Sokić, Miroslav

Link to this page

Authority KeyName Variants
08758231-b50f-4995-af2e-94de2c7f7b34
  • Sokić, Miroslav (3)

Author's Bibliography

Predicting Low-Modulus Biocompatible Titanium Alloys Using Machine Learning

Marković, Gordana; Manojlović, Vaso; Ružić, Jovana; Sokić, Miroslav

(2023)

TY  - JOUR
AU  - Marković, Gordana
AU  - Manojlović, Vaso
AU  - Ružić, Jovana
AU  - Sokić, Miroslav
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11722
AB  - Titanium alloys have been present for decades as the main components for the production of various orthopedic and dental elements. However, modern times require titanium alloys with a low Young’s modulus, and without the presence of cytotoxic alloying elements. Machine learning was used with aim to analyze biocompatible titanium alloys and predict the composition of Ti alloys with a low Young’s modulus. A database was created using experimental data for alloy composition, Young’s modulus, and mechanical and thermal properties of biocompatible titanium alloys. The Extra Tree Regression model was built to predict the Young’s modulus of titanium alloys. By processing data of 246 alloys, the specific heat was discovered to be the most influential parameter that contributes to the lowering of the Young’s modulus of titanium alloys. Further, the Monte Carlo method was used to predict the composition of future alloys with the desired properties. Simulation results of ten million samples, with predefined conditions for obtaining titanium alloys with a Young’s modulus lower than 70 GPa, show that it is possible to obtain several multicomponent alloys, consisting of five main elements: titanium, zirconium, tin, manganese and niobium.
T2  - Materials
T1  - Predicting Low-Modulus Biocompatible Titanium Alloys Using Machine Learning
VL  - 16
IS  - 19
SP  - 6355
DO  - 10.3390/ma16196355
ER  - 
@article{
author = "Marković, Gordana and Manojlović, Vaso and Ružić, Jovana and Sokić, Miroslav",
year = "2023",
abstract = "Titanium alloys have been present for decades as the main components for the production of various orthopedic and dental elements. However, modern times require titanium alloys with a low Young’s modulus, and without the presence of cytotoxic alloying elements. Machine learning was used with aim to analyze biocompatible titanium alloys and predict the composition of Ti alloys with a low Young’s modulus. A database was created using experimental data for alloy composition, Young’s modulus, and mechanical and thermal properties of biocompatible titanium alloys. The Extra Tree Regression model was built to predict the Young’s modulus of titanium alloys. By processing data of 246 alloys, the specific heat was discovered to be the most influential parameter that contributes to the lowering of the Young’s modulus of titanium alloys. Further, the Monte Carlo method was used to predict the composition of future alloys with the desired properties. Simulation results of ten million samples, with predefined conditions for obtaining titanium alloys with a Young’s modulus lower than 70 GPa, show that it is possible to obtain several multicomponent alloys, consisting of five main elements: titanium, zirconium, tin, manganese and niobium.",
journal = "Materials",
title = "Predicting Low-Modulus Biocompatible Titanium Alloys Using Machine Learning",
volume = "16",
number = "19",
pages = "6355",
doi = "10.3390/ma16196355"
}
Marković, G., Manojlović, V., Ružić, J.,& Sokić, M.. (2023). Predicting Low-Modulus Biocompatible Titanium Alloys Using Machine Learning. in Materials, 16(19), 6355.
https://doi.org/10.3390/ma16196355
Marković G, Manojlović V, Ružić J, Sokić M. Predicting Low-Modulus Biocompatible Titanium Alloys Using Machine Learning. in Materials. 2023;16(19):6355.
doi:10.3390/ma16196355 .
Marković, Gordana, Manojlović, Vaso, Ružić, Jovana, Sokić, Miroslav, "Predicting Low-Modulus Biocompatible Titanium Alloys Using Machine Learning" in Materials, 16, no. 19 (2023):6355,
https://doi.org/10.3390/ma16196355 . .
1

Influence of Pr3+ and CO32− Ions Coupled Substitution on Structural, Optical and Antibacterial Properties of Fluorapatite Nanopowders Obtained by Precipitation

Milojkov, Dušan V; Sokić, Miroslav; Radosavljević-Mihajlović, Ana S.; Stanić, Vojislav; Manojlović, Vaso; Mutavdžić, Dragosav R; Milanović, Marija

(2021)

