Skