31.5%, 29.0%, 27.5%, and 23.5% in comparison with neat epoxy, respectively. In order to offer more trustworthy information about the viscoelastic behavior of neat epoxy and composites, a dynamic mechanical analysis (DMA) was also performed and rheological measurements of uncured epoxy matrix and epoxy suspensions were obtained.",
journal = "Polymers",
title = "Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC)",
volume = "14",
number = "6",
pages = "1255",
doi = "10.3390/polym14061255"
}
Jelić, A., Sekulić, M., Travica, M., Gržetić, J., Ugrinović, V., Marinković, A. D., Božić, A., Stamenović, M.,& Putić, S.. (2022). Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC). in Polymers, 14(6), 1255.
https://doi.org/10.3390/polym14061255
Jelić A, Sekulić M, Travica M, Gržetić J, Ugrinović V, Marinković AD, Božić A, Stamenović M, Putić S. Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC). in Polymers. 2022;14(6):1255.
doi:10.3390/polym14061255 .
Jelić, Aleksandra, Sekulić, Milica, Travica, Milan, Gržetić, Jelena, Ugrinović, Vukašin, Marinković, Aleksandar D., Božić, Aleksandra, Stamenović, Marina, Putić, Slaviša, "Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC)" in Polymers, 14, no. 6 (2022):1255,
https://doi.org/10.3390/polym14061255 . .
7
5

Design of halloysite modification for improvement of mechanical properties of the epoxy based nanocomposites

Jelić, Aleksandra; Marinković, Aleksandar D.; Sekulić, Milica; Dikić, Stefan; Ugrinović, Vukašin; Pavlović, Vladimir B.; Putić, Slaviša

(2021)