TY  - JOUR
AU  - Milojkov, Dušan V
AU  - Sokić, Miroslav
AU  - Radosavljević-Mihajlović, Ana S.
AU  - Stanić, Vojislav
AU  - Manojlović, Vaso
AU  - Mutavdžić, Dragosav R
AU  - Milanović, Marija
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9922
AB  - Coupled substitution of fluorapatite (FAP) crystal lattice plays an important role in the engineering of optically active nanomaterials. Uniform fluorapatite nanopowders doped with praseodymium (Pr3+) and carbonate (CO32−) ions have been successfully synthesized by precipitation method under room temperature (25 °C). The structural, morphological, chemical and optical properties of monophase material were characterized by X-ray diffraction (XRD), Fourier Transform Infrared and Far Infrared Spectroscopy (FTIR and FIR, respectively), Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS), Transmission Electron Microscopy (TEM) and Photoluminescence Spectroscopy (PL). Coupled substitution of FAP crystal lattice with Pr3+ and CO32− reduces the crystallite size with a constant c/a ratio of 1.72. FTIR study showed that synthesized nanopowders were AB-type CO32− substitution, and FIR study revealed new Pr–O vibrations. TEM analysis was found that synthesized nanopowders were composed of irregular spheres in the nanometer range. The fluorescence of FAP nanoparticles was in the violet-blue region of the visible part of the spectrum. When Pr3+ was doped in a lattice, the violet-blue emission becomes sharper due to reabsorption. MCR–ALS analyses of fluorescence spectra indicated the shift of the maximum to the blue color with the increase in the concentration of Pr3+ ions. Additionally, luminescent nanopowders demonstrated significant antibacterial activity against Escherichia coli. As the obtained nanoparticles showed a good absorption of ultraviolet A light and reabsorption of blue-green luminescence, they are suitable for further development of optically active nanomaterials for light filtering. Optically active PrCFAP nanopowders with antibacterial properties may be promising additives for the development of multifunctional cosmetic and health care products.
T2  - Metals
T1  - Influence of Pr3+ and CO32− Ions Coupled Substitution on Structural, Optical and Antibacterial Properties of Fluorapatite Nanopowders Obtained by Precipitation
VL  - 11
IS  - 9
SP  - 1384
DO  - 10.3390/met11091384
ER  - 
@article{
author = "Milojkov, Dušan V and Sokić, Miroslav and Radosavljević-Mihajlović, Ana S. and Stanić, Vojislav and Manojlović, Vaso and Mutavdžić, Dragosav R and Milanović, Marija",
year = "2021",
abstract = "Coupled substitution of fluorapatite (FAP) crystal lattice plays an important role in the engineering of optically active nanomaterials. Uniform fluorapatite nanopowders doped with praseodymium (Pr3+) and carbonate (CO32−) ions have been successfully synthesized by precipitation method under room temperature (25 °C). The structural, morphological, chemical and optical properties of monophase material were characterized by X-ray diffraction (XRD), Fourier Transform Infrared and Far Infrared Spectroscopy (FTIR and FIR, respectively), Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS), Transmission Electron Microscopy (TEM) and Photoluminescence Spectroscopy (PL). Coupled substitution of FAP crystal lattice with Pr3+ and CO32− reduces the crystallite size with a constant c/a ratio of 1.72. FTIR study showed that synthesized nanopowders were AB-type CO32− substitution, and FIR study revealed new Pr–O vibrations. TEM analysis was found that synthesized nanopowders were composed of irregular spheres in the nanometer range. The fluorescence of FAP nanoparticles was in the violet-blue region of the visible part of the spectrum. When Pr3+ was doped in a lattice, the violet-blue emission becomes sharper due to reabsorption. MCR–ALS analyses of fluorescence spectra indicated the shift of the maximum to the blue color with the increase in the concentration of Pr3+ ions. Additionally, luminescent nanopowders demonstrated significant antibacterial activity against Escherichia coli. As the obtained nanoparticles showed a good absorption of ultraviolet A light and reabsorption of blue-green luminescence, they are suitable for further development of optically active nanomaterials for light filtering. Optically active PrCFAP nanopowders with antibacterial properties may be promising additives for the development of multifunctional cosmetic and health care products.",
journal = "Metals",
title = "Influence of Pr3+ and CO32− Ions Coupled Substitution on Structural, Optical and Antibacterial Properties of Fluorapatite Nanopowders Obtained by Precipitation",
volume = "11",
number = "9",
pages = "1384",
doi = "10.3390/met11091384"
}
Milojkov, D. V., Sokić, M., Radosavljević-Mihajlović, A. S., Stanić, V., Manojlović, V., Mutavdžić, D. R.,& Milanović, M.. (2021). Influence of Pr3+ and CO32− Ions Coupled Substitution on Structural, Optical and Antibacterial Properties of Fluorapatite Nanopowders Obtained by Precipitation. in Metals, 11(9), 1384.
https://doi.org/10.3390/met11091384
Milojkov DV, Sokić M, Radosavljević-Mihajlović AS, Stanić V, Manojlović V, Mutavdžić DR, Milanović M. Influence of Pr3+ and CO32− Ions Coupled Substitution on Structural, Optical and Antibacterial Properties of Fluorapatite Nanopowders Obtained by Precipitation. in Metals. 2021;11(9):1384.
doi:10.3390/met11091384 .
Milojkov, Dušan V, Sokić, Miroslav, Radosavljević-Mihajlović, Ana S., Stanić, Vojislav, Manojlović, Vaso, Mutavdžić, Dragosav R, Milanović, Marija, "Influence of Pr3+ and CO32− Ions Coupled Substitution on Structural, Optical and Antibacterial Properties of Fluorapatite Nanopowders Obtained by Precipitation" in Metals, 11, no. 9 (2021):1384,
https://doi.org/10.3390/met11091384 . .
4
5

