Budimir, Milica

Link to this page

Authority KeyName Variants
orcid::0000-0003-0742-0983
  • Budimir, Milica (41)
  • Budimir Filimonović, Milica (1)
  • Budimir Filimonović, Milica D. (1)
Projects
Thin films of single wall carbon nanotubes and graphene for electronic application Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča)
PHOTOGUN4MICROBES - Are photoactive nanoparticles salvation for global infectional treath? SASPRO - Mobility Programme of Slovak Academy of Sciences: Supportive Fund for Excellent Scientists
Size-, shape- and structure- dependent properties of nanoparticles and nanocomposites Application of biotechnological methods for sustainable exploitation of by-products of agro-industry
SASPRO Programme [1237/02/02-b] VEGA [2/0093/16]
bilateral project Serbia-Slovakia [SK-SRB-2016-0038] Czech Science Foundation [19-09721S]
Ministry of Education, Youth and Sports of the Czech Republic Program NPU I [LO1504] multilateral scientific and technological cooperation in the Danube region [DS-2016-021]
People Programme (Marie Curie Actions) European Union's Seventh Framework Programme under REA [609427] Electroconducting and redox-active polymers and oligomers: synthesis, structure, properties and applications
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200030 (Scientific Veterinary Institute of Serbia, Belgrade)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200042 (University of Belgrade, Institute of Molecular Genetics and Genetic Engineering) Implementation and evaluation of a new molecular method for a quick detection of a mecA gene directly in swabs originated from humans, animals and their environment
Slovak Academy of Sciences VEGA [2/0051/20]
Agence Nationale de la Recherche (ANR) ATeN Center [project “Mediterranean Center for Human Health Advanced Biotechnologies (CHAB)”, PON R&C 2007–2013]
ATeN Center (University of Palermo; project “Mediterranean Center for Human Health Advanced Biotechnologies (CHAB)” PON R&C 2007–2013) Belgian F.R.S. - FNRS project SELFPHON
Bilateral collaboration between the Republic of Serbia and Germany [451-03-01732/2017-09/7] bilateral collaboration project Serbia-Slovakia [SK-SRB-2013-0044 (451-03-545/2015-09/07)]
Bilateral project between Serbia and Slovakia [SK-SRB-2016-0038] bilateral project Serbia-Slovakia (SK-SRB-2016-0038)
Bilateral project Serbia–Slovakia [SK-SRB-21-0020] Centre National de la Recherche Scientifique (CNRS), the University Lille, the Hauts-de-France region

Author's Bibliography

Reduction in Pathogenic Biofilms by the Photoactive Composite of Bacterial Cellulose and Nanochitosan Dots under Blue and Green Light

Zmejkoski, Danica; Zdravković, Nemanja M.; Budimir Filimonović, Milica D.; Pavlović, Vladimir B.; Butulija, Svetlana; Milivojević, Dušan; Marković, Zoran M.; Todorović Marković, Biljana M.

(2024)

TY  - JOUR
AU  - Zmejkoski, Danica
AU  - Zdravković, Nemanja M.
AU  - Budimir Filimonović, Milica D.
AU  - Pavlović, Vladimir B.
AU  - Butulija, Svetlana
AU  - Milivojević, Dušan
AU  - Marković, Zoran M.
AU  - Todorović Marković, Biljana M.
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12990
AB  - In this study, nanochitosan dots (ChiDs) were synthesized using gamma rays and encapsulated in bacterial cellulose (BC) polymer matrix for antibiofilm potential in photodynamic therapy. The composites were analyzed for structural changes using SEM, AFM, FTIR, XRD, EPR, and porosity measurements. Additionally, ChiD release was assessed. The results showed that the chemical composition remained unaltered, but ChiD agglomerates embedded in BC changed shape (1.5–2.5 µm). Bacterial cellulose fibers became deformed and interconnected, with increased surface roughness and porosity and decreased crystallinity. No singlet oxygen formation was observed, and the total amount of released ChiD was up to 16.10%. Antibiofilm activity was higher under green light, with reductions ranging from 48 to 57% under blue light and 78 to 85% under green light. Methicillin-resistant Staphylococcus aureus was the most sensitive strain. The new photoactive composite hydrogels show promising potential for combating biofilm-related infections.
T2  - Journal of Functional Biomaterials
T1  - Reduction in Pathogenic Biofilms by the Photoactive Composite of Bacterial Cellulose and Nanochitosan Dots under Blue and Green Light
VL  - 15
IS  - 3
SP  - 72
DO  - 10.3390/jfb15030072
ER  - 
@article{
author = "Zmejkoski, Danica and Zdravković, Nemanja M. and Budimir Filimonović, Milica D. and Pavlović, Vladimir B. and Butulija, Svetlana and Milivojević, Dušan and Marković, Zoran M. and Todorović Marković, Biljana M.",
year = "2024",
abstract = "In this study, nanochitosan dots (ChiDs) were synthesized using gamma rays and encapsulated in bacterial cellulose (BC) polymer matrix for antibiofilm potential in photodynamic therapy. The composites were analyzed for structural changes using SEM, AFM, FTIR, XRD, EPR, and porosity measurements. Additionally, ChiD release was assessed. The results showed that the chemical composition remained unaltered, but ChiD agglomerates embedded in BC changed shape (1.5–2.5 µm). Bacterial cellulose fibers became deformed and interconnected, with increased surface roughness and porosity and decreased crystallinity. No singlet oxygen formation was observed, and the total amount of released ChiD was up to 16.10%. Antibiofilm activity was higher under green light, with reductions ranging from 48 to 57% under blue light and 78 to 85% under green light. Methicillin-resistant Staphylococcus aureus was the most sensitive strain. The new photoactive composite hydrogels show promising potential for combating biofilm-related infections.",
journal = "Journal of Functional Biomaterials",
title = "Reduction in Pathogenic Biofilms by the Photoactive Composite of Bacterial Cellulose and Nanochitosan Dots under Blue and Green Light",
volume = "15",
number = "3",
pages = "72",
doi = "10.3390/jfb15030072"
}
Zmejkoski, D., Zdravković, N. M., Budimir Filimonović, M. D., Pavlović, V. B., Butulija, S., Milivojević, D., Marković, Z. M.,& Todorović Marković, B. M.. (2024). Reduction in Pathogenic Biofilms by the Photoactive Composite of Bacterial Cellulose and Nanochitosan Dots under Blue and Green Light. in Journal of Functional Biomaterials, 15(3), 72.
https://doi.org/10.3390/jfb15030072
Zmejkoski D, Zdravković NM, Budimir Filimonović MD, Pavlović VB, Butulija S, Milivojević D, Marković ZM, Todorović Marković BM. Reduction in Pathogenic Biofilms by the Photoactive Composite of Bacterial Cellulose and Nanochitosan Dots under Blue and Green Light. in Journal of Functional Biomaterials. 2024;15(3):72.
doi:10.3390/jfb15030072 .
Zmejkoski, Danica, Zdravković, Nemanja M., Budimir Filimonović, Milica D., Pavlović, Vladimir B., Butulija, Svetlana, Milivojević, Dušan, Marković, Zoran M., Todorović Marković, Biljana M., "Reduction in Pathogenic Biofilms by the Photoactive Composite of Bacterial Cellulose and Nanochitosan Dots under Blue and Green Light" in Journal of Functional Biomaterials, 15, no. 3 (2024):72,
https://doi.org/10.3390/jfb15030072 . .

Antibacterial and Antibiofouling Activities of Carbon Polymerized Dots/Polyurethane and C60/Polyurethane Composite Films

Marković, Zoran M.; Budimir Filimonović, Milica; Milivojević, Dušan; Kovač, Janez; Todorović-Marković, Biljana

(2024)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Budimir Filimonović, Milica
AU  - Milivojević, Dušan
AU  - Kovač, Janez
AU  - Todorović-Marković, Biljana
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12997
AB  - The cost of treatment of antibiotic-resistant pathogens is on the level of tens of billions of dollars at the moment. It is of special interest to reduce or solve this problem using antimicrobial coatings, especially in hospitals or other healthcare facilities. The bacteria can transfer from medical staff or contaminated surfaces to patients. In this paper, we focused our attention on the antibacterial and antibiofouling activities of two types of photodynamic polyurethane composite films doped with carbon polymerized dots (CPDs) and fullerene C60. Detailed atomic force, electrostatic force and viscoelastic microscopy revealed topology, nanoelectrical and nanomechanical properties of used fillers and composites. A relationship between the electronic structure of the nanocarbon fillers and the antibacterial and antibiofouling activities of the composites was established. Thorough spectroscopic analysis of reactive oxygen species (ROS) generation was conducted for both composite films, and it was found that both of them were potent antibacterial agents against nosocomial bacteria (Klebsiela pneumoniae, Proteus mirabilis, Salmonela enterica, Enterococcus faecalis, Enterococcus epidermis and Pseudomonas aeruginosa). Antibiofouling testing of composite films indicated that the CPDs/PU composite films eradicated almost completely the biofilms of Pseudomonas aeruginosa and Staphylococcus aureus and about 50% of Escherichia coli biofilms.
T2  - Journal of Functional Biomaterials
T1  - Antibacterial and Antibiofouling Activities of Carbon Polymerized Dots/Polyurethane and C60/Polyurethane Composite Films
VL  - 15
IS  - 3
SP  - 73
DO  - 10.3390/jfb15030073
ER  - 
@article{
author = "Marković, Zoran M. and Budimir Filimonović, Milica and Milivojević, Dušan and Kovač, Janez and Todorović-Marković, Biljana",
year = "2024",
abstract = "The cost of treatment of antibiotic-resistant pathogens is on the level of tens of billions of dollars at the moment. It is of special interest to reduce or solve this problem using antimicrobial coatings, especially in hospitals or other healthcare facilities. The bacteria can transfer from medical staff or contaminated surfaces to patients. In this paper, we focused our attention on the antibacterial and antibiofouling activities of two types of photodynamic polyurethane composite films doped with carbon polymerized dots (CPDs) and fullerene C60. Detailed atomic force, electrostatic force and viscoelastic microscopy revealed topology, nanoelectrical and nanomechanical properties of used fillers and composites. A relationship between the electronic structure of the nanocarbon fillers and the antibacterial and antibiofouling activities of the composites was established. Thorough spectroscopic analysis of reactive oxygen species (ROS) generation was conducted for both composite films, and it was found that both of them were potent antibacterial agents against nosocomial bacteria (Klebsiela pneumoniae, Proteus mirabilis, Salmonela enterica, Enterococcus faecalis, Enterococcus epidermis and Pseudomonas aeruginosa). Antibiofouling testing of composite films indicated that the CPDs/PU composite films eradicated almost completely the biofilms of Pseudomonas aeruginosa and Staphylococcus aureus and about 50% of Escherichia coli biofilms.",
journal = "Journal of Functional Biomaterials",
title = "Antibacterial and Antibiofouling Activities of Carbon Polymerized Dots/Polyurethane and C60/Polyurethane Composite Films",
volume = "15",
number = "3",
pages = "73",
doi = "10.3390/jfb15030073"
}
Marković, Z. M., Budimir Filimonović, M., Milivojević, D., Kovač, J.,& Todorović-Marković, B.. (2024). Antibacterial and Antibiofouling Activities of Carbon Polymerized Dots/Polyurethane and C60/Polyurethane Composite Films. in Journal of Functional Biomaterials, 15(3), 73.
https://doi.org/10.3390/jfb15030073
Marković ZM, Budimir Filimonović M, Milivojević D, Kovač J, Todorović-Marković B. Antibacterial and Antibiofouling Activities of Carbon Polymerized Dots/Polyurethane and C60/Polyurethane Composite Films. in Journal of Functional Biomaterials. 2024;15(3):73.
doi:10.3390/jfb15030073 .
Marković, Zoran M., Budimir Filimonović, Milica, Milivojević, Dušan, Kovač, Janez, Todorović-Marković, Biljana, "Antibacterial and Antibiofouling Activities of Carbon Polymerized Dots/Polyurethane and C60/Polyurethane Composite Films" in Journal of Functional Biomaterials, 15, no. 3 (2024):73,
https://doi.org/10.3390/jfb15030073 . .

Microwave-induced synthesis of zinc-phthalocyanine with improved photosensitizing potential

Vasiljević, Bojana; Milivojević, Dušan; Barudžija, Tanja; Budimir, Milica; Mijin, Dušan; Marinović-Cincović, Milena; Marinković, Dragana

(2023)

TY  - JOUR
AU  - Vasiljević, Bojana
AU  - Milivojević, Dušan
AU  - Barudžija, Tanja
AU  - Budimir, Milica
AU  - Mijin, Dušan
AU  - Marinović-Cincović, Milena
AU  - Marinković, Dragana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11349
AB  - In this paper, an efficient and environmentally friendly approach to the microwave-assisted synthesis of zinc
phthalocyanine (ZnPc) was developed to compare the features and changes in morphology, phase, and optical
properties with crystals obtained under conventional synthesis. Well-crystallized with high yield and purity ZnPc
in β-form was obtained by fast and efficient microwave-assisted procedure after five minutes of microwave
heating. Studies including electron paramagnet resonance (EPR) indicated the improved photosensitizing potential of microwave-produced crystals, creating viable candidates for photodynamic treatment. Gamma rays
aftereffect confirmed the stability of the ZnPc making them versatile in their application in medicine and sophisticated technology.
T2  - Materials Letters
T1  - Microwave-induced synthesis of zinc-phthalocyanine with improved photosensitizing potential
VL  - 350
SP  - 134911
DO  - 10.1016/j.matlet.2023.134911
ER  - 
@article{
author = "Vasiljević, Bojana and Milivojević, Dušan and Barudžija, Tanja and Budimir, Milica and Mijin, Dušan and Marinović-Cincović, Milena and Marinković, Dragana",
year = "2023",
abstract = "In this paper, an efficient and environmentally friendly approach to the microwave-assisted synthesis of zinc
phthalocyanine (ZnPc) was developed to compare the features and changes in morphology, phase, and optical
properties with crystals obtained under conventional synthesis. Well-crystallized with high yield and purity ZnPc
in β-form was obtained by fast and efficient microwave-assisted procedure after five minutes of microwave
heating. Studies including electron paramagnet resonance (EPR) indicated the improved photosensitizing potential of microwave-produced crystals, creating viable candidates for photodynamic treatment. Gamma rays
aftereffect confirmed the stability of the ZnPc making them versatile in their application in medicine and sophisticated technology.",
journal = "Materials Letters",
title = "Microwave-induced synthesis of zinc-phthalocyanine with improved photosensitizing potential",
volume = "350",
pages = "134911",
doi = "10.1016/j.matlet.2023.134911"
}
Vasiljević, B., Milivojević, D., Barudžija, T., Budimir, M., Mijin, D., Marinović-Cincović, M.,& Marinković, D.. (2023). Microwave-induced synthesis of zinc-phthalocyanine with improved photosensitizing potential. in Materials Letters, 350, 134911.
https://doi.org/10.1016/j.matlet.2023.134911
Vasiljević B, Milivojević D, Barudžija T, Budimir M, Mijin D, Marinović-Cincović M, Marinković D. Microwave-induced synthesis of zinc-phthalocyanine with improved photosensitizing potential. in Materials Letters. 2023;350:134911.
doi:10.1016/j.matlet.2023.134911 .
Vasiljević, Bojana, Milivojević, Dušan, Barudžija, Tanja, Budimir, Milica, Mijin, Dušan, Marinović-Cincović, Milena, Marinković, Dragana, "Microwave-induced synthesis of zinc-phthalocyanine with improved photosensitizing potential" in Materials Letters, 350 (2023):134911,
https://doi.org/10.1016/j.matlet.2023.134911 . .

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

Marković, Zoran M.; Budimir, Milica; Danko, Martin; Milivojević, Dušan; Kubat, Pavel; Zmejkoski, Danica; Pavlović, Vladimir B.; Mojsin, Marija; Stevanović, Milena J.; Todorović-Marković, Biljana

(2023)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Budimir, Milica
AU  - Danko, Martin
AU  - Milivojević, Dušan
AU  - Kubat, Pavel
AU  - Zmejkoski, Danica
AU  - Pavlović, Vladimir B.
AU  - Mojsin, Marija
AU  - Stevanović, Milena J.
AU  - Todorović-Marković, Biljana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10632
AB  - Carbon quantum dots as a novel type of carbon nanomaterials have attracted the attention of many researchers because of their unique optical, antibacterial, and anticancer properties as well as their biocompatibility. In this study, for the first time, carbon quantum dots were prepared from o-phenylenediamine dissolved in toluene by a solvothermal route. Subsequently, the prepared carbon quantum dots were encapsulated into polyurethane films by a swelling–encapsulation–shrink method. Analyses of the results obtained by different characterization methods (AFM, TEM, EDS, FTIR, photoluminescence, and EPR) indicate the significant influence of the precursor on structural, chemical, and optical properties. Antibacterial and cytotoxicity tests showed that these dots did not have any antibacterial potential, because of the low extent of reactive oxygen species production, and showed low dark cytotoxicity. By investigating the cellular uptake, it was established that these dots penetrated the HeLa cells and could be used as probes for bioimaging.
T2  - Beilstein Journal of Nanotechnology
T1  - Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine
VL  - 14
IS  - 1
SP  - 165
EP  - 174
DO  - 10.3762/bjnano.14.17
ER  - 
@article{
author = "Marković, Zoran M. and Budimir, Milica and Danko, Martin and Milivojević, Dušan and Kubat, Pavel and Zmejkoski, Danica and Pavlović, Vladimir B. and Mojsin, Marija and Stevanović, Milena J. and Todorović-Marković, Biljana",
year = "2023",
abstract = "Carbon quantum dots as a novel type of carbon nanomaterials have attracted the attention of many researchers because of their unique optical, antibacterial, and anticancer properties as well as their biocompatibility. In this study, for the first time, carbon quantum dots were prepared from o-phenylenediamine dissolved in toluene by a solvothermal route. Subsequently, the prepared carbon quantum dots were encapsulated into polyurethane films by a swelling–encapsulation–shrink method. Analyses of the results obtained by different characterization methods (AFM, TEM, EDS, FTIR, photoluminescence, and EPR) indicate the significant influence of the precursor on structural, chemical, and optical properties. Antibacterial and cytotoxicity tests showed that these dots did not have any antibacterial potential, because of the low extent of reactive oxygen species production, and showed low dark cytotoxicity. By investigating the cellular uptake, it was established that these dots penetrated the HeLa cells and could be used as probes for bioimaging.",
journal = "Beilstein Journal of Nanotechnology",
title = "Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine",
volume = "14",
number = "1",
pages = "165-174",
doi = "10.3762/bjnano.14.17"
}
Marković, Z. M., Budimir, M., Danko, M., Milivojević, D., Kubat, P., Zmejkoski, D., Pavlović, V. B., Mojsin, M., Stevanović, M. J.,& Todorović-Marković, B.. (2023). Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine. in Beilstein Journal of Nanotechnology, 14(1), 165-174.
https://doi.org/10.3762/bjnano.14.17
Marković ZM, Budimir M, Danko M, Milivojević D, Kubat P, Zmejkoski D, Pavlović VB, Mojsin M, Stevanović MJ, Todorović-Marković B. Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine. in Beilstein Journal of Nanotechnology. 2023;14(1):165-174.
doi:10.3762/bjnano.14.17 .
Marković, Zoran M., Budimir, Milica, Danko, Martin, Milivojević, Dušan, Kubat, Pavel, Zmejkoski, Danica, Pavlović, Vladimir B., Mojsin, Marija, Stevanović, Milena J., Todorović-Marković, Biljana, "Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine" in Beilstein Journal of Nanotechnology, 14, no. 1 (2023):165-174,
https://doi.org/10.3762/bjnano.14.17 . .
2
5

Lights and Dots toward Therapy—Carbon-Based Quantum Dots as New Agents for Photodynamic Therapy

Jovanović, Svetlana P.; Marković, Zoran M.; Budimir, Milica; Prekodravac, Jovana; Zmejkoski, Danica; Kepić, Dejan; Bonasera, Aurelio; Todorović-Marković, Biljana

(2023)

TY  - JOUR
AU  - Jovanović, Svetlana P.
AU  - Marković, Zoran M.
AU  - Budimir, Milica
AU  - Prekodravac, Jovana
AU  - Zmejkoski, Danica
AU  - Kepić, Dejan
AU  - Bonasera, Aurelio
AU  - Todorović-Marković, Biljana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10926
AB  - The large number of deaths induced by carcinoma and infections indicates that the need for new, better, targeted therapy is higher than ever. Apart from classical treatments and medication, photodynamic therapy (PDT) is one of the possible approaches to cure these clinical conditions. This strategy offers several advantages, such as lower toxicity, selective treatment, faster recovery time, avoidance of systemic toxic effects, and others. Unfortunately, there is a small number of agents that are approved for usage in clinical PDT. Novel, efficient, biocompatible PDT agents are, thus, highly desired. One of the most promising candidates is represented by the broad family of carbon-based quantum dots, such as graphene quantum dots (GQDs), carbon quantum dots (CQDs), carbon nanodots (CNDs), and carbonized polymer dots (CPDs). In this review paper, these new smart nanomaterials are discussed as potential PDT agents, detailing their toxicity in the dark, and when they are exposed to light, as well as their effects on carcinoma and bacterial cells. The photoinduced effects of carbon-based quantum dots on bacteria and viruses are particularly interesting, since dots usually generate several highly toxic reactive oxygen species under blue light. These species are acting as bombs on pathogen cells, causing various devastating and toxic effects on those targets.
T2  - Pharmaceutics
T1  - Lights and Dots toward Therapy—Carbon-Based Quantum Dots as New Agents for Photodynamic Therapy
VL  - 15
IS  - 4
SP  - 1170
DO  - 10.3390/pharmaceutics15041170
ER  - 
@article{
author = "Jovanović, Svetlana P. and Marković, Zoran M. and Budimir, Milica and Prekodravac, Jovana and Zmejkoski, Danica and Kepić, Dejan and Bonasera, Aurelio and Todorović-Marković, Biljana",
year = "2023",
abstract = "The large number of deaths induced by carcinoma and infections indicates that the need for new, better, targeted therapy is higher than ever. Apart from classical treatments and medication, photodynamic therapy (PDT) is one of the possible approaches to cure these clinical conditions. This strategy offers several advantages, such as lower toxicity, selective treatment, faster recovery time, avoidance of systemic toxic effects, and others. Unfortunately, there is a small number of agents that are approved for usage in clinical PDT. Novel, efficient, biocompatible PDT agents are, thus, highly desired. One of the most promising candidates is represented by the broad family of carbon-based quantum dots, such as graphene quantum dots (GQDs), carbon quantum dots (CQDs), carbon nanodots (CNDs), and carbonized polymer dots (CPDs). In this review paper, these new smart nanomaterials are discussed as potential PDT agents, detailing their toxicity in the dark, and when they are exposed to light, as well as their effects on carcinoma and bacterial cells. The photoinduced effects of carbon-based quantum dots on bacteria and viruses are particularly interesting, since dots usually generate several highly toxic reactive oxygen species under blue light. These species are acting as bombs on pathogen cells, causing various devastating and toxic effects on those targets.",
journal = "Pharmaceutics",
title = "Lights and Dots toward Therapy—Carbon-Based Quantum Dots as New Agents for Photodynamic Therapy",
volume = "15",
number = "4",
pages = "1170",
doi = "10.3390/pharmaceutics15041170"
}
Jovanović, S. P., Marković, Z. M., Budimir, M., Prekodravac, J., Zmejkoski, D., Kepić, D., Bonasera, A.,& Todorović-Marković, B.. (2023). Lights and Dots toward Therapy—Carbon-Based Quantum Dots as New Agents for Photodynamic Therapy. in Pharmaceutics, 15(4), 1170.
https://doi.org/10.3390/pharmaceutics15041170
Jovanović SP, Marković ZM, Budimir M, Prekodravac J, Zmejkoski D, Kepić D, Bonasera A, Todorović-Marković B. Lights and Dots toward Therapy—Carbon-Based Quantum Dots as New Agents for Photodynamic Therapy. in Pharmaceutics. 2023;15(4):1170.
doi:10.3390/pharmaceutics15041170 .
Jovanović, Svetlana P., Marković, Zoran M., Budimir, Milica, Prekodravac, Jovana, Zmejkoski, Danica, Kepić, Dejan, Bonasera, Aurelio, Todorović-Marković, Biljana, "Lights and Dots toward Therapy—Carbon-Based Quantum Dots as New Agents for Photodynamic Therapy" in Pharmaceutics, 15, no. 4 (2023):1170,
https://doi.org/10.3390/pharmaceutics15041170 . .
7
5

Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study

Kepić, Dejan P.; Stefanović, Anđela M.; Budimir, Milica; Pavlović, Vladimir B.; Bonasera, Aurelio; Scopelliti, Michelangelo; Todorović-Marković, Biljana

(2023)

TY  - JOUR
AU  - Kepić, Dejan P.
AU  - Stefanović, Anđela M.
AU  - Budimir, Milica
AU  - Pavlović, Vladimir B.
AU  - Bonasera, Aurelio
AU  - Scopelliti, Michelangelo
AU  - Todorović-Marković, Biljana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10426
AB  - Gamma irradiation provides an alternative pathway to conventional gold nanoparticle synthesis because it is simple, fast, and economical. Here, we employed gamma irradiation at low doses (1–20 kGy) to obtain gold nanoparticles (Au NPs) anchored onto graphene oxide (GO) sheets. GO was selected as a suitable platform for the nucleation and growth of Au NPs because of its large surface area and good dispersibility in water due to the presence of polar oxygen-containing functional groups in its structure. Gamma irradiation at all the applied doses led to the reduction of chloroauric acid and the formation of evenly distributed Au NPs at the GO surface, simultaneously causing the reduction of GO and partial restoration of the graphene structure. As-prepared Au NPs have predominately spheric shapes and the smallest nanoparticles were reported for the dose of 1 kGy. The increase in the irradiation dose caused either the growth of larger particles (5 and 10 kGy) or the broad distribution of particles’ sizes (20 kGy). All samples showed a temperature increase upon exposure to 800 nm laser and photothermal efficiency was the highest for the sample prepared at 20 kGy. © 2022 Elsevier Ltd
T2  - Radiation Physics and Chemistry
T1  - Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study
VL  - 202
DO  - 10.1016/j.radphyschem.2022.110545
ER  - 
@article{
author = "Kepić, Dejan P. and Stefanović, Anđela M. and Budimir, Milica and Pavlović, Vladimir B. and Bonasera, Aurelio and Scopelliti, Michelangelo and Todorović-Marković, Biljana",
year = "2023",
abstract = "Gamma irradiation provides an alternative pathway to conventional gold nanoparticle synthesis because it is simple, fast, and economical. Here, we employed gamma irradiation at low doses (1–20 kGy) to obtain gold nanoparticles (Au NPs) anchored onto graphene oxide (GO) sheets. GO was selected as a suitable platform for the nucleation and growth of Au NPs because of its large surface area and good dispersibility in water due to the presence of polar oxygen-containing functional groups in its structure. Gamma irradiation at all the applied doses led to the reduction of chloroauric acid and the formation of evenly distributed Au NPs at the GO surface, simultaneously causing the reduction of GO and partial restoration of the graphene structure. As-prepared Au NPs have predominately spheric shapes and the smallest nanoparticles were reported for the dose of 1 kGy. The increase in the irradiation dose caused either the growth of larger particles (5 and 10 kGy) or the broad distribution of particles’ sizes (20 kGy). All samples showed a temperature increase upon exposure to 800 nm laser and photothermal efficiency was the highest for the sample prepared at 20 kGy. © 2022 Elsevier Ltd",
journal = "Radiation Physics and Chemistry",
title = "Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study",
volume = "202",
doi = "10.1016/j.radphyschem.2022.110545"
}
Kepić, D. P., Stefanović, A. M., Budimir, M., Pavlović, V. B., Bonasera, A., Scopelliti, M.,& Todorović-Marković, B.. (2023). Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study. in Radiation Physics and Chemistry, 202.
https://doi.org/10.1016/j.radphyschem.2022.110545
Kepić DP, Stefanović AM, Budimir M, Pavlović VB, Bonasera A, Scopelliti M, Todorović-Marković B. Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study. in Radiation Physics and Chemistry. 2023;202.
doi:10.1016/j.radphyschem.2022.110545 .
Kepić, Dejan P., Stefanović, Anđela M., Budimir, Milica, Pavlović, Vladimir B., Bonasera, Aurelio, Scopelliti, Michelangelo, Todorović-Marković, Biljana, "Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study" in Radiation Physics and Chemistry, 202 (2023),
https://doi.org/10.1016/j.radphyschem.2022.110545 . .
4
3

Development of novel gamma radiation dosimeter based on metallophthalocyanine

Vasiljević, Bojana; Vujičić, Ivica; Barudžija, Tanja; Krstić, Maja; Budimir, Milica; Mijin, Dušan; Marinović-Cincović, Milena; Marinković, Dragana

(University of Szeged, 2022)

TY  - CONF
AU  - Vasiljević, Bojana
AU  - Vujičić, Ivica
AU  - Barudžija, Tanja
AU  - Krstić, Maja
AU  - Budimir, Milica
AU  - Mijin, Dušan
AU  - Marinović-Cincović, Milena
AU  - Marinković, Dragana
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11471
AB  - In this study, zinc phthalocyanine was evaluated as a possible chemical dosimeter for gamma rays at low-medium dose ranges in solution form and PVA film. The zinc phthalocyanine was successfully synthesized with a high yield under microwave irradiation at 200 °C. The calibration curves of absorbance versus dose of gamma irradiation show excellent linearity over a wider dose range (1 - 25kGy). After being irradiated, the samples' color changed from blue to yellow.
PB  - University of Szeged
C3  - 28th International Symposium on Analytical and Environmental Problems : Proceedings book : November 14-15, Szeged, Hungary
T1  - Development of novel gamma radiation dosimeter based on metallophthalocyanine
SP  - 380
EP  - 376
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11471
ER  - 
@conference{
author = "Vasiljević, Bojana and Vujičić, Ivica and Barudžija, Tanja and Krstić, Maja and Budimir, Milica and Mijin, Dušan and Marinović-Cincović, Milena and Marinković, Dragana",
year = "2022",
abstract = "In this study, zinc phthalocyanine was evaluated as a possible chemical dosimeter for gamma rays at low-medium dose ranges in solution form and PVA film. The zinc phthalocyanine was successfully synthesized with a high yield under microwave irradiation at 200 °C. The calibration curves of absorbance versus dose of gamma irradiation show excellent linearity over a wider dose range (1 - 25kGy). After being irradiated, the samples' color changed from blue to yellow.",
publisher = "University of Szeged",
journal = "28th International Symposium on Analytical and Environmental Problems : Proceedings book : November 14-15, Szeged, Hungary",
title = "Development of novel gamma radiation dosimeter based on metallophthalocyanine",
pages = "380-376",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11471"
}
Vasiljević, B., Vujičić, I., Barudžija, T., Krstić, M., Budimir, M., Mijin, D., Marinović-Cincović, M.,& Marinković, D.. (2022). Development of novel gamma radiation dosimeter based on metallophthalocyanine. in 28th International Symposium on Analytical and Environmental Problems : Proceedings book : November 14-15, Szeged, Hungary
University of Szeged., 380-376.
https://hdl.handle.net/21.15107/rcub_vinar_11471
Vasiljević B, Vujičić I, Barudžija T, Krstić M, Budimir M, Mijin D, Marinović-Cincović M, Marinković D. Development of novel gamma radiation dosimeter based on metallophthalocyanine. in 28th International Symposium on Analytical and Environmental Problems : Proceedings book : November 14-15, Szeged, Hungary. 2022;:380-376.
https://hdl.handle.net/21.15107/rcub_vinar_11471 .
Vasiljević, Bojana, Vujičić, Ivica, Barudžija, Tanja, Krstić, Maja, Budimir, Milica, Mijin, Dušan, Marinović-Cincović, Milena, Marinković, Dragana, "Development of novel gamma radiation dosimeter based on metallophthalocyanine" in 28th International Symposium on Analytical and Environmental Problems : Proceedings book : November 14-15, Szeged, Hungary (2022):380-376,
https://hdl.handle.net/21.15107/rcub_vinar_11471 .

Surface functionality as a key parameter for the conductivity of microwave synthesized CQDs thin films

Prekodravac, Jovana; Budimir, Milica; Kleut, Duška; Vasiljević, Bojana R.; Rajić, Vladimir; Ciasca, Gabriele; Todorović-Marković, Biljana

(2022)

TY  - JOUR
AU  - Prekodravac, Jovana
AU  - Budimir, Milica
AU  - Kleut, Duška
AU  - Vasiljević, Bojana R.
AU  - Rajić, Vladimir
AU  - Ciasca, Gabriele
AU  - Todorović-Marković, Biljana
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10441
AB  - The carbon quantum dots (CQDs) as zero-dimensional carbon nanomaterials with extraordinary physicochemical properties have a broad range of applications. Some of the most intriguing is the CQD thin films for electronic devices and membrane nanofiltration. Here we present the simple and affordable microwave-assisted synthesis method for the production of the nitrogen-doped CQDs (N-CQD) and iron/nitrogen co-doped CQDs (FeN-CQD). The comprehensive study of the morphology and electrical properties of N-CQD and FeN-CQD was discussed after manufacturing obtained nanomaterials in the form of a thin film on different substrates using different deposition procedures. The morphological features of generated thin films altered dramatically when the substrate and nanomaterial properties, as well as the number of deposited layers of CQDs and the chosen deposition process, were taken into consideration.
T2  - Diamond and Related Materials
T1  - Surface functionality as a key parameter for the conductivity of microwave synthesized CQDs thin films
VL  - 129
SP  - 109366
DO  - 10.1016/j.diamond.2022.109366
ER  - 
@article{
author = "Prekodravac, Jovana and Budimir, Milica and Kleut, Duška and Vasiljević, Bojana R. and Rajić, Vladimir and Ciasca, Gabriele and Todorović-Marković, Biljana",
year = "2022",
abstract = "The carbon quantum dots (CQDs) as zero-dimensional carbon nanomaterials with extraordinary physicochemical properties have a broad range of applications. Some of the most intriguing is the CQD thin films for electronic devices and membrane nanofiltration. Here we present the simple and affordable microwave-assisted synthesis method for the production of the nitrogen-doped CQDs (N-CQD) and iron/nitrogen co-doped CQDs (FeN-CQD). The comprehensive study of the morphology and electrical properties of N-CQD and FeN-CQD was discussed after manufacturing obtained nanomaterials in the form of a thin film on different substrates using different deposition procedures. The morphological features of generated thin films altered dramatically when the substrate and nanomaterial properties, as well as the number of deposited layers of CQDs and the chosen deposition process, were taken into consideration.",
journal = "Diamond and Related Materials",
title = "Surface functionality as a key parameter for the conductivity of microwave synthesized CQDs thin films",
volume = "129",
pages = "109366",
doi = "10.1016/j.diamond.2022.109366"
}
Prekodravac, J., Budimir, M., Kleut, D., Vasiljević, B. R., Rajić, V., Ciasca, G.,& Todorović-Marković, B.. (2022). Surface functionality as a key parameter for the conductivity of microwave synthesized CQDs thin films. in Diamond and Related Materials, 129, 109366.
https://doi.org/10.1016/j.diamond.2022.109366
Prekodravac J, Budimir M, Kleut D, Vasiljević BR, Rajić V, Ciasca G, Todorović-Marković B. Surface functionality as a key parameter for the conductivity of microwave synthesized CQDs thin films. in Diamond and Related Materials. 2022;129:109366.
doi:10.1016/j.diamond.2022.109366 .
Prekodravac, Jovana, Budimir, Milica, Kleut, Duška, Vasiljević, Bojana R., Rajić, Vladimir, Ciasca, Gabriele, Todorović-Marković, Biljana, "Surface functionality as a key parameter for the conductivity of microwave synthesized CQDs thin films" in Diamond and Related Materials, 129 (2022):109366,
https://doi.org/10.1016/j.diamond.2022.109366 . .
4
3

Photoactive graphene quantum dots/bacterial cellulose hydrogels: Structural, mechanical, and pro-oxidant study

Marković, Zoran M.; Zmejkoski, Danica; Budimir, Milica; Bugarova, Nikol; Kleinova, Angela; Kuzman, Sanja; Špitalsky, Zdeno; Pavlović, Vladimir B.; Milivojević, Dušan; Todorović-Marković, Biljana

(2022)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Zmejkoski, Danica
AU  - Budimir, Milica
AU  - Bugarova, Nikol
AU  - Kleinova, Angela
AU  - Kuzman, Sanja
AU  - Špitalsky, Zdeno
AU  - Pavlović, Vladimir B.
AU  - Milivojević, Dušan
AU  - Todorović-Marković, Biljana
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10634
AB  - Due to their unique structural properties bacterial cellulose (BC) hydrogels find possible usage in many fields such as cosmetology, food industry, or medicine. In this study, photoactive BC hydrogels are investigated through modifications of their structural, mechanical, and pro-oxidant properties resulting from graphene quantum dots (GQDs) encapsulation. Detailed structural analysis is conducted by atomic force microscopy, transmission electron microscopy and scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction method. Dynamic mechanical analysis is performed to study the changes in storage modulus, loss modulus and tan δ. Pro-oxidative properties of new designed composites are tested by electron paramagnetic resonance (EPR). Structural and mechanical analyses show successful encapsulation of GQDs into BC whereas EPR measurements indicate high potential of these composites for singlet oxygen production.
T2  - Journal of Applied Polymer Science
T1  - Photoactive graphene quantum dots/bacterial cellulose hydrogels: Structural, mechanical, and pro-oxidant study
VL  - 139
IS  - 16
SP  - 51996
DO  - 10.1002/app.51996
ER  - 
@article{
author = "Marković, Zoran M. and Zmejkoski, Danica and Budimir, Milica and Bugarova, Nikol and Kleinova, Angela and Kuzman, Sanja and Špitalsky, Zdeno and Pavlović, Vladimir B. and Milivojević, Dušan and Todorović-Marković, Biljana",
year = "2022",
abstract = "Due to their unique structural properties bacterial cellulose (BC) hydrogels find possible usage in many fields such as cosmetology, food industry, or medicine. In this study, photoactive BC hydrogels are investigated through modifications of their structural, mechanical, and pro-oxidant properties resulting from graphene quantum dots (GQDs) encapsulation. Detailed structural analysis is conducted by atomic force microscopy, transmission electron microscopy and scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction method. Dynamic mechanical analysis is performed to study the changes in storage modulus, loss modulus and tan δ. Pro-oxidative properties of new designed composites are tested by electron paramagnetic resonance (EPR). Structural and mechanical analyses show successful encapsulation of GQDs into BC whereas EPR measurements indicate high potential of these composites for singlet oxygen production.",
journal = "Journal of Applied Polymer Science",
title = "Photoactive graphene quantum dots/bacterial cellulose hydrogels: Structural, mechanical, and pro-oxidant study",
volume = "139",
number = "16",
pages = "51996",
doi = "10.1002/app.51996"
}
Marković, Z. M., Zmejkoski, D., Budimir, M., Bugarova, N., Kleinova, A., Kuzman, S., Špitalsky, Z., Pavlović, V. B., Milivojević, D.,& Todorović-Marković, B.. (2022). Photoactive graphene quantum dots/bacterial cellulose hydrogels: Structural, mechanical, and pro-oxidant study. in Journal of Applied Polymer Science, 139(16), 51996.
https://doi.org/10.1002/app.51996
Marković ZM, Zmejkoski D, Budimir M, Bugarova N, Kleinova A, Kuzman S, Špitalsky Z, Pavlović VB, Milivojević D, Todorović-Marković B. Photoactive graphene quantum dots/bacterial cellulose hydrogels: Structural, mechanical, and pro-oxidant study. in Journal of Applied Polymer Science. 2022;139(16):51996.
doi:10.1002/app.51996 .
Marković, Zoran M., Zmejkoski, Danica, Budimir, Milica, Bugarova, Nikol, Kleinova, Angela, Kuzman, Sanja, Špitalsky, Zdeno, Pavlović, Vladimir B., Milivojević, Dušan, Todorović-Marković, Biljana, "Photoactive graphene quantum dots/bacterial cellulose hydrogels: Structural, mechanical, and pro-oxidant study" in Journal of Applied Polymer Science, 139, no. 16 (2022):51996,
https://doi.org/10.1002/app.51996 . .
3
3

Gamma-ray-induced structural transformation of GQDs towards the improvement of their optical properties, monitoring of selected toxic compounds, and photo-induced effect on bacterial strains

Dorontić, Slađana; Bonasera, Aurelio; Scopelliti, Michelangelo; Marković, Olivera; Bajuk Bogdanović, Danica; Ciasca, Gabriele; Romanò, Sabrina; Dimkić, Ivica; Budimir, Milica; Marinković, Dragana; Jovanović, Svetlana P.

(2022)

TY  - JOUR
AU  - Dorontić, Slađana
AU  - Bonasera, Aurelio
AU  - Scopelliti, Michelangelo
AU  - Marković, Olivera
AU  - Bajuk Bogdanović, Danica
AU  - Ciasca, Gabriele
AU  - Romanò, Sabrina
AU  - Dimkić, Ivica
AU  - Budimir, Milica
AU  - Marinković, Dragana
AU  - Jovanović, Svetlana P.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10406
AB  - Structural modification of different carbon-based nanomaterials is often necessary toimprove their morphology and optical properties, particularly the incorporation of N-atoms ingraphene quantum dots (GQDs). Here, a clean, simple, one-step, and eco-friendly method forN-doping of GQDs using gamma irradiation is reported. GQDs were irradiated in the presenceof the different ethylenediamine (EDA) amounts (1 g, 5 g, and 10 g) and the highest % of N wasdetected in the presence of 10 g. N-doped GQDs emitted strong, blue photoluminescence (PL).Photoluminescence quantum yield was increased from 1.45, as obtained for non-irradiated dots,to 7.24% for those irradiated in the presence of 1 g of EDA. Modified GQDs were investigated asa PL probe for the detection of insecticide Carbofuran (2,2-Dimethyl-2,3-dihydro-1-benzofuran-7-yl methylcarbamate) and herbicide Amitrole (3-amino-1,2,4-triazole). The limit of detection was5.4 µmol L−1for Carbofuran. For the first time, Amitrole was detected by GQDs in a turn-off/turn-onmechanism using Pd(II) ions as a quenching agent. First, Pd(II) ions were quenched (turn-off) PLof GQDs, while after Amitrole addition, PL was recovered linearly with Amitrole concentration(turn-on). LOD was 2.03 µmol L−1. These results suggest that modified GQDs can be used as anefficient new material for Carbofuran and Amitrole detection. Furthermore, the phototoxicity of dotswas investigated on both Gram-positive and Gram-negative bacterial strains. When bacterial cellswere exposed to different GQD concentrations and illuminated with light of 470 nm wavelength, thetoxic effects were not observed.
T2  - Nanomaterials
T1  - Gamma-ray-induced structural transformation of GQDs towards the improvement of their optical properties, monitoring of selected toxic compounds, and photo-induced effect on bacterial strains
VL  - 12
SP  - 2714
DO  - 10.3390/nano12152714
ER  - 
@article{
author = "Dorontić, Slađana and Bonasera, Aurelio and Scopelliti, Michelangelo and Marković, Olivera and Bajuk Bogdanović, Danica and Ciasca, Gabriele and Romanò, Sabrina and Dimkić, Ivica and Budimir, Milica and Marinković, Dragana and Jovanović, Svetlana P.",
year = "2022",
abstract = "Structural modification of different carbon-based nanomaterials is often necessary toimprove their morphology and optical properties, particularly the incorporation of N-atoms ingraphene quantum dots (GQDs). Here, a clean, simple, one-step, and eco-friendly method forN-doping of GQDs using gamma irradiation is reported. GQDs were irradiated in the presenceof the different ethylenediamine (EDA) amounts (1 g, 5 g, and 10 g) and the highest % of N wasdetected in the presence of 10 g. N-doped GQDs emitted strong, blue photoluminescence (PL).Photoluminescence quantum yield was increased from 1.45, as obtained for non-irradiated dots,to 7.24% for those irradiated in the presence of 1 g of EDA. Modified GQDs were investigated asa PL probe for the detection of insecticide Carbofuran (2,2-Dimethyl-2,3-dihydro-1-benzofuran-7-yl methylcarbamate) and herbicide Amitrole (3-amino-1,2,4-triazole). The limit of detection was5.4 µmol L−1for Carbofuran. For the first time, Amitrole was detected by GQDs in a turn-off/turn-onmechanism using Pd(II) ions as a quenching agent. First, Pd(II) ions were quenched (turn-off) PLof GQDs, while after Amitrole addition, PL was recovered linearly with Amitrole concentration(turn-on). LOD was 2.03 µmol L−1. These results suggest that modified GQDs can be used as anefficient new material for Carbofuran and Amitrole detection. Furthermore, the phototoxicity of dotswas investigated on both Gram-positive and Gram-negative bacterial strains. When bacterial cellswere exposed to different GQD concentrations and illuminated with light of 470 nm wavelength, thetoxic effects were not observed.",
journal = "Nanomaterials",
title = "Gamma-ray-induced structural transformation of GQDs towards the improvement of their optical properties, monitoring of selected toxic compounds, and photo-induced effect on bacterial strains",
volume = "12",
pages = "2714",
doi = "10.3390/nano12152714"
}
Dorontić, S., Bonasera, A., Scopelliti, M., Marković, O., Bajuk Bogdanović, D., Ciasca, G., Romanò, S., Dimkić, I., Budimir, M., Marinković, D.,& Jovanović, S. P.. (2022). Gamma-ray-induced structural transformation of GQDs towards the improvement of their optical properties, monitoring of selected toxic compounds, and photo-induced effect on bacterial strains. in Nanomaterials, 12, 2714.
https://doi.org/10.3390/nano12152714
Dorontić S, Bonasera A, Scopelliti M, Marković O, Bajuk Bogdanović D, Ciasca G, Romanò S, Dimkić I, Budimir M, Marinković D, Jovanović SP. Gamma-ray-induced structural transformation of GQDs towards the improvement of their optical properties, monitoring of selected toxic compounds, and photo-induced effect on bacterial strains. in Nanomaterials. 2022;12:2714.
doi:10.3390/nano12152714 .
Dorontić, Slađana, Bonasera, Aurelio, Scopelliti, Michelangelo, Marković, Olivera, Bajuk Bogdanović, Danica, Ciasca, Gabriele, Romanò, Sabrina, Dimkić, Ivica, Budimir, Milica, Marinković, Dragana, Jovanović, Svetlana P., "Gamma-ray-induced structural transformation of GQDs towards the improvement of their optical properties, monitoring of selected toxic compounds, and photo-induced effect on bacterial strains" in Nanomaterials, 12 (2022):2714,
https://doi.org/10.3390/nano12152714 . .
3
3
3

Highly Efficient Antibacterial Polymer Composites Based on Hydrophobic Riboflavin Carbon Polymerized Dots

Marković, Zoran M.; Kováčová, Mária; Jeremić, Sanja; Nagy, Štefan; Milivojević, Dušan; Kubat, Pavel; Kleinová, Angela; Budimir, Milica; Mojsin, Marija; Stevanović, Milena J.; Annušová, Adriana; Špitalský, Zdeno; Todorović-Marković, Biljana

(2022)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Kováčová, Mária
AU  - Jeremić, Sanja
AU  - Nagy, Štefan
AU  - Milivojević, Dušan
AU  - Kubat, Pavel
AU  - Kleinová, Angela
AU  - Budimir, Milica
AU  - Mojsin, Marija
AU  - Stevanović, Milena J.
AU  - Annušová, Adriana
AU  - Špitalský, Zdeno
AU  - Todorović-Marković, Biljana
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10517
AB  - Development of new types of antimicrobial coatings is of utmost importance due to increasing problems with pathogen transmission from various infectious surfaces to human beings. In this study, new types of highly potent antimicrobial polyurethane composite films encapsulated by hydrophobic riboflavin-based carbon polymer dots are presented. Detailed structural, optical, antimicrobial, and cytotoxic investigations of these composites were conducted. Low-power blue light triggered the composites to eradicate Escherichia coli in 30 min, whereas the same effect toward Staphylococcus aureus was reached after 60 min. These composites also show low toxicity against MRC-5 cells. In this way, RF-CPD composites can be used for sterilization of highly touched objects in the healthcare industry.
T2  - Nanomaterials
T1  - Highly Efficient Antibacterial Polymer Composites Based on Hydrophobic Riboflavin Carbon Polymerized Dots
VL  - 12
IS  - 22
SP  - 4070
DO  - 10.3390/nano12224070
ER  - 
@article{
author = "Marković, Zoran M. and Kováčová, Mária and Jeremić, Sanja and Nagy, Štefan and Milivojević, Dušan and Kubat, Pavel and Kleinová, Angela and Budimir, Milica and Mojsin, Marija and Stevanović, Milena J. and Annušová, Adriana and Špitalský, Zdeno and Todorović-Marković, Biljana",
year = "2022",
abstract = "Development of new types of antimicrobial coatings is of utmost importance due to increasing problems with pathogen transmission from various infectious surfaces to human beings. In this study, new types of highly potent antimicrobial polyurethane composite films encapsulated by hydrophobic riboflavin-based carbon polymer dots are presented. Detailed structural, optical, antimicrobial, and cytotoxic investigations of these composites were conducted. Low-power blue light triggered the composites to eradicate Escherichia coli in 30 min, whereas the same effect toward Staphylococcus aureus was reached after 60 min. These composites also show low toxicity against MRC-5 cells. In this way, RF-CPD composites can be used for sterilization of highly touched objects in the healthcare industry.",
journal = "Nanomaterials",
title = "Highly Efficient Antibacterial Polymer Composites Based on Hydrophobic Riboflavin Carbon Polymerized Dots",
volume = "12",
number = "22",
pages = "4070",
doi = "10.3390/nano12224070"
}
Marković, Z. M., Kováčová, M., Jeremić, S., Nagy, Š., Milivojević, D., Kubat, P., Kleinová, A., Budimir, M., Mojsin, M., Stevanović, M. J., Annušová, A., Špitalský, Z.,& Todorović-Marković, B.. (2022). Highly Efficient Antibacterial Polymer Composites Based on Hydrophobic Riboflavin Carbon Polymerized Dots. in Nanomaterials, 12(22), 4070.
https://doi.org/10.3390/nano12224070
Marković ZM, Kováčová M, Jeremić S, Nagy Š, Milivojević D, Kubat P, Kleinová A, Budimir M, Mojsin M, Stevanović MJ, Annušová A, Špitalský Z, Todorović-Marković B. Highly Efficient Antibacterial Polymer Composites Based on Hydrophobic Riboflavin Carbon Polymerized Dots. in Nanomaterials. 2022;12(22):4070.
doi:10.3390/nano12224070 .
Marković, Zoran M., Kováčová, Mária, Jeremić, Sanja, Nagy, Štefan, Milivojević, Dušan, Kubat, Pavel, Kleinová, Angela, Budimir, Milica, Mojsin, Marija, Stevanović, Milena J., Annušová, Adriana, Špitalský, Zdeno, Todorović-Marković, Biljana, "Highly Efficient Antibacterial Polymer Composites Based on Hydrophobic Riboflavin Carbon Polymerized Dots" in Nanomaterials, 12, no. 22 (2022):4070,
https://doi.org/10.3390/nano12224070 . .
11
11

Chronic wound dressings – Pathogenic bacteria anti-biofilm treatment with bacterial cellulose-chitosan polymer or bacterial cellulose-chitosan dots composite hydrogels

Zmejkoski, Danica; Zdravković, Nemanja M.; Trišić, Dijana D.; Budimir, Milica; Marković, Zoran M.; Kozyrovska, Natalia O.; Todorović-Marković, Biljana

(2021)

TY  - JOUR
AU  - Zmejkoski, Danica
AU  - Zdravković, Nemanja M.
AU  - Trišić, Dijana D.
AU  - Budimir, Milica
AU  - Marković, Zoran M.
AU  - Kozyrovska, Natalia O.
AU  - Todorović-Marković, Biljana
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9957
AB  - Since the pathogenic bacteria biofilms are involved in 70% of chronic infections and their resistance to antibiotics is increased, the research in this field requires new healing agents. New composite hydrogels were designed as potential chronic wound dressings composed of bacterial cellulose (BC) with chitosan polymer (Chi) – BC-Chi and chitosan nanoparticles (nChiD) – BC-nChiD. nChiD were obtained by gamma irradiation at doses: 20, 40 and 60 kGy. Physical and chemical analyses showed incorporation of Chi and encapsulation of nChiD into BC. The BC-Chi has the highest average surface roughness. BC-nChiD hydrogels show an irradiated dose-dependent increase of average surface roughness. New composite hydrogels are biocompatible with excellent anti-biofilm potential with up to 90% reduction of viable biofilm and up to 65% reduction of biofilm height. The BC-nChiD showed better dressing characteristics: higher porosity, higher wound fluid absorption and faster migration of cells (in vitro healing). All obtained results confirmed both composite hydrogels as promising chronic wound healing agents.
T2  - International Journal of Biological Macromolecules
T1  - Chronic wound dressings – Pathogenic bacteria anti-biofilm treatment with bacterial cellulose-chitosan polymer or bacterial cellulose-chitosan dots composite hydrogels
VL  - 191
SP  - 315
EP  - 323
DO  - 10.1016/j.ijbiomac.2021.09.118
ER  - 
@article{
author = "Zmejkoski, Danica and Zdravković, Nemanja M. and Trišić, Dijana D. and Budimir, Milica and Marković, Zoran M. and Kozyrovska, Natalia O. and Todorović-Marković, Biljana",
year = "2021",
abstract = "Since the pathogenic bacteria biofilms are involved in 70% of chronic infections and their resistance to antibiotics is increased, the research in this field requires new healing agents. New composite hydrogels were designed as potential chronic wound dressings composed of bacterial cellulose (BC) with chitosan polymer (Chi) – BC-Chi and chitosan nanoparticles (nChiD) – BC-nChiD. nChiD were obtained by gamma irradiation at doses: 20, 40 and 60 kGy. Physical and chemical analyses showed incorporation of Chi and encapsulation of nChiD into BC. The BC-Chi has the highest average surface roughness. BC-nChiD hydrogels show an irradiated dose-dependent increase of average surface roughness. New composite hydrogels are biocompatible with excellent anti-biofilm potential with up to 90% reduction of viable biofilm and up to 65% reduction of biofilm height. The BC-nChiD showed better dressing characteristics: higher porosity, higher wound fluid absorption and faster migration of cells (in vitro healing). All obtained results confirmed both composite hydrogels as promising chronic wound healing agents.",
journal = "International Journal of Biological Macromolecules",
title = "Chronic wound dressings – Pathogenic bacteria anti-biofilm treatment with bacterial cellulose-chitosan polymer or bacterial cellulose-chitosan dots composite hydrogels",
volume = "191",
pages = "315-323",
doi = "10.1016/j.ijbiomac.2021.09.118"
}
Zmejkoski, D., Zdravković, N. M., Trišić, D. D., Budimir, M., Marković, Z. M., Kozyrovska, N. O.,& Todorović-Marković, B.. (2021). Chronic wound dressings – Pathogenic bacteria anti-biofilm treatment with bacterial cellulose-chitosan polymer or bacterial cellulose-chitosan dots composite hydrogels. in International Journal of Biological Macromolecules, 191, 315-323.
https://doi.org/10.1016/j.ijbiomac.2021.09.118
Zmejkoski D, Zdravković NM, Trišić DD, Budimir M, Marković ZM, Kozyrovska NO, Todorović-Marković B. Chronic wound dressings – Pathogenic bacteria anti-biofilm treatment with bacterial cellulose-chitosan polymer or bacterial cellulose-chitosan dots composite hydrogels. in International Journal of Biological Macromolecules. 2021;191:315-323.
doi:10.1016/j.ijbiomac.2021.09.118 .
Zmejkoski, Danica, Zdravković, Nemanja M., Trišić, Dijana D., Budimir, Milica, Marković, Zoran M., Kozyrovska, Natalia O., Todorović-Marković, Biljana, "Chronic wound dressings – Pathogenic bacteria anti-biofilm treatment with bacterial cellulose-chitosan polymer or bacterial cellulose-chitosan dots composite hydrogels" in International Journal of Biological Macromolecules, 191 (2021):315-323,
https://doi.org/10.1016/j.ijbiomac.2021.09.118 . .
1
18
16

Bactericidal and antioxidant bacterial cellulose hydrogels doped with chitosan as potential urinary tract infection biomedical agent

Zmejkoski, Danica; Marković, Zoran M.; Zdravković, Nemanja M.; Trišić, Dijana; Budimir, Milica; Kuzman, Sanja; Kozyrovska, Natalia O.; Orlovska, Iryna V.; Bugárová, Nikol; Petrović, Đorđe; Kováčová, Mária; Kleinová, Angela; Špitalský, Zdeno; Pavlović, Vladimir B.; Todorović-Marković, Biljana

(2021)