TY  - JOUR
AU  - Jelić, Aleksandra
AU  - Marinković, Aleksandar D.
AU  - Sekulić, Milica
AU  - Dikić, Stefan
AU  - Ugrinović, Vukašin
AU  - Pavlović, Vladimir B.
AU  - Putić, Slaviša
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9562
AB  - In this study, halloysite nanotubes (HNT) were modified by: 3-glycidyloxypropyltrimethoxysilane (GLYMO), 3-aminopropyltrimethoxysilane (APTES), and 2,2-Bis[4-(glycidyloxy) phenyl] propane (DGEBA), and incorporated in the epoxy resin matrix to enhance its mechanical properties. The HNT/epoxy nanocomposite materials were prepared by mixing different ratios of untreated/treated HNT with neat epoxy resin. Characterization of untreated/treated HNT was performed by Fourier-transformation infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). The quantity of grafted molecules and thermal stability of newly synthesized materials were determined by thermogravimetric (TG) and derivative thermogravimetric (DTG) analysis. Tensile properties of newly synthesized materials were compared, and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis of the fracture surfaces were performed. Incorporation of APTES modified HNT (HNTAPT) and two-step modification APTES followed by DGEBA (HNTAPTDG) has increased the tensile strength of the nanocomposite materials up to 72% and 61%, and strain at break up to 1082% and 1216%, respectively, compared to neat epoxy. It was concluded that the modification of HNT contributed to the enhancement of the dispersion and the cross-linking in the epoxy resin matrix. © 2021 Society of Plastics Engineers
T2  - Polymer Composites
T1  - Design of halloysite modification for improvement of mechanical properties of the epoxy based nanocomposites
VL  - 42
IS  - 5
SP  - 2180
EP  - 2192
DO  - 10.1002/pc.25967
ER  - 
@article{
author = "Jelić, Aleksandra and Marinković, Aleksandar D. and Sekulić, Milica and Dikić, Stefan and Ugrinović, Vukašin and Pavlović, Vladimir B. and Putić, Slaviša",
year = "2021",
abstract = "In this study, halloysite nanotubes (HNT) were modified by: 3-glycidyloxypropyltrimethoxysilane (GLYMO), 3-aminopropyltrimethoxysilane (APTES), and 2,2-Bis[4-(glycidyloxy) phenyl] propane (DGEBA), and incorporated in the epoxy resin matrix to enhance its mechanical properties. The HNT/epoxy nanocomposite materials were prepared by mixing different ratios of untreated/treated HNT with neat epoxy resin. Characterization of untreated/treated HNT was performed by Fourier-transformation infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). The quantity of grafted molecules and thermal stability of newly synthesized materials were determined by thermogravimetric (TG) and derivative thermogravimetric (DTG) analysis. Tensile properties of newly synthesized materials were compared, and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis of the fracture surfaces were performed. Incorporation of APTES modified HNT (HNTAPT) and two-step modification APTES followed by DGEBA (HNTAPTDG) has increased the tensile strength of the nanocomposite materials up to 72% and 61%, and strain at break up to 1082% and 1216%, respectively, compared to neat epoxy. It was concluded that the modification of HNT contributed to the enhancement of the dispersion and the cross-linking in the epoxy resin matrix. © 2021 Society of Plastics Engineers",
journal = "Polymer Composites",
title = "Design of halloysite modification for improvement of mechanical properties of the epoxy based nanocomposites",
volume = "42",
number = "5",
pages = "2180-2192",
doi = "10.1002/pc.25967"
}
Jelić, A., Marinković, A. D., Sekulić, M., Dikić, S., Ugrinović, V., Pavlović, V. B.,& Putić, S.. (2021). Design of halloysite modification for improvement of mechanical properties of the epoxy based nanocomposites. in Polymer Composites, 42(5), 2180-2192.
https://doi.org/10.1002/pc.25967
Jelić A, Marinković AD, Sekulić M, Dikić S, Ugrinović V, Pavlović VB, Putić S. Design of halloysite modification for improvement of mechanical properties of the epoxy based nanocomposites. in Polymer Composites. 2021;42(5):2180-2192.
doi:10.1002/pc.25967 .
Jelić, Aleksandra, Marinković, Aleksandar D., Sekulić, Milica, Dikić, Stefan, Ugrinović, Vukašin, Pavlović, Vladimir B., Putić, Slaviša, "Design of halloysite modification for improvement of mechanical properties of the epoxy based nanocomposites" in Polymer Composites, 42, no. 5 (2021):2180-2192,
https://doi.org/10.1002/pc.25967 . .
14
4
14

Effects of dispersion and particle-matrix interactions on mechanical and thermal properties of hnt/epoxy nanocomposite materials

Jelić, Aleksandra; Božić, Aleksandra; Stamenović, Marina; Sekulić, Milica; Porobić, Slavica; Dikić, Stefan; Putić, Slaviša; Mitrović, Nenad; Mladenović, Goran; Mitrović, Aleksandra

(Springer International Publishing, 2021)