Influences of synthesis methods and modifier addition on the properties of Ni-based catalysts supported on reticulated ceramic foams

Nikolić, Vesna; Kamberović, Željko; Andić, Zoran; Korać, Marija; Sokić, Miroslav; Maksimović, Vesna

(Springer Nature, 2014)

TY  - JOUR
AU  - Nikolić, Vesna
AU  - Kamberović, Željko
AU  - Andić, Zoran
AU  - Korać, Marija
AU  - Sokić, Miroslav
AU  - Maksimović, Vesna
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/62
AB  - A method of synthesizing Ni-based catalysts supported on alpha-Al2O3-based foams was developed. The foams were impregnated with aqueous solutions of metal chlorides under an air atmosphere using an aerosol route. Separate procedures involved calcination to form oxides and drying to obtain chlorides on the foam surface. The synthesized samples were subsequently reduced with hydrogen. With respect to the Ni/Al2O3 catalysts, the chloride reduction route enabled the formation of a Ni coating without agglomerates or cracks. Further research included catalyst modification by the addition of Pd, Cu, and Fe. The influences of the additives on the degree of reduction and on the low-temperature reduction effectiveness (533 and 633 K) were examined and compared for the catalysts obtained from oxides and chlorides. Greater degrees of reduction were achieved with chlorides, whereas Pd was the most effective modifier among those investigated. The reduction process was nearly complete at 533 K in the sample that contained 0.1wt% Pd. A lower reduction temperature was utilized, and the calcination step was avoided, which may enhance the economical and technological aspects of the developed catalyst production method.
PB  - Springer Nature
T2  - International Journal of Minerals, Metallurgy and Materials
T1  - Influences of synthesis methods and modifier addition on the properties of Ni-based catalysts supported on reticulated ceramic foams
VL  - 21
IS  - 8
SP  - 806
EP  - 812
DO  - 10.1007/s12613-014-0974-x
ER  - 
@article{
author = "Nikolić, Vesna and Kamberović, Željko and Andić, Zoran and Korać, Marija and Sokić, Miroslav and Maksimović, Vesna",
year = "2014",
abstract = "A method of synthesizing Ni-based catalysts supported on alpha-Al2O3-based foams was developed. The foams were impregnated with aqueous solutions of metal chlorides under an air atmosphere using an aerosol route. Separate procedures involved calcination to form oxides and drying to obtain chlorides on the foam surface. The synthesized samples were subsequently reduced with hydrogen. With respect to the Ni/Al2O3 catalysts, the chloride reduction route enabled the formation of a Ni coating without agglomerates or cracks. Further research included catalyst modification by the addition of Pd, Cu, and Fe. The influences of the additives on the degree of reduction and on the low-temperature reduction effectiveness (533 and 633 K) were examined and compared for the catalysts obtained from oxides and chlorides. Greater degrees of reduction were achieved with chlorides, whereas Pd was the most effective modifier among those investigated. The reduction process was nearly complete at 533 K in the sample that contained 0.1wt% Pd. A lower reduction temperature was utilized, and the calcination step was avoided, which may enhance the economical and technological aspects of the developed catalyst production method.",
publisher = "Springer Nature",
journal = "International Journal of Minerals, Metallurgy and Materials",
title = "Influences of synthesis methods and modifier addition on the properties of Ni-based catalysts supported on reticulated ceramic foams",
volume = "21",
number = "8",
pages = "806-812",
doi = "10.1007/s12613-014-0974-x"
}
Nikolić, V., Kamberović, Ž., Andić, Z., Korać, M., Sokić, M.,& Maksimović, V.. (2014). Influences of synthesis methods and modifier addition on the properties of Ni-based catalysts supported on reticulated ceramic foams. in International Journal of Minerals, Metallurgy and Materials
Springer Nature., 21(8), 806-812.
https://doi.org/10.1007/s12613-014-0974-x
Nikolić V, Kamberović Ž, Andić Z, Korać M, Sokić M, Maksimović V. Influences of synthesis methods and modifier addition on the properties of Ni-based catalysts supported on reticulated ceramic foams. in International Journal of Minerals, Metallurgy and Materials. 2014;21(8):806-812.
doi:10.1007/s12613-014-0974-x .
Nikolić, Vesna, Kamberović, Željko, Andić, Zoran, Korać, Marija, Sokić, Miroslav, Maksimović, Vesna, "Influences of synthesis methods and modifier addition on the properties of Ni-based catalysts supported on reticulated ceramic foams" in International Journal of Minerals, Metallurgy and Materials, 21, no. 8 (2014):806-812,
https://doi.org/10.1007/s12613-014-0974-x . .
5
6
6