Nikolić, Aleksandra

Link to this page

Authority KeyName Variants
7726b8f9-26c6-48bf-a6a3-b5ba911c3d61
  • Nikolić, Aleksandra (3)
Projects

Author's Bibliography

A morphology-preserving algorithm for denoising of EMG-contaminated ECG signals

Atanasoski, Vladimir; Petrović, Jovana S.; Popović Maneski, Lana; Miletić, Marjan; Babić, Miloš; Nikolić, Aleksandra; Panescu, Dorin; Ivanović, Marija D.

(2024)

TY  - JOUR
AU  - Atanasoski, Vladimir
AU  - Petrović, Jovana S.
AU  - Popović Maneski, Lana
AU  - Miletić, Marjan
AU  - Babić, Miloš
AU  - Nikolić, Aleksandra
AU  - Panescu, Dorin
AU  - Ivanović, Marija D.
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13128
AB  - Clinical interpretation of an electrocardiogram (ECG) can be detrimentally affected by noise. Removal of the electromyographic (EMG) noise is particularly challenging due to its spectral overlap with the QRS complex. The existing EMG-denoising algorithms often distort signal morphology, thus obscuring diagnostically relevant information. Here, a new iterative regeneration method (IRM) for efficient EMG-noise suppression is proposed. The main hypothesis is that the temporary removal of the dominant ECG components enables extraction of the noise with the minimum alteration to the signal. The method is validated on SimEMG database of simultaneously recorded reference and noisy signals, MIT-BIH arrhythmia database and synthesized ECG signals, both with the noise from MIT Noise Stress Test Database. IRM denoising and morphology-preserving performance is superior to the wavelet- and FIR-based benchmark methods. : IRM is reliable, computationally non-intensive, fast and applicable to any number of ECG channels recorded by mobile or standard ECG devices.
T2  - IEEE Open Journal of Engineering in Medicine and Biology
T1  - A morphology-preserving algorithm for denoising of EMG-contaminated ECG signals
SP  - 1
EP  - 10
DO  - 10.1109/OJEMB.2024.3380352
ER  - 
@article{
author = "Atanasoski, Vladimir and Petrović, Jovana S. and Popović Maneski, Lana and Miletić, Marjan and Babić, Miloš and Nikolić, Aleksandra and Panescu, Dorin and Ivanović, Marija D.",
year = "2024",
abstract = "Clinical interpretation of an electrocardiogram (ECG) can be detrimentally affected by noise. Removal of the electromyographic (EMG) noise is particularly challenging due to its spectral overlap with the QRS complex. The existing EMG-denoising algorithms often distort signal morphology, thus obscuring diagnostically relevant information. Here, a new iterative regeneration method (IRM) for efficient EMG-noise suppression is proposed. The main hypothesis is that the temporary removal of the dominant ECG components enables extraction of the noise with the minimum alteration to the signal. The method is validated on SimEMG database of simultaneously recorded reference and noisy signals, MIT-BIH arrhythmia database and synthesized ECG signals, both with the noise from MIT Noise Stress Test Database. IRM denoising and morphology-preserving performance is superior to the wavelet- and FIR-based benchmark methods. : IRM is reliable, computationally non-intensive, fast and applicable to any number of ECG channels recorded by mobile or standard ECG devices.",
journal = "IEEE Open Journal of Engineering in Medicine and Biology",
title = "A morphology-preserving algorithm for denoising of EMG-contaminated ECG signals",
pages = "1-10",
doi = "10.1109/OJEMB.2024.3380352"
}
Atanasoski, V., Petrović, J. S., Popović Maneski, L., Miletić, M., Babić, M., Nikolić, A., Panescu, D.,& Ivanović, M. D.. (2024). A morphology-preserving algorithm for denoising of EMG-contaminated ECG signals. in IEEE Open Journal of Engineering in Medicine and Biology, 1-10.
https://doi.org/10.1109/OJEMB.2024.3380352
Atanasoski V, Petrović JS, Popović Maneski L, Miletić M, Babić M, Nikolić A, Panescu D, Ivanović MD. A morphology-preserving algorithm for denoising of EMG-contaminated ECG signals. in IEEE Open Journal of Engineering in Medicine and Biology. 2024;:1-10.
doi:10.1109/OJEMB.2024.3380352 .
Atanasoski, Vladimir, Petrović, Jovana S., Popović Maneski, Lana, Miletić, Marjan, Babić, Miloš, Nikolić, Aleksandra, Panescu, Dorin, Ivanović, Marija D., "A morphology-preserving algorithm for denoising of EMG-contaminated ECG signals" in IEEE Open Journal of Engineering in Medicine and Biology (2024):1-10,
https://doi.org/10.1109/OJEMB.2024.3380352 . .