TY  - CHAP
AU  - Jelić, Aleksandra
AU  - Božić, Aleksandra
AU  - Stamenović, Marina
AU  - Sekulić, Milica
AU  - Porobić, Slavica
AU  - Dikić, Stefan
AU  - Putić, Slaviša
AU  - Mitrović, Nenad
AU  - Mladenović, Goran
AU  - Mitrović, Aleksandra
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9636
AB  - Halloysite nanotubes (HNTs), naturally occurring as aluminosilicate nanoclay mineral, have recently emerged as a possible nanomaterial for countless applications due to their specific chemical structure, tubular shape, high aspect ratio, biocompatibility and low toxicity. In this study, HNTs were incorporated into the epoxy resin matrix to improve its mechanical properties and thermal stability. However, heterogeneous size, surface charge and surface hydrogen bond formation, result in aggregation of HNTs in epoxies to a certain extent. Three specific techniques were used to integrate HNTs into neat epoxy resin (NE). The structure and morphology of the embedded nanotubes were confirmed by Fourier-transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). Tensile testing was carried out and the fractured surface of the tested specimen was analysed using scanning electron microscopy (SEM). The thermal stability of the prepared nanocomposite materials was investigated by thermogravimetric (TG) and derivative thermogravimetry (DTG) studies. The obtained results indicated that improved properties of HNTs/epoxy nanocomposite materials were related to the unique properties of well-dispersed HNTs, agglomerate scale, and reduced void presence, and could be controlled by the manufacturing processes.
PB  - Springer International Publishing
T2  - Experimental and Computational Investigations in Engineering
T1  - Effects of dispersion and particle-matrix interactions on mechanical and thermal properties of hnt/epoxy nanocomposite materials
SP  - 310
EP  - 325
DO  - 10.1007/978-3-030-58362-0_18
ER  - 
@inbook{
author = "Jelić, Aleksandra and Božić, Aleksandra and Stamenović, Marina and Sekulić, Milica and Porobić, Slavica and Dikić, Stefan and Putić, Slaviša and Mitrović, Nenad and Mladenović, Goran and Mitrović, Aleksandra",
year = "2021",
abstract = "Halloysite nanotubes (HNTs), naturally occurring as aluminosilicate nanoclay mineral, have recently emerged as a possible nanomaterial for countless applications due to their specific chemical structure, tubular shape, high aspect ratio, biocompatibility and low toxicity. In this study, HNTs were incorporated into the epoxy resin matrix to improve its mechanical properties and thermal stability. However, heterogeneous size, surface charge and surface hydrogen bond formation, result in aggregation of HNTs in epoxies to a certain extent. Three specific techniques were used to integrate HNTs into neat epoxy resin (NE). The structure and morphology of the embedded nanotubes were confirmed by Fourier-transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). Tensile testing was carried out and the fractured surface of the tested specimen was analysed using scanning electron microscopy (SEM). The thermal stability of the prepared nanocomposite materials was investigated by thermogravimetric (TG) and derivative thermogravimetry (DTG) studies. The obtained results indicated that improved properties of HNTs/epoxy nanocomposite materials were related to the unique properties of well-dispersed HNTs, agglomerate scale, and reduced void presence, and could be controlled by the manufacturing processes.",
publisher = "Springer International Publishing",
journal = "Experimental and Computational Investigations in Engineering",
booktitle = "Effects of dispersion and particle-matrix interactions on mechanical and thermal properties of hnt/epoxy nanocomposite materials",
pages = "310-325",
doi = "10.1007/978-3-030-58362-0_18"
}
Jelić, A., Božić, A., Stamenović, M., Sekulić, M., Porobić, S., Dikić, S., Putić, S., Mitrović, N., Mladenović, G.,& Mitrović, A.. (2021). Effects of dispersion and particle-matrix interactions on mechanical and thermal properties of hnt/epoxy nanocomposite materials. in Experimental and Computational Investigations in Engineering
Springer International Publishing., 310-325.
https://doi.org/10.1007/978-3-030-58362-0_18
Jelić A, Božić A, Stamenović M, Sekulić M, Porobić S, Dikić S, Putić S, Mitrović N, Mladenović G, Mitrović A. Effects of dispersion and particle-matrix interactions on mechanical and thermal properties of hnt/epoxy nanocomposite materials. in Experimental and Computational Investigations in Engineering. 2021;:310-325.
doi:10.1007/978-3-030-58362-0_18 .
Jelić, Aleksandra, Božić, Aleksandra, Stamenović, Marina, Sekulić, Milica, Porobić, Slavica, Dikić, Stefan, Putić, Slaviša, Mitrović, Nenad, Mladenović, Goran, Mitrović, Aleksandra, "Effects of dispersion and particle-matrix interactions on mechanical and thermal properties of hnt/epoxy nanocomposite materials" in Experimental and Computational Investigations in Engineering (2021):310-325,
https://doi.org/10.1007/978-3-030-58362-0_18 . .
2