TY  - JOUR
AU  - Zmejkoski, Danica
AU  - Marković, Zoran M.
AU  - Zdravković, Nemanja M.
AU  - Trišić, Dijana
AU  - Budimir, Milica
AU  - Kuzman, Sanja
AU  - Kozyrovska, Natalia O.
AU  - Orlovska, Iryna V.
AU  - Bugárová, Nikol
AU  - Petrović, Đorđe
AU  - Kováčová, Mária
AU  - Kleinová, Angela
AU  - Špitalský, Zdeno
AU  - Pavlović, Vladimir B.
AU  - Todorović-Marković, Biljana
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9143
AB  - Therapy of bacterial urinary tract infections (UTIs) and catheter associated urinary tract infections (CAUTIs) is still a great challenge because of the resistance of bacteria to nowadays used antibiotics and encrustation of catheters. Bacterial cellulose (BC) as a biocompatible material with a high porosity allows incorporation of different materials in its three dimensional network structure. In this work a low molecular weight chitosan (Chi) polymer is incorporated in BC with different concentrations. Different characterization techniques are used to investigate structural and optical properties of these composites. Radical scavenging activity test shows moderate antioxidant activity of these biocompatible composites whereasin vitrorelease test shows that 13.3% of chitosan is released after 72 h. Antibacterial testing of BC-Chi composites conducted on Gram-positive and Gram-negative bacteria causing UTIs and CAUTIs (Escherichia coli,Pseudomonas aeruginosa,Klebsiella pneumoniae) and encrustation (Proteus mirabilis) show bactericidal effect. The morphology analysis of bacteria after the application of BC-Chi shows that they are flattened with a rough surface, with a tendency to agglomerate and with decreased length and width. All obtained results show that BC-Chi composites might be considered as potential biomedical agents in treatment of UTIs and CAUTIs and as a urinary catheter coating in encrustation prevention.
T2  - RSC Advances
T1  - Bactericidal and antioxidant bacterial cellulose hydrogels doped with chitosan as potential urinary tract infection biomedical agent
VL  - 11
IS  - 15
SP  - 8559
EP  - 8568
DO  - 10.1039/D0RA10782D
ER  - 
@article{
author = "Zmejkoski, Danica and Marković, Zoran M. and Zdravković, Nemanja M. and Trišić, Dijana and Budimir, Milica and Kuzman, Sanja and Kozyrovska, Natalia O. and Orlovska, Iryna V. and Bugárová, Nikol and Petrović, Đorđe and Kováčová, Mária and Kleinová, Angela and Špitalský, Zdeno and Pavlović, Vladimir B. and Todorović-Marković, Biljana",
year = "2021",
abstract = "Therapy of bacterial urinary tract infections (UTIs) and catheter associated urinary tract infections (CAUTIs) is still a great challenge because of the resistance of bacteria to nowadays used antibiotics and encrustation of catheters. Bacterial cellulose (BC) as a biocompatible material with a high porosity allows incorporation of different materials in its three dimensional network structure. In this work a low molecular weight chitosan (Chi) polymer is incorporated in BC with different concentrations. Different characterization techniques are used to investigate structural and optical properties of these composites. Radical scavenging activity test shows moderate antioxidant activity of these biocompatible composites whereasin vitrorelease test shows that 13.3% of chitosan is released after 72 h. Antibacterial testing of BC-Chi composites conducted on Gram-positive and Gram-negative bacteria causing UTIs and CAUTIs (Escherichia coli,Pseudomonas aeruginosa,Klebsiella pneumoniae) and encrustation (Proteus mirabilis) show bactericidal effect. The morphology analysis of bacteria after the application of BC-Chi shows that they are flattened with a rough surface, with a tendency to agglomerate and with decreased length and width. All obtained results show that BC-Chi composites might be considered as potential biomedical agents in treatment of UTIs and CAUTIs and as a urinary catheter coating in encrustation prevention.",
journal = "RSC Advances",
title = "Bactericidal and antioxidant bacterial cellulose hydrogels doped with chitosan as potential urinary tract infection biomedical agent",
volume = "11",
number = "15",
pages = "8559-8568",
doi = "10.1039/D0RA10782D"
}
Zmejkoski, D., Marković, Z. M., Zdravković, N. M., Trišić, D., Budimir, M., Kuzman, S., Kozyrovska, N. O., Orlovska, I. V., Bugárová, N., Petrović, Đ., Kováčová, M., Kleinová, A., Špitalský, Z., Pavlović, V. B.,& Todorović-Marković, B.. (2021). Bactericidal and antioxidant bacterial cellulose hydrogels doped with chitosan as potential urinary tract infection biomedical agent. in RSC Advances, 11(15), 8559-8568.
https://doi.org/10.1039/D0RA10782D
Zmejkoski D, Marković ZM, Zdravković NM, Trišić D, Budimir M, Kuzman S, Kozyrovska NO, Orlovska IV, Bugárová N, Petrović Đ, Kováčová M, Kleinová A, Špitalský Z, Pavlović VB, Todorović-Marković B. Bactericidal and antioxidant bacterial cellulose hydrogels doped with chitosan as potential urinary tract infection biomedical agent. in RSC Advances. 2021;11(15):8559-8568.
doi:10.1039/D0RA10782D .
Zmejkoski, Danica, Marković, Zoran M., Zdravković, Nemanja M., Trišić, Dijana, Budimir, Milica, Kuzman, Sanja, Kozyrovska, Natalia O., Orlovska, Iryna V., Bugárová, Nikol, Petrović, Đorđe, Kováčová, Mária, Kleinová, Angela, Špitalský, Zdeno, Pavlović, Vladimir B., Todorović-Marković, Biljana, "Bactericidal and antioxidant bacterial cellulose hydrogels doped with chitosan as potential urinary tract infection biomedical agent" in RSC Advances, 11, no. 15 (2021):8559-8568,
https://doi.org/10.1039/D0RA10782D . .
11
2
7

Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment

Zmejkoski, Danica; Marković, Zoran M.; Budimir, Milica; Zdravković, Nemanja M.; Trišić, Dijana ; Bugárová, Nikol; Danko, Martin; Kozyrovska, Natalia O.; Špitalský, Zdeno; Kleinová, Angela; Kuzman, Sanja; Pavlović, Vladimir B.; Todorović-Marković, Biljana

(2021)

TY  - JOUR
AU  - Zmejkoski, Danica
AU  - Marković, Zoran M.
AU  - Budimir, Milica
AU  - Zdravković, Nemanja M.
AU  - Trišić, Dijana 
AU  - Bugárová, Nikol
AU  - Danko, Martin
AU  - Kozyrovska, Natalia O.
AU  - Špitalský, Zdeno
AU  - Kleinová, Angela
AU  - Kuzman, Sanja
AU  - Pavlović, Vladimir B.
AU  - Todorović-Marković, Biljana
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9566
AB  - Bacterial infection and their resistance to known antibiotics delays wound healing. In this study, nanochitosan dots (nChiD) produced by gamma irradiation have been encapsulated in bacterial cellulose (BC) polymer matrix to study the antibacterial potentials of these nanocomposites and their possible usage in wound healing treatment (scratch assay). Detailed analyses show that nChiDs have disc-like shape and average diameter in the range of 40 to 60 nm depending of the applied dose. All nChiDs as well as BC-nChiD nanocomposites emit green photoluminescence independently on the excitation wavelengths. The new designed nanocomposites do not have a cytotoxic effect; antioxidant analysis shows their moderate radical scavenging activity whereas antibacterial properties show significant growth inhibition of strains mostly found in difficult-to-heal wounds. The obtained results confirm that new designed BC-nChiD nanocomposites might be potential agent in wound healing treatment. © 2021 Elsevier B.V.
T2  - Materials Science and Engineering: C
T1  - Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment
VL  - 122
SP  - 111925
DO  - 10.1016/j.msec.2021.111925
ER  - 
@article{
author = "Zmejkoski, Danica and Marković, Zoran M. and Budimir, Milica and Zdravković, Nemanja M. and Trišić, Dijana  and Bugárová, Nikol and Danko, Martin and Kozyrovska, Natalia O. and Špitalský, Zdeno and Kleinová, Angela and Kuzman, Sanja and Pavlović, Vladimir B. and Todorović-Marković, Biljana",
year = "2021",
abstract = "Bacterial infection and their resistance to known antibiotics delays wound healing. In this study, nanochitosan dots (nChiD) produced by gamma irradiation have been encapsulated in bacterial cellulose (BC) polymer matrix to study the antibacterial potentials of these nanocomposites and their possible usage in wound healing treatment (scratch assay). Detailed analyses show that nChiDs have disc-like shape and average diameter in the range of 40 to 60 nm depending of the applied dose. All nChiDs as well as BC-nChiD nanocomposites emit green photoluminescence independently on the excitation wavelengths. The new designed nanocomposites do not have a cytotoxic effect; antioxidant analysis shows their moderate radical scavenging activity whereas antibacterial properties show significant growth inhibition of strains mostly found in difficult-to-heal wounds. The obtained results confirm that new designed BC-nChiD nanocomposites might be potential agent in wound healing treatment. © 2021 Elsevier B.V.",
journal = "Materials Science and Engineering: C",
title = "Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment",
volume = "122",
pages = "111925",
doi = "10.1016/j.msec.2021.111925"
}
Zmejkoski, D., Marković, Z. M., Budimir, M., Zdravković, N. M., Trišić, D., Bugárová, N., Danko, M., Kozyrovska, N. O., Špitalský, Z., Kleinová, A., Kuzman, S., Pavlović, V. B.,& Todorović-Marković, B.. (2021). Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment. in Materials Science and Engineering: C, 122, 111925.
https://doi.org/10.1016/j.msec.2021.111925
Zmejkoski D, Marković ZM, Budimir M, Zdravković NM, Trišić D, Bugárová N, Danko M, Kozyrovska NO, Špitalský Z, Kleinová A, Kuzman S, Pavlović VB, Todorović-Marković B. Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment. in Materials Science and Engineering: C. 2021;122:111925.
doi:10.1016/j.msec.2021.111925 .
Zmejkoski, Danica, Marković, Zoran M., Budimir, Milica, Zdravković, Nemanja M., Trišić, Dijana , Bugárová, Nikol, Danko, Martin, Kozyrovska, Natalia O., Špitalský, Zdeno, Kleinová, Angela, Kuzman, Sanja, Pavlović, Vladimir B., Todorović-Marković, Biljana, "Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment" in Materials Science and Engineering: C, 122 (2021):111925,
https://doi.org/10.1016/j.msec.2021.111925 . .
25
6
21

Enhanced visible light-triggered antibacterial activity of carbon quantum dots/polyurethane nanocomposites by gamma rays induced pre-treatment

Budimir, Milica; Marković, Zoran M.; Vajdak, Jan; Jovanović, Svetlana P.; Kubat, Pavel; Humpoliček, Petr; Mičušik, Matej; Danko, Martin; Barras, Alexandre; Milivojević, Dušan; Špitalsky, Zdenko; Boukherroub, Rabah; Todorović-Marković, Biljana

(2021)

TY  - JOUR
AU  - Budimir, Milica
AU  - Marković, Zoran M.
AU  - Vajdak, Jan
AU  - Jovanović, Svetlana P.
AU  - Kubat, Pavel
AU  - Humpoliček, Petr
AU  - Mičušik, Matej
AU  - Danko, Martin
AU  - Barras, Alexandre
AU  - Milivojević, Dušan
AU  - Špitalsky, Zdenko
AU  - Boukherroub, Rabah
AU  - Todorović-Marković, Biljana
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9746
AB  - Persistent microbial contamination of medical implant surfaces is becoming a serious threat to public health. This is principally due to antibiotic-resistant bacterial strains and the formation of bacterial biofilms. The development of novel antibacterial materials that will effectively fight both Gram-positive and Gram-negative bacteria and prevent biofilm formation represents a big challenge for researchers in the last few decades. In the present work, we report an antibacterial hydrophobic carbon quantum dots/polyurethane nanocomposite (hCQD-PU), with enhanced antibacterial properties induced by pre-treatment with gamma-irradiation. Hydrophobic quantum dots (hCQDs), which are capable of generating reactive oxygen species (ROS) upon irradiation with low-power blue light (470 nm), have been integrated into the polyurethane (PU) polymer matrix to form a photoactive nanocomposite. To modify its physical and chemical properties and improve its antibacterial efficacy, various doses of gamma irradiation (1, 10, and 200 kGy) in the air environment were applied to the formed nanocomposite. Gamma-irradiation pre-treatment significantly influenced the rise in ROS production, therefore, the prooxidative activity under the blue-light illumination of hCQD-PU was also significantly improved. The best antibacterial activity was demonstrated by the hCQD-PU nanocomposite irradiated with a dose of 200 kGy, with the complete eradication of Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria after 15 min of exposure to the blue lamp. © 2021 Elsevier Ltd
T2  - Radiation Physics and Chemistry
T1  - Enhanced visible light-triggered antibacterial activity of carbon quantum dots/polyurethane nanocomposites by gamma rays induced pre-treatment
VL  - 185
SP  - 109499
DO  - 10.1016/j.radphyschem.2021.109499
ER  - 
@article{
author = "Budimir, Milica and Marković, Zoran M. and Vajdak, Jan and Jovanović, Svetlana P. and Kubat, Pavel and Humpoliček, Petr and Mičušik, Matej and Danko, Martin and Barras, Alexandre and Milivojević, Dušan and Špitalsky, Zdenko and Boukherroub, Rabah and Todorović-Marković, Biljana",
year = "2021",
abstract = "Persistent microbial contamination of medical implant surfaces is becoming a serious threat to public health. This is principally due to antibiotic-resistant bacterial strains and the formation of bacterial biofilms. The development of novel antibacterial materials that will effectively fight both Gram-positive and Gram-negative bacteria and prevent biofilm formation represents a big challenge for researchers in the last few decades. In the present work, we report an antibacterial hydrophobic carbon quantum dots/polyurethane nanocomposite (hCQD-PU), with enhanced antibacterial properties induced by pre-treatment with gamma-irradiation. Hydrophobic quantum dots (hCQDs), which are capable of generating reactive oxygen species (ROS) upon irradiation with low-power blue light (470 nm), have been integrated into the polyurethane (PU) polymer matrix to form a photoactive nanocomposite. To modify its physical and chemical properties and improve its antibacterial efficacy, various doses of gamma irradiation (1, 10, and 200 kGy) in the air environment were applied to the formed nanocomposite. Gamma-irradiation pre-treatment significantly influenced the rise in ROS production, therefore, the prooxidative activity under the blue-light illumination of hCQD-PU was also significantly improved. The best antibacterial activity was demonstrated by the hCQD-PU nanocomposite irradiated with a dose of 200 kGy, with the complete eradication of Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria after 15 min of exposure to the blue lamp. © 2021 Elsevier Ltd",
journal = "Radiation Physics and Chemistry",
title = "Enhanced visible light-triggered antibacterial activity of carbon quantum dots/polyurethane nanocomposites by gamma rays induced pre-treatment",
volume = "185",
pages = "109499",
doi = "10.1016/j.radphyschem.2021.109499"
}
Budimir, M., Marković, Z. M., Vajdak, J., Jovanović, S. P., Kubat, P., Humpoliček, P., Mičušik, M., Danko, M., Barras, A., Milivojević, D., Špitalsky, Z., Boukherroub, R.,& Todorović-Marković, B.. (2021). Enhanced visible light-triggered antibacterial activity of carbon quantum dots/polyurethane nanocomposites by gamma rays induced pre-treatment. in Radiation Physics and Chemistry, 185, 109499.
https://doi.org/10.1016/j.radphyschem.2021.109499
Budimir M, Marković ZM, Vajdak J, Jovanović SP, Kubat P, Humpoliček P, Mičušik M, Danko M, Barras A, Milivojević D, Špitalsky Z, Boukherroub R, Todorović-Marković B. Enhanced visible light-triggered antibacterial activity of carbon quantum dots/polyurethane nanocomposites by gamma rays induced pre-treatment. in Radiation Physics and Chemistry. 2021;185:109499.
doi:10.1016/j.radphyschem.2021.109499 .
Budimir, Milica, Marković, Zoran M., Vajdak, Jan, Jovanović, Svetlana P., Kubat, Pavel, Humpoliček, Petr, Mičušik, Matej, Danko, Martin, Barras, Alexandre, Milivojević, Dušan, Špitalsky, Zdenko, Boukherroub, Rabah, Todorović-Marković, Biljana, "Enhanced visible light-triggered antibacterial activity of carbon quantum dots/polyurethane nanocomposites by gamma rays induced pre-treatment" in Radiation Physics and Chemistry, 185 (2021):109499,
https://doi.org/10.1016/j.radphyschem.2021.109499 . .
16
1
14