A database of simultaneously recorded ECG signals with and without EMG noise

Atanasoski, Vladimir; Petrović, Jovana; Popović Maneski, Lana; Miletić, Marjan; Babić, Miloš; Nikolić, Aleksandra; Panescu, Dorin; Ivanović, Marija D.

(2023)

TY  - JOUR
AU  - Atanasoski, Vladimir
AU  - Petrović, Jovana
AU  - Popović Maneski, Lana
AU  - Miletić, Marjan
AU  - Babić, Miloš
AU  - Nikolić, Aleksandra
AU  - Panescu, Dorin
AU  - Ivanović, Marija D.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12047
AB  - Goal: Noise on recorded electrocardiographic (ECG) signals may affect their clinical interpretation. Electromyographic (EMG) noise spectrally coincides with the QRS complex, which makes its removal particularly challenging. The problem of evaluating the noise-removal techniques has commonly been approached by algorithm testing on the contaminated ECG signals constructed ad hoc as an additive mixture of a noise-free ECG signal and noise. Consequently, there is an absence of a unique/standard database for testing and comparing different denoising methods. We present a SimEMG database recorded by a novel acquisition method that allows for direct recording of the genuine EMG-noise-free and -contaminated ECG signals. The database is available as open source.
T2  - IEEE Open Journal of Engineering in Medicine and Biology
T1  - A database of simultaneously recorded ECG signals with and without EMG noise
SP  - 1
EP  - 4
DO  - 10.1109/OJEMB.2023.3330295
ER  - 
@article{
author = "Atanasoski, Vladimir and Petrović, Jovana and Popović Maneski, Lana and Miletić, Marjan and Babić, Miloš and Nikolić, Aleksandra and Panescu, Dorin and Ivanović, Marija D.",
year = "2023",
abstract = "Goal: Noise on recorded electrocardiographic (ECG) signals may affect their clinical interpretation. Electromyographic (EMG) noise spectrally coincides with the QRS complex, which makes its removal particularly challenging. The problem of evaluating the noise-removal techniques has commonly been approached by algorithm testing on the contaminated ECG signals constructed ad hoc as an additive mixture of a noise-free ECG signal and noise. Consequently, there is an absence of a unique/standard database for testing and comparing different denoising methods. We present a SimEMG database recorded by a novel acquisition method that allows for direct recording of the genuine EMG-noise-free and -contaminated ECG signals. The database is available as open source.",
journal = "IEEE Open Journal of Engineering in Medicine and Biology",
title = "A database of simultaneously recorded ECG signals with and without EMG noise",
pages = "1-4",
doi = "10.1109/OJEMB.2023.3330295"
}
Atanasoski, V., Petrović, J., Popović Maneski, L., Miletić, M., Babić, M., Nikolić, A., Panescu, D.,& Ivanović, M. D.. (2023). A database of simultaneously recorded ECG signals with and without EMG noise. in IEEE Open Journal of Engineering in Medicine and Biology, 1-4.
https://doi.org/10.1109/OJEMB.2023.3330295
Atanasoski V, Petrović J, Popović Maneski L, Miletić M, Babić M, Nikolić A, Panescu D, Ivanović MD. A database of simultaneously recorded ECG signals with and without EMG noise. in IEEE Open Journal of Engineering in Medicine and Biology. 2023;:1-4.
doi:10.1109/OJEMB.2023.3330295 .
Atanasoski, Vladimir, Petrović, Jovana, Popović Maneski, Lana, Miletić, Marjan, Babić, Miloš, Nikolić, Aleksandra, Panescu, Dorin, Ivanović, Marija D., "A database of simultaneously recorded ECG signals with and without EMG noise" in IEEE Open Journal of Engineering in Medicine and Biology (2023):1-4,
https://doi.org/10.1109/OJEMB.2023.3330295 . .

Telemedicine in the Era of a Pandemic: Usefulness of a Novel Three-Lead ECG

Babić, Miloš D.; Veljković, Stefan; Lakčević, Jovana; Babić, Rade; Ostojić, Miodrag; Petrović, Maša; Boljević, Darko; Tomić, Stanko; Bojić, Milovan; Nikolić, Aleksandra

(2023)