Micromechanical analysis of fatigue and crack growth in carbon-fiber epoxy composites based on mechanical testing

Jelić, Aleksandra; Sekulić, Milica; Stamenović, Marina; Ugrinović, Vukašin; Putić, Slaviša

(2020)

TY  - JOUR
AU  - Jelić, Aleksandra
AU  - Sekulić, Milica
AU  - Stamenović, Marina
AU  - Ugrinović, Vukašin
AU  - Putić, Slaviša
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9707
AB  - The paper presents static and dynamic tests of carbon/epoxy composite materials with fiber orientation at 0 degrees/90 degrees and +/- 45 degrees. The main tensile properties were determined as a basis for subsequent dynamic tests, in which permanent dynamic strength, crack growth, and crack growth rate in the material due to the action of fatigue load were assessed. Comparisons were made regarding the structure of the tested specimens. Samples were obtained from prepregs with a specific density of 1600 kg/m(3). The tests were performed at room temperature. Scanning electron microscopy (SEM) was used to analyze the damage in the material during these tests, the mechanisms of their further damage progression and, the impact on the growth and growth rate of the initial crack in the material. The analysis of numerical results and micromechanical analysis confirmed the dominant role of the reinforcing structural element in the material in all performed tests. The obtained results are of great importance in the application of composite materials of such structures under different operating conditions and load regimes.
T2  - Hemijska industrija
T1  - Micromechanical analysis of fatigue and crack growth in carbon-fiber epoxy composites based on mechanical testing
VL  - 74
IS  - 4
SP  - 257
EP  - 264
DO  - 10.2298/HEMIND200615022J
ER  - 
@article{
author = "Jelić, Aleksandra and Sekulić, Milica and Stamenović, Marina and Ugrinović, Vukašin and Putić, Slaviša",
year = "2020",
abstract = "The paper presents static and dynamic tests of carbon/epoxy composite materials with fiber orientation at 0 degrees/90 degrees and +/- 45 degrees. The main tensile properties were determined as a basis for subsequent dynamic tests, in which permanent dynamic strength, crack growth, and crack growth rate in the material due to the action of fatigue load were assessed. Comparisons were made regarding the structure of the tested specimens. Samples were obtained from prepregs with a specific density of 1600 kg/m(3). The tests were performed at room temperature. Scanning electron microscopy (SEM) was used to analyze the damage in the material during these tests, the mechanisms of their further damage progression and, the impact on the growth and growth rate of the initial crack in the material. The analysis of numerical results and micromechanical analysis confirmed the dominant role of the reinforcing structural element in the material in all performed tests. The obtained results are of great importance in the application of composite materials of such structures under different operating conditions and load regimes.",
journal = "Hemijska industrija",
title = "Micromechanical analysis of fatigue and crack growth in carbon-fiber epoxy composites based on mechanical testing",
volume = "74",
number = "4",
pages = "257-264",
doi = "10.2298/HEMIND200615022J"
}
Jelić, A., Sekulić, M., Stamenović, M., Ugrinović, V.,& Putić, S.. (2020). Micromechanical analysis of fatigue and crack growth in carbon-fiber epoxy composites based on mechanical testing. in Hemijska industrija, 74(4), 257-264.
https://doi.org/10.2298/HEMIND200615022J
Jelić A, Sekulić M, Stamenović M, Ugrinović V, Putić S. Micromechanical analysis of fatigue and crack growth in carbon-fiber epoxy composites based on mechanical testing. in Hemijska industrija. 2020;74(4):257-264.
doi:10.2298/HEMIND200615022J .
Jelić, Aleksandra, Sekulić, Milica, Stamenović, Marina, Ugrinović, Vukašin, Putić, Slaviša, "Micromechanical analysis of fatigue and crack growth in carbon-fiber epoxy composites based on mechanical testing" in Hemijska industrija, 74, no. 4 (2020):257-264,
https://doi.org/10.2298/HEMIND200615022J . .
1
1