Carbon nanocomposites as advantageous antibacterial surfaces

Budimir, Milica; Marković, Zoran M.; Todorović-Marković, Biljana

(Belgrade : Institute of Physics Belgrade, 2021)

TY  - CONF
AU  - Budimir, Milica
AU  - Marković, Zoran M.
AU  - Todorović-Marković, Biljana
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10895
AB  - Microbial contamination is a major problem that impacts many facets of our lives, including health care, water purification systems, food storage, etc. Decades of inadequate use and disposal of antibiotics have led to the emergence of antibiotic-resistant bacteria strains. Therefore, it's critical to develop new antibacterial materials that can successfully combat both planktonic Gram-positive and Gram-negative bacteria, as well as their biofilms. Antibacterial materials can inhibit biofilm formation and overcome difficulties associated with the use of conventional antimicrobial agents, such as residual toxicity, shortterm antibacterial activity, and the development of antimicrobial resistance [1]. The application of carbon nanomaterials is an emerging area of nanoscience and nanotechnology in the last few decades. When material dimensions are reduced to the nanoscale, they display unique physical, chemical, electrical and optical properties compared to their macro-scaled counterparts. Recently, researchers have focused on their biological properties, owing to their great potential as antibacterial agents and low toxicity [2]. In this regard, the goal of this work is to present several carbon/polymer nanocomposites with outstanding antibacterial properties, using two alternative approaches: photothermal and photodynamic effects. The first strategy for successful bacteria capture and eradication that will be presented here exploits the photothermal effect. The developed device consists of a flexible Kapton interface modified with gold nanoholes (Au NH) substrate, coated with reduced graphene oxide-polyethyleneimine thin films (K/Au NH/rGO-PEI) [3]. The K/Au NH/rGO–PEI device is efficient in capturing and eliminating both planktonic Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria after 10 min of NIR (980 nm) irradiation. Additionally, the developed device could effectively destroy and eradicate Staphylococcus epidermidis (S. epidermidis) biofilms after 30 min of irradiation. In the second experiment, a photoactive nanocomposite with excellent antibacterial properties was formed by incorporating hydrophobic quantum dots (hCQDs) in the polyurethane (PU) matrix. In this nanocomposite, a photodynamic effect is exploited, through the generation of reactive oxygen species (ROS) in hCQDs upon irradiation with low-power blue light (470 nm). Additionally, gamma-irradiation of various doses (1, 10, and 200 kGy) in the air environment was applied to the formed nanocomposite to alter its physical and chemical properties and improve its antibacterial efficacy. After the pretreatment with gamma-irradiation, the antibacterial activity of the presented nanocomposite was greatly improved, and the best result was achieved for the irradiation dose of 200kGy. In this sample, total bacteria elimination was achieved after 15 min of irradiation by blue light, for both Gram-positive and Gram-negative strains [4]. Both of the developed nanocomposites are simple and rather universal in terms of eradication of different microorganisms, with a potential application in biomedicine, industry, or daily-used objects.
PB  - Belgrade : Institute of Physics Belgrade
C3  - PHOTONICA2021 : 8th International School and Conference on Photonics and HEMMAGINERO workshop : Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers; August 23-27, 2021; Belgrade
T1  - Carbon nanocomposites as advantageous antibacterial surfaces
SP  - 40
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10895
ER  - 
@conference{
author = "Budimir, Milica and Marković, Zoran M. and Todorović-Marković, Biljana",
year = "2021",
abstract = "Microbial contamination is a major problem that impacts many facets of our lives, including health care, water purification systems, food storage, etc. Decades of inadequate use and disposal of antibiotics have led to the emergence of antibiotic-resistant bacteria strains. Therefore, it's critical to develop new antibacterial materials that can successfully combat both planktonic Gram-positive and Gram-negative bacteria, as well as their biofilms. Antibacterial materials can inhibit biofilm formation and overcome difficulties associated with the use of conventional antimicrobial agents, such as residual toxicity, shortterm antibacterial activity, and the development of antimicrobial resistance [1]. The application of carbon nanomaterials is an emerging area of nanoscience and nanotechnology in the last few decades. When material dimensions are reduced to the nanoscale, they display unique physical, chemical, electrical and optical properties compared to their macro-scaled counterparts. Recently, researchers have focused on their biological properties, owing to their great potential as antibacterial agents and low toxicity [2]. In this regard, the goal of this work is to present several carbon/polymer nanocomposites with outstanding antibacterial properties, using two alternative approaches: photothermal and photodynamic effects. The first strategy for successful bacteria capture and eradication that will be presented here exploits the photothermal effect. The developed device consists of a flexible Kapton interface modified with gold nanoholes (Au NH) substrate, coated with reduced graphene oxide-polyethyleneimine thin films (K/Au NH/rGO-PEI) [3]. The K/Au NH/rGO–PEI device is efficient in capturing and eliminating both planktonic Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria after 10 min of NIR (980 nm) irradiation. Additionally, the developed device could effectively destroy and eradicate Staphylococcus epidermidis (S. epidermidis) biofilms after 30 min of irradiation. In the second experiment, a photoactive nanocomposite with excellent antibacterial properties was formed by incorporating hydrophobic quantum dots (hCQDs) in the polyurethane (PU) matrix. In this nanocomposite, a photodynamic effect is exploited, through the generation of reactive oxygen species (ROS) in hCQDs upon irradiation with low-power blue light (470 nm). Additionally, gamma-irradiation of various doses (1, 10, and 200 kGy) in the air environment was applied to the formed nanocomposite to alter its physical and chemical properties and improve its antibacterial efficacy. After the pretreatment with gamma-irradiation, the antibacterial activity of the presented nanocomposite was greatly improved, and the best result was achieved for the irradiation dose of 200kGy. In this sample, total bacteria elimination was achieved after 15 min of irradiation by blue light, for both Gram-positive and Gram-negative strains [4]. Both of the developed nanocomposites are simple and rather universal in terms of eradication of different microorganisms, with a potential application in biomedicine, industry, or daily-used objects.",
publisher = "Belgrade : Institute of Physics Belgrade",
journal = "PHOTONICA2021 : 8th International School and Conference on Photonics and HEMMAGINERO workshop : Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers; August 23-27, 2021; Belgrade",
title = "Carbon nanocomposites as advantageous antibacterial surfaces",
pages = "40",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10895"
}
Budimir, M., Marković, Z. M.,& Todorović-Marković, B.. (2021). Carbon nanocomposites as advantageous antibacterial surfaces. in PHOTONICA2021 : 8th International School and Conference on Photonics and HEMMAGINERO workshop : Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers; August 23-27, 2021; Belgrade
Belgrade : Institute of Physics Belgrade., 40.
https://hdl.handle.net/21.15107/rcub_vinar_10895
Budimir M, Marković ZM, Todorović-Marković B. Carbon nanocomposites as advantageous antibacterial surfaces. in PHOTONICA2021 : 8th International School and Conference on Photonics and HEMMAGINERO workshop : Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers; August 23-27, 2021; Belgrade. 2021;:40.
https://hdl.handle.net/21.15107/rcub_vinar_10895 .
Budimir, Milica, Marković, Zoran M., Todorović-Marković, Biljana, "Carbon nanocomposites as advantageous antibacterial surfaces" in PHOTONICA2021 : 8th International School and Conference on Photonics and HEMMAGINERO workshop : Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers; August 23-27, 2021; Belgrade (2021):40,
https://hdl.handle.net/21.15107/rcub_vinar_10895 .

Gamma Irradiation as a Tool for Modification of Graphene Oxide-Silver Nanowires Composites

Mišović, Aleksandra; Bonasera, Aurelio; Budimir, Milica; Jovanović, Svetlana

(Szeged : University of Szeged, 2021)

TY  - CONF
AU  - Mišović, Aleksandra
AU  - Bonasera, Aurelio
AU  - Budimir, Milica
AU  - Jovanović, Svetlana
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11425
AB  - Graphene oxide (GO) was produced using the Hummers' method while silver nanowires (AgNWs) were obtained by polyol synthesis. Composite was produced by simple mixing of GO and AgNWs dispersions. The composite was produced in a form of free/standing films by vacuum filtration and exposed to gamma irradiation in an oxygen-free atmosphere. After irradiation, without any additional cleaning, the structure, morphology and electrical properties were investigated. Gamma irradiation was shown to be an efficient tool to induce a chemical reduction of GO, and it was able to improve the electrical conductivity of produced composites. Due to avoiding the usage of reagents and solvents, this method belongs to green chemical approaches.
PB  - Szeged : University of Szeged
C3  - 27th International Symposium on Analytical and Environmental Problems : Proceedings; November 22-23, 2021; Szeged, Hungary
T1  - Gamma Irradiation as a Tool for Modification of Graphene Oxide-Silver Nanowires Composites
SP  - 223
EP  - 227
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11425
ER  - 
@conference{
author = "Mišović, Aleksandra and Bonasera, Aurelio and Budimir, Milica and Jovanović, Svetlana",
year = "2021",
abstract = "Graphene oxide (GO) was produced using the Hummers' method while silver nanowires (AgNWs) were obtained by polyol synthesis. Composite was produced by simple mixing of GO and AgNWs dispersions. The composite was produced in a form of free/standing films by vacuum filtration and exposed to gamma irradiation in an oxygen-free atmosphere. After irradiation, without any additional cleaning, the structure, morphology and electrical properties were investigated. Gamma irradiation was shown to be an efficient tool to induce a chemical reduction of GO, and it was able to improve the electrical conductivity of produced composites. Due to avoiding the usage of reagents and solvents, this method belongs to green chemical approaches.",
publisher = "Szeged : University of Szeged",
journal = "27th International Symposium on Analytical and Environmental Problems : Proceedings; November 22-23, 2021; Szeged, Hungary",
title = "Gamma Irradiation as a Tool for Modification of Graphene Oxide-Silver Nanowires Composites",
pages = "223-227",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11425"
}
Mišović, A., Bonasera, A., Budimir, M.,& Jovanović, S.. (2021). Gamma Irradiation as a Tool for Modification of Graphene Oxide-Silver Nanowires Composites. in 27th International Symposium on Analytical and Environmental Problems : Proceedings; November 22-23, 2021; Szeged, Hungary
Szeged : University of Szeged., 223-227.
https://hdl.handle.net/21.15107/rcub_vinar_11425
Mišović A, Bonasera A, Budimir M, Jovanović S. Gamma Irradiation as a Tool for Modification of Graphene Oxide-Silver Nanowires Composites. in 27th International Symposium on Analytical and Environmental Problems : Proceedings; November 22-23, 2021; Szeged, Hungary. 2021;:223-227.
https://hdl.handle.net/21.15107/rcub_vinar_11425 .
Mišović, Aleksandra, Bonasera, Aurelio, Budimir, Milica, Jovanović, Svetlana, "Gamma Irradiation as a Tool for Modification of Graphene Oxide-Silver Nanowires Composites" in 27th International Symposium on Analytical and Environmental Problems : Proceedings; November 22-23, 2021; Szeged, Hungary (2021):223-227,
https://hdl.handle.net/21.15107/rcub_vinar_11425 .

Graphene quantum dots as singlet oxygen producer or radical quencher - The matter of functionalization with urea/thiourea

Jovanović, Svetlana P.; Syrgiannis, Zois; Budimir, Milica; Milivojević, Dušan; Jovanović, Dragana J.; Pavlović, Vladimir B.; Papan, Jelena; Bartenwerfer, Malte; Mojsin, Marija; Stevanović, Milena J.; Todorović-Marković, Biljana

(2020)