TY  - JOUR
AU  - Babić, Miloš D.
AU  - Veljković, Stefan
AU  - Lakčević, Jovana
AU  - Babić, Rade
AU  - Ostojić, Miodrag
AU  - Petrović, Maša
AU  - Boljević, Darko
AU  - Tomić, Stanko
AU  - Bojić, Milovan
AU  - Nikolić, Aleksandra
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11404
AB  - The 12-lead electrocardiogram (ECG) is a first-line diagnostic tool for patients with cardiac symptoms. As observed during the COVID-19 pandemic, the ECG is essential to the initial patient evaluation. The novel KardioPal three-lead-based ECG reconstructive technology provides a potential alternative to a standard ECG, reducing the response time and cost of treatment and improving patient comfort. Our study aimed to evaluate the diagnostic accuracy of a reconstructed 12-lead ECG obtained by the KardioPal technology, comparing it with the standard 12-lead ECG, and to assess the feasibility and time required to obtain a reconstructed ECG in a real-life scenario. A prospective, nonrandomized, single-center, adjudicator-blinded trial was conducted on 102 patients during the COVID-19 pandemic at the Dedinje Cardiovascular Institute in Belgrade. The KardioPal system demonstrated a high feasibility rate (99%), with high specificity (96.3%), sensitivity (95.8%), and diagnostic accuracy (96.1%) for obtaining clinically relevant matching of reconstructed 12-lead compared to the standard 12-lead ECG recording. This novel technology provided a significant reduction in ECG acquisition time and the need for personnel and space for obtaining ECG recordings, thereby reducing the risk of viral transmission and the burden on an already overwhelmed healthcare system such as the one experienced during the COVID-19 pandemic.
T2  - Diagnostics
T1  - Telemedicine in the Era of a Pandemic: Usefulness of a Novel Three-Lead ECG
VL  - 13
IS  - 15
SP  - 2525
DO  - 10.3390/diagnostics13152525
ER  - 
@article{
author = "Babić, Miloš D. and Veljković, Stefan and Lakčević, Jovana and Babić, Rade and Ostojić, Miodrag and Petrović, Maša and Boljević, Darko and Tomić, Stanko and Bojić, Milovan and Nikolić, Aleksandra",
year = "2023",
abstract = "The 12-lead electrocardiogram (ECG) is a first-line diagnostic tool for patients with cardiac symptoms. As observed during the COVID-19 pandemic, the ECG is essential to the initial patient evaluation. The novel KardioPal three-lead-based ECG reconstructive technology provides a potential alternative to a standard ECG, reducing the response time and cost of treatment and improving patient comfort. Our study aimed to evaluate the diagnostic accuracy of a reconstructed 12-lead ECG obtained by the KardioPal technology, comparing it with the standard 12-lead ECG, and to assess the feasibility and time required to obtain a reconstructed ECG in a real-life scenario. A prospective, nonrandomized, single-center, adjudicator-blinded trial was conducted on 102 patients during the COVID-19 pandemic at the Dedinje Cardiovascular Institute in Belgrade. The KardioPal system demonstrated a high feasibility rate (99%), with high specificity (96.3%), sensitivity (95.8%), and diagnostic accuracy (96.1%) for obtaining clinically relevant matching of reconstructed 12-lead compared to the standard 12-lead ECG recording. This novel technology provided a significant reduction in ECG acquisition time and the need for personnel and space for obtaining ECG recordings, thereby reducing the risk of viral transmission and the burden on an already overwhelmed healthcare system such as the one experienced during the COVID-19 pandemic.",
journal = "Diagnostics",
title = "Telemedicine in the Era of a Pandemic: Usefulness of a Novel Three-Lead ECG",
volume = "13",
number = "15",
pages = "2525",
doi = "10.3390/diagnostics13152525"
}
Babić, M. D., Veljković, S., Lakčević, J., Babić, R., Ostojić, M., Petrović, M., Boljević, D., Tomić, S., Bojić, M.,& Nikolić, A.. (2023). Telemedicine in the Era of a Pandemic: Usefulness of a Novel Three-Lead ECG. in Diagnostics, 13(15), 2525.
https://doi.org/10.3390/diagnostics13152525
Babić MD, Veljković S, Lakčević J, Babić R, Ostojić M, Petrović M, Boljević D, Tomić S, Bojić M, Nikolić A. Telemedicine in the Era of a Pandemic: Usefulness of a Novel Three-Lead ECG. in Diagnostics. 2023;13(15):2525.
doi:10.3390/diagnostics13152525 .
Babić, Miloš D., Veljković, Stefan, Lakčević, Jovana, Babić, Rade, Ostojić, Miodrag, Petrović, Maša, Boljević, Darko, Tomić, Stanko, Bojić, Milovan, Nikolić, Aleksandra, "Telemedicine in the Era of a Pandemic: Usefulness of a Novel Three-Lead ECG" in Diagnostics, 13, no. 15 (2023):2525,
https://doi.org/10.3390/diagnostics13152525 . .
1