TY  - JOUR
AU  - Jovanović, Svetlana P.
AU  - Syrgiannis, Zois
AU  - Budimir, Milica
AU  - Milivojević, Dušan
AU  - Jovanović, Dragana J.
AU  - Pavlović, Vladimir B.
AU  - Papan, Jelena
AU  - Bartenwerfer, Malte
AU  - Mojsin, Marija
AU  - Stevanović, Milena J.
AU  - Todorović-Marković, Biljana
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8672
AB  - Due to their low cost and possible green synthesis, high stability and resistance to photobleaching, graphene quantum dots (GQDs) can be considered as one of the class of carbon nanomaterials which may have great potential as an agent for photosensitized oxygen activation. In such a way, GQDs can be used as a theranostic agent in photodynamic therapy. In this work pristine GQDs, GQDs irradiated with gamma rays and GQDs doped with N and N, S atoms are produced using a simple, green approach. By using different techniques (AFM, HR-TEM, SEM-EDS, FTIR, XRD, PL and UV–Vis) we investigated structural and optical properties of the new types of GQDs. We showed that GQDs functionalized with thiourea (GQDs-TU) completely lost the ability to produce singlet oxygen (1O2) upon photoexcitation while functionalization with urea (GQDs-U) improves the capability of GQDs to produce 1O2 upon the same conditions. Thus, presented GQDs modification with urea seems like a promising approach for the production of the efficient photosensitizer. On the opposite, GQDs-TU are efficient [rad]OH quencher. Due to high singlet oxygen production and low cytotoxicity below 100 μg/mL against HeLa cells, GQDs-U is a good candidate as an agent in photodynamic therapy at this concentration. © 2019
T2  - Materials Science and Engineering: C
T1  - Graphene quantum dots as singlet oxygen producer or radical quencher - The matter of functionalization with urea/thiourea
VL  - 109
SP  - 110539
DO  - 10.1016/j.msec.2019.110539
ER  - 
@article{
author = "Jovanović, Svetlana P. and Syrgiannis, Zois and Budimir, Milica and Milivojević, Dušan and Jovanović, Dragana J. and Pavlović, Vladimir B. and Papan, Jelena and Bartenwerfer, Malte and Mojsin, Marija and Stevanović, Milena J. and Todorović-Marković, Biljana",
year = "2020",
abstract = "Due to their low cost and possible green synthesis, high stability and resistance to photobleaching, graphene quantum dots (GQDs) can be considered as one of the class of carbon nanomaterials which may have great potential as an agent for photosensitized oxygen activation. In such a way, GQDs can be used as a theranostic agent in photodynamic therapy. In this work pristine GQDs, GQDs irradiated with gamma rays and GQDs doped with N and N, S atoms are produced using a simple, green approach. By using different techniques (AFM, HR-TEM, SEM-EDS, FTIR, XRD, PL and UV–Vis) we investigated structural and optical properties of the new types of GQDs. We showed that GQDs functionalized with thiourea (GQDs-TU) completely lost the ability to produce singlet oxygen (1O2) upon photoexcitation while functionalization with urea (GQDs-U) improves the capability of GQDs to produce 1O2 upon the same conditions. Thus, presented GQDs modification with urea seems like a promising approach for the production of the efficient photosensitizer. On the opposite, GQDs-TU are efficient [rad]OH quencher. Due to high singlet oxygen production and low cytotoxicity below 100 μg/mL against HeLa cells, GQDs-U is a good candidate as an agent in photodynamic therapy at this concentration. © 2019",
journal = "Materials Science and Engineering: C",
title = "Graphene quantum dots as singlet oxygen producer or radical quencher - The matter of functionalization with urea/thiourea",
volume = "109",
pages = "110539",
doi = "10.1016/j.msec.2019.110539"
}
Jovanović, S. P., Syrgiannis, Z., Budimir, M., Milivojević, D., Jovanović, D. J., Pavlović, V. B., Papan, J., Bartenwerfer, M., Mojsin, M., Stevanović, M. J.,& Todorović-Marković, B.. (2020). Graphene quantum dots as singlet oxygen producer or radical quencher - The matter of functionalization with urea/thiourea. in Materials Science and Engineering: C, 109, 110539.
https://doi.org/10.1016/j.msec.2019.110539
Jovanović SP, Syrgiannis Z, Budimir M, Milivojević D, Jovanović DJ, Pavlović VB, Papan J, Bartenwerfer M, Mojsin M, Stevanović MJ, Todorović-Marković B. Graphene quantum dots as singlet oxygen producer or radical quencher - The matter of functionalization with urea/thiourea. in Materials Science and Engineering: C. 2020;109:110539.
doi:10.1016/j.msec.2019.110539 .
Jovanović, Svetlana P., Syrgiannis, Zois, Budimir, Milica, Milivojević, Dušan, Jovanović, Dragana J., Pavlović, Vladimir B., Papan, Jelena, Bartenwerfer, Malte, Mojsin, Marija, Stevanović, Milena J., Todorović-Marković, Biljana, "Graphene quantum dots as singlet oxygen producer or radical quencher - The matter of functionalization with urea/thiourea" in Materials Science and Engineering: C, 109 (2020):110539,
https://doi.org/10.1016/j.msec.2019.110539 . .
40
15
37

Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing

Jovanović, Svetlana P.; Dorontić, Slađana; Jovanović, Dragana J.; Ciasca, Gabriele; Budimir, Milica; Bonasera, Aurelio; Scopelliti, Michelangelo; Marković, Olivera; Todorović-Marković, Biljana

(2020)

TY  - JOUR
AU  - Jovanović, Svetlana P.
AU  - Dorontić, Slađana
AU  - Jovanović, Dragana J.
AU  - Ciasca, Gabriele
AU  - Budimir, Milica
AU  - Bonasera, Aurelio
AU  - Scopelliti, Michelangelo
AU  - Marković, Olivera
AU  - Todorović-Marković, Biljana
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9072
AB  - Due to the low consumption of chemicals, the absence of toxic residual side products, the procedure simplicity and time-saving aspects, gamma irradiation offers advantages over the classical chemical protocols. We successfully employed gamma irradiation in order to introduce N-atoms in Graphene Quantum Dots (GQDs). By irradiating GQDs water dispersions in the presence of isopropyl alcohol and ethylenediamine, at doses of 25, 50 and 200 kGy, we attached amino groups onto GQDs in a single synthetic step. At the same time, a chemical reduction is achieved, too. Selected conditions induced incorporation of N-atoms within GDQs atomic lattice (around 3 at%), at all applied doses. Additionally, the C-atoms percentage was highly increased, from 63 to 79 at % or higher. The zeta potential of dots changed from −34.6 to +9.1 mV, due to the modification of functionalizing groups localized at the surface. Produced chemical changes lead to the desired alteration of the GQDs optical properties, such as an increased photoluminescence intensity, a higher photoluminescence quantum yields (from 2.07 to 18.40%) and a narrowing of the spectral features in the emission spectra. The ability of gamma-irradiated GQDs to quench free radical species was investigated and positively assessed; additionally, non-enzymatic optical detection of Cu(II) ions using GQDs as a sensor was studied and the detection limits areherein reported. These results suggest that GQDs can be potentially applied as smart photoluminescent sensors for metal cations.
T2  - Ceramics International
T1  - Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing
VL  - 46
IS  - 15
SP  - 23611
EP  - 23622
DO  - 10.1016/j.ceramint.2020.06.133
ER  - 
@article{
author = "Jovanović, Svetlana P. and Dorontić, Slađana and Jovanović, Dragana J. and Ciasca, Gabriele and Budimir, Milica and Bonasera, Aurelio and Scopelliti, Michelangelo and Marković, Olivera and Todorović-Marković, Biljana",
year = "2020",
abstract = "Due to the low consumption of chemicals, the absence of toxic residual side products, the procedure simplicity and time-saving aspects, gamma irradiation offers advantages over the classical chemical protocols. We successfully employed gamma irradiation in order to introduce N-atoms in Graphene Quantum Dots (GQDs). By irradiating GQDs water dispersions in the presence of isopropyl alcohol and ethylenediamine, at doses of 25, 50 and 200 kGy, we attached amino groups onto GQDs in a single synthetic step. At the same time, a chemical reduction is achieved, too. Selected conditions induced incorporation of N-atoms within GDQs atomic lattice (around 3 at%), at all applied doses. Additionally, the C-atoms percentage was highly increased, from 63 to 79 at % or higher. The zeta potential of dots changed from −34.6 to +9.1 mV, due to the modification of functionalizing groups localized at the surface. Produced chemical changes lead to the desired alteration of the GQDs optical properties, such as an increased photoluminescence intensity, a higher photoluminescence quantum yields (from 2.07 to 18.40%) and a narrowing of the spectral features in the emission spectra. The ability of gamma-irradiated GQDs to quench free radical species was investigated and positively assessed; additionally, non-enzymatic optical detection of Cu(II) ions using GQDs as a sensor was studied and the detection limits areherein reported. These results suggest that GQDs can be potentially applied as smart photoluminescent sensors for metal cations.",
journal = "Ceramics International",
title = "Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing",
volume = "46",
number = "15",
pages = "23611-23622",
doi = "10.1016/j.ceramint.2020.06.133"
}
Jovanović, S. P., Dorontić, S., Jovanović, D. J., Ciasca, G., Budimir, M., Bonasera, A., Scopelliti, M., Marković, O.,& Todorović-Marković, B.. (2020). Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing. in Ceramics International, 46(15), 23611-23622.
https://doi.org/10.1016/j.ceramint.2020.06.133
Jovanović SP, Dorontić S, Jovanović DJ, Ciasca G, Budimir M, Bonasera A, Scopelliti M, Marković O, Todorović-Marković B. Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing. in Ceramics International. 2020;46(15):23611-23622.
doi:10.1016/j.ceramint.2020.06.133 .
Jovanović, Svetlana P., Dorontić, Slađana, Jovanović, Dragana J., Ciasca, Gabriele, Budimir, Milica, Bonasera, Aurelio, Scopelliti, Michelangelo, Marković, Olivera, Todorović-Marković, Biljana, "Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing" in Ceramics International, 46, no. 15 (2020):23611-23622,
https://doi.org/10.1016/j.ceramint.2020.06.133 . .
16
7
17

Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]

Marković, Zoran M.; Kovačova, Maria; Humpoliček, Petr; Budimir, Milica; Vajdak, Jan; Kubat, Pavel; Mičušik, Matej; Švajdlenkova, Helena; Danko, Martin; Capakova, Zdenka; Lehocky, Marian; Todorović-Marković, Biljana; Špitalsky, Zdenko

(2020)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Kovačova, Maria
AU  - Humpoliček, Petr
AU  - Budimir, Milica
AU  - Vajdak, Jan
AU  - Kubat, Pavel
AU  - Mičušik, Matej
AU  - Švajdlenkova, Helena
AU  - Danko, Martin
AU  - Capakova, Zdenka
AU  - Lehocky, Marian
AU  - Todorović-Marković, Biljana
AU  - Špitalsky, Zdenko
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9615
AB  - Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.
T2  - Photodiagnosis and Photodynamic Therapy
T1  - Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]
VL  - 32
SP  - 101939
DO  - 10.1016/j.pdpdt.2020.101939
ER  - 
@article{
author = "Marković, Zoran M. and Kovačova, Maria and Humpoliček, Petr and Budimir, Milica and Vajdak, Jan and Kubat, Pavel and Mičušik, Matej and Švajdlenkova, Helena and Danko, Martin and Capakova, Zdenka and Lehocky, Marian and Todorović-Marković, Biljana and Špitalsky, Zdenko",
year = "2020",
abstract = "Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.",
journal = "Photodiagnosis and Photodynamic Therapy",
title = "Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]",
volume = "32",
pages = "101939",
doi = "10.1016/j.pdpdt.2020.101939"
}
Marković, Z. M., Kovačova, M., Humpoliček, P., Budimir, M., Vajdak, J., Kubat, P., Mičušik, M., Švajdlenkova, H., Danko, M., Capakova, Z., Lehocky, M., Todorović-Marković, B.,& Špitalsky, Z.. (2020). Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]. in Photodiagnosis and Photodynamic Therapy, 32, 101939.
https://doi.org/10.1016/j.pdpdt.2020.101939
Marković ZM, Kovačova M, Humpoliček P, Budimir M, Vajdak J, Kubat P, Mičušik M, Švajdlenkova H, Danko M, Capakova Z, Lehocky M, Todorović-Marković B, Špitalsky Z. Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]. in Photodiagnosis and Photodynamic Therapy. 2020;32:101939.
doi:10.1016/j.pdpdt.2020.101939 .
Marković, Zoran M., Kovačova, Maria, Humpoliček, Petr, Budimir, Milica, Vajdak, Jan, Kubat, Pavel, Mičušik, Matej, Švajdlenkova, Helena, Danko, Martin, Capakova, Zdenka, Lehocky, Marian, Todorović-Marković, Biljana, Špitalsky, Zdenko, "Corrigendum “antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae” [photodiagnosis. photodyn. ther. 26 (2019) 342–349]" in Photodiagnosis and Photodynamic Therapy, 32 (2020):101939,
https://doi.org/10.1016/j.pdpdt.2020.101939 . .

Erratum: Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study

Budimir, Milica; Marković, Zoran M.; Jovanović, Dragana J.; Vujisić, Miloš; Mičušík, Matej; Danko, Martin; Kleinová, Angela; Švajdlenková, Helena; Špitalský, Zdeno; Todorović-Marković, Biljana

(2020)

TY  - JOUR
AU  - Budimir, Milica
AU  - Marković, Zoran M.
AU  - Jovanović, Dragana J.
AU  - Vujisić, Miloš
AU  - Mičušík, Matej
AU  - Danko, Martin
AU  - Kleinová, Angela
AU  - Švajdlenková, Helena
AU  - Špitalský, Zdeno
AU  - Todorović-Marković, Biljana
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9827
T2  - RSC Advances
T1  - Erratum: Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study
VL  - 10
IS  - 12
SP  - 7125
DO  - 10.1039/D0RA90015J
ER  - 
@article{
author = "Budimir, Milica and Marković, Zoran M. and Jovanović, Dragana J. and Vujisić, Miloš and Mičušík, Matej and Danko, Martin and Kleinová, Angela and Švajdlenková, Helena and Špitalský, Zdeno and Todorović-Marković, Biljana",
year = "2020",
journal = "RSC Advances",
title = "Erratum: Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study",
volume = "10",
number = "12",
pages = "7125",
doi = "10.1039/D0RA90015J"
}
Budimir, M., Marković, Z. M., Jovanović, D. J., Vujisić, M., Mičušík, M., Danko, M., Kleinová, A., Švajdlenková, H., Špitalský, Z.,& Todorović-Marković, B.. (2020). Erratum: Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study. in RSC Advances, 10(12), 7125.
https://doi.org/10.1039/D0RA90015J
Budimir M, Marković ZM, Jovanović DJ, Vujisić M, Mičušík M, Danko M, Kleinová A, Švajdlenková H, Špitalský Z, Todorović-Marković B. Erratum: Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study. in RSC Advances. 2020;10(12):7125.
doi:10.1039/D0RA90015J .
Budimir, Milica, Marković, Zoran M., Jovanović, Dragana J., Vujisić, Miloš, Mičušík, Matej, Danko, Martin, Kleinová, Angela, Švajdlenková, Helena, Špitalský, Zdeno, Todorović-Marković, Biljana, "Erratum: Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study" in RSC Advances, 10, no. 12 (2020):7125,
https://doi.org/10.1039/D0RA90015J . .

Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study

Budimir, Milica; Marković, Zoran M.; Jovanović, Dragana J.; Vujisić, Miloš Lj.; Mičušik, Matej; Danko, Martin; Kleinova, Angela; Švajdlenkova, Helena; Špitalsky, Zdenko; Todorović-Marković, Biljana

(2019)

TY  - JOUR
AU  - Budimir, Milica
AU  - Marković, Zoran M.
AU  - Jovanović, Dragana J.
AU  - Vujisić, Miloš Lj.
AU  - Mičušik, Matej
AU  - Danko, Martin
AU  - Kleinova, Angela
AU  - Švajdlenkova, Helena
AU  - Špitalsky, Zdenko
AU  - Todorović-Marković, Biljana
PY  - 2019
UR  - http://xlink.rsc.org/?DOI=C9RA00500E
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8086
AB  - In recent years, water pollution and contamination had become a major threat to the ecosystem. However, the use of nanostructured materials has been proven as a very promising approach in the treatment of polluted water. The present study reports the results of the gamma ray-assisted modification of hydrophobic carbon quantum dot (hCQD)/polyurethane nanocomposites for photocatalytic degradation of organic dyes. Different characterization methods were applied to investigate the influence of the different doses of gamma irradiation (1, 10 and 200 kGy) on the physical and chemical properties of nanocomposites (morphology, chemical content, mechanical properties, wettability, and potential for singlet oxygen generation). Surface morphology and mechanical properties analyses showed that gamma rays induced insignificant changes in the structure of nanocomposites, but the potential for singlet oxygen generation increased significantly. Here we also explore, in detail, the photocatalytic properties of gamma-ray modified hCQDs/polyurethane nanocomposites. UV-vis analysis showed that the removal efficiency of the rose bengal dye reached up to 97% for the nanocomposite irradiated with the dose of 200 kGy.
T2  - RSC Advances
T1  - Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study
VL  - 9
IS  - 11
SP  - 6278
EP  - 6286
DO  - 10.1039/C9RA00500E
ER  - 
@article{
author = "Budimir, Milica and Marković, Zoran M. and Jovanović, Dragana J. and Vujisić, Miloš Lj. and Mičušik, Matej and Danko, Martin and Kleinova, Angela and Švajdlenkova, Helena and Špitalsky, Zdenko and Todorović-Marković, Biljana",
year = "2019",
abstract = "In recent years, water pollution and contamination had become a major threat to the ecosystem. However, the use of nanostructured materials has been proven as a very promising approach in the treatment of polluted water. The present study reports the results of the gamma ray-assisted modification of hydrophobic carbon quantum dot (hCQD)/polyurethane nanocomposites for photocatalytic degradation of organic dyes. Different characterization methods were applied to investigate the influence of the different doses of gamma irradiation (1, 10 and 200 kGy) on the physical and chemical properties of nanocomposites (morphology, chemical content, mechanical properties, wettability, and potential for singlet oxygen generation). Surface morphology and mechanical properties analyses showed that gamma rays induced insignificant changes in the structure of nanocomposites, but the potential for singlet oxygen generation increased significantly. Here we also explore, in detail, the photocatalytic properties of gamma-ray modified hCQDs/polyurethane nanocomposites. UV-vis analysis showed that the removal efficiency of the rose bengal dye reached up to 97% for the nanocomposite irradiated with the dose of 200 kGy.",
journal = "RSC Advances",
title = "Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study",
volume = "9",
number = "11",
pages = "6278-6286",
doi = "10.1039/C9RA00500E"
}
Budimir, M., Marković, Z. M., Jovanović, D. J., Vujisić, M. Lj., Mičušik, M., Danko, M., Kleinova, A., Švajdlenkova, H., Špitalsky, Z.,& Todorović-Marković, B.. (2019). Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study. in RSC Advances, 9(11), 6278-6286.
https://doi.org/10.1039/C9RA00500E
Budimir M, Marković ZM, Jovanović DJ, Vujisić ML, Mičušik M, Danko M, Kleinova A, Švajdlenkova H, Špitalsky Z, Todorović-Marković B. Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study. in RSC Advances. 2019;9(11):6278-6286.
doi:10.1039/C9RA00500E .
Budimir, Milica, Marković, Zoran M., Jovanović, Dragana J., Vujisić, Miloš Lj., Mičušik, Matej, Danko, Martin, Kleinova, Angela, Švajdlenkova, Helena, Špitalsky, Zdenko, Todorović-Marković, Biljana, "Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study" in RSC Advances, 9, no. 11 (2019):6278-6286,
https://doi.org/10.1039/C9RA00500E . .
1
10
8
12

Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae

Marković, Zoran M.; Kovačova, Maria; Humpoliček, Petr; Budimir, Milica; Vajdak, Jan; Kubat, Pavel; Mičušik, Matej; Švajdlenkova, Helena; Danko, Martin; Capakova, Zdenka; Lehocky, Marian; Todorović-Marković, Biljana; Špitalsky, Zdenko

(2019)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Kovačova, Maria
AU  - Humpoliček, Petr
AU  - Budimir, Milica
AU  - Vajdak, Jan
AU  - Kubat, Pavel
AU  - Mičušik, Matej
AU  - Švajdlenkova, Helena
AU  - Danko, Martin
AU  - Capakova, Zdenka
AU  - Lehocky, Marian
AU  - Todorović-Marković, Biljana
AU  - Špitalsky, Zdenko
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8174
AB  - Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.
T2  - Photodiagnosis and Photodynamic Therapy
T1  - Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae
VL  - 26
SP  - 342
EP  - 349
DO  - 10.1016/j.pdpdt.2019.04.019
ER  - 
@article{
author = "Marković, Zoran M. and Kovačova, Maria and Humpoliček, Petr and Budimir, Milica and Vajdak, Jan and Kubat, Pavel and Mičušik, Matej and Švajdlenkova, Helena and Danko, Martin and Capakova, Zdenka and Lehocky, Marian and Todorović-Marković, Biljana and Špitalsky, Zdenko",
year = "2019",
abstract = "Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.",
journal = "Photodiagnosis and Photodynamic Therapy",
title = "Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae",
volume = "26",
pages = "342-349",
doi = "10.1016/j.pdpdt.2019.04.019"
}
Marković, Z. M., Kovačova, M., Humpoliček, P., Budimir, M., Vajdak, J., Kubat, P., Mičušik, M., Švajdlenkova, H., Danko, M., Capakova, Z., Lehocky, M., Todorović-Marković, B.,& Špitalsky, Z.. (2019). Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. in Photodiagnosis and Photodynamic Therapy, 26, 342-349.
https://doi.org/10.1016/j.pdpdt.2019.04.019
Marković ZM, Kovačova M, Humpoliček P, Budimir M, Vajdak J, Kubat P, Mičušik M, Švajdlenkova H, Danko M, Capakova Z, Lehocky M, Todorović-Marković B, Špitalsky Z. Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. in Photodiagnosis and Photodynamic Therapy. 2019;26:342-349.
doi:10.1016/j.pdpdt.2019.04.019 .
Marković, Zoran M., Kovačova, Maria, Humpoliček, Petr, Budimir, Milica, Vajdak, Jan, Kubat, Pavel, Mičušik, Matej, Švajdlenkova, Helena, Danko, Martin, Capakova, Zdenka, Lehocky, Marian, Todorović-Marković, Biljana, Špitalsky, Zdenko, "Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae" in Photodiagnosis and Photodynamic Therapy, 26 (2019):342-349,
https://doi.org/10.1016/j.pdpdt.2019.04.019 . .
57
30
55

Efficient capture and photothermal ablation of planktonic bacteria and biofilms using reduced graphene oxide–polyethyleneimine flexible nanoheaters

Budimir, Milica; Jijie, Roxana; Ye, Ran; Barras, Alexandre; Melinte, Sorin; Silhanek, Alejandro; Marković, Zoran M.; Szunerits, Sabine; Boukherroub, Rabah

(2019)

TY  - JOUR
AU  - Budimir, Milica
AU  - Jijie, Roxana
AU  - Ye, Ran
AU  - Barras, Alexandre
AU  - Melinte, Sorin
AU  - Silhanek, Alejandro
AU  - Marković, Zoran M.
AU  - Szunerits, Sabine
AU  - Boukherroub, Rabah
PY  - 2019
UR  - http://xlink.rsc.org/?DOI=C8TB01676C
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8181
AB  - Bacterial infections are one of the leading causes of disease worldwide. Conventional antibiotics are becoming less efficient, due to antibiotic-resistant bacterial strains. Therefore, the development of novel antibacterial materials and advanced treatment strategies are becoming increasingly important. In the present work, we developed a simple and efficient strategy for effective bacterial capture and their subsequent eradication through photothermal killing. The developed device consists of a flexible nanoheater, comprising a Kapton/Au nanoholes substrate, coated with reduced graphene oxide-polyethyleneimine (K/Au NH/rGO-PEI) thin films. The Au NH plasmonic structure was tailored to feature strong absorption in the near-infrared (NIR) region, where most biological matter has limited absorption, while PEI was investigated for its strong binding with bacteria through electrostatic interactions. The K/Au NH/rGO-PEI device was demonstrated to capture and eliminate effectively both planktonic Gram-positive Staphilococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria after 10 min of NIR (980 nm) irradiation and, to destroy and eradicate Staphilococcus epidermidis (S. epidermidis) biofilms after 30 min irradiation. The technique developed herein is simple and universal with potential applications for eradication of different micro-organisms.
T2  - Journal of Materials Chemistry B
T1  - Efficient capture and photothermal ablation of planktonic bacteria and biofilms using reduced graphene oxide–polyethyleneimine flexible nanoheaters
VL  - 7
IS  - 17
SP  - 2771
EP  - 2781
DO  - 10.1039/C8TB01676C
ER  - 
@article{
author = "Budimir, Milica and Jijie, Roxana and Ye, Ran and Barras, Alexandre and Melinte, Sorin and Silhanek, Alejandro and Marković, Zoran M. and Szunerits, Sabine and Boukherroub, Rabah",
year = "2019",
abstract = "Bacterial infections are one of the leading causes of disease worldwide. Conventional antibiotics are becoming less efficient, due to antibiotic-resistant bacterial strains. Therefore, the development of novel antibacterial materials and advanced treatment strategies are becoming increasingly important. In the present work, we developed a simple and efficient strategy for effective bacterial capture and their subsequent eradication through photothermal killing. The developed device consists of a flexible nanoheater, comprising a Kapton/Au nanoholes substrate, coated with reduced graphene oxide-polyethyleneimine (K/Au NH/rGO-PEI) thin films. The Au NH plasmonic structure was tailored to feature strong absorption in the near-infrared (NIR) region, where most biological matter has limited absorption, while PEI was investigated for its strong binding with bacteria through electrostatic interactions. The K/Au NH/rGO-PEI device was demonstrated to capture and eliminate effectively both planktonic Gram-positive Staphilococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria after 10 min of NIR (980 nm) irradiation and, to destroy and eradicate Staphilococcus epidermidis (S. epidermidis) biofilms after 30 min irradiation. The technique developed herein is simple and universal with potential applications for eradication of different micro-organisms.",
journal = "Journal of Materials Chemistry B",
title = "Efficient capture and photothermal ablation of planktonic bacteria and biofilms using reduced graphene oxide–polyethyleneimine flexible nanoheaters",
volume = "7",
number = "17",
pages = "2771-2781",
doi = "10.1039/C8TB01676C"
}
Budimir, M., Jijie, R., Ye, R., Barras, A., Melinte, S., Silhanek, A., Marković, Z. M., Szunerits, S.,& Boukherroub, R.. (2019). Efficient capture and photothermal ablation of planktonic bacteria and biofilms using reduced graphene oxide–polyethyleneimine flexible nanoheaters. in Journal of Materials Chemistry B, 7(17), 2771-2781.
https://doi.org/10.1039/C8TB01676C
Budimir M, Jijie R, Ye R, Barras A, Melinte S, Silhanek A, Marković ZM, Szunerits S, Boukherroub R. Efficient capture and photothermal ablation of planktonic bacteria and biofilms using reduced graphene oxide–polyethyleneimine flexible nanoheaters. in Journal of Materials Chemistry B. 2019;7(17):2771-2781.
doi:10.1039/C8TB01676C .
Budimir, Milica, Jijie, Roxana, Ye, Ran, Barras, Alexandre, Melinte, Sorin, Silhanek, Alejandro, Marković, Zoran M., Szunerits, Sabine, Boukherroub, Rabah, "Efficient capture and photothermal ablation of planktonic bacteria and biofilms using reduced graphene oxide–polyethyleneimine flexible nanoheaters" in Journal of Materials Chemistry B, 7, no. 17 (2019):2771-2781,
https://doi.org/10.1039/C8TB01676C . .
1
31
20
30

Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae

Marković, Zoran M.; Kovačova, Maria; Humpoliček, Petr; Budimir, Milica; Vajdak, Jan; Kubat, Pavel; Mičušik, Matej; Švajdlenkova, Helena; Danko, Martin; Capakova, Zdenka; Lehocky, Marian; Todorović-Marković, Biljana; Špitalsky, Zdenko

(2019)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Kovačova, Maria
AU  - Humpoliček, Petr
AU  - Budimir, Milica
AU  - Vajdak, Jan
AU  - Kubat, Pavel
AU  - Mičušik, Matej
AU  - Švajdlenkova, Helena
AU  - Danko, Martin
AU  - Capakova, Zdenka
AU  - Lehocky, Marian
AU  - Todorović-Marković, Biljana
AU  - Špitalsky, Zdenko
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8187
AB  - Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.
T2  - Photodiagnosis and Photodynamic Therapy
T1  - Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae
VL  - 26
SP  - 342
EP  - 349
DO  - 10.1016/j.pdpdt.2019.04.019
ER  - 
@article{
author = "Marković, Zoran M. and Kovačova, Maria and Humpoliček, Petr and Budimir, Milica and Vajdak, Jan and Kubat, Pavel and Mičušik, Matej and Švajdlenkova, Helena and Danko, Martin and Capakova, Zdenka and Lehocky, Marian and Todorović-Marković, Biljana and Špitalsky, Zdenko",
year = "2019",
abstract = "Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation. © 2019 Elsevier B.V.",
journal = "Photodiagnosis and Photodynamic Therapy",
title = "Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae",
volume = "26",
pages = "342-349",
doi = "10.1016/j.pdpdt.2019.04.019"
}
Marković, Z. M., Kovačova, M., Humpoliček, P., Budimir, M., Vajdak, J., Kubat, P., Mičušik, M., Švajdlenkova, H., Danko, M., Capakova, Z., Lehocky, M., Todorović-Marković, B.,& Špitalsky, Z.. (2019). Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. in Photodiagnosis and Photodynamic Therapy, 26, 342-349.
https://doi.org/10.1016/j.pdpdt.2019.04.019
Marković ZM, Kovačova M, Humpoliček P, Budimir M, Vajdak J, Kubat P, Mičušik M, Švajdlenkova H, Danko M, Capakova Z, Lehocky M, Todorović-Marković B, Špitalsky Z. Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. in Photodiagnosis and Photodynamic Therapy. 2019;26:342-349.
doi:10.1016/j.pdpdt.2019.04.019 .
Marković, Zoran M., Kovačova, Maria, Humpoliček, Petr, Budimir, Milica, Vajdak, Jan, Kubat, Pavel, Mičušik, Matej, Švajdlenkova, Helena, Danko, Martin, Capakova, Zdenka, Lehocky, Marian, Todorović-Marković, Biljana, Špitalsky, Zdenko, "Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae" in Photodiagnosis and Photodynamic Therapy, 26 (2019):342-349,
https://doi.org/10.1016/j.pdpdt.2019.04.019 . .
57
30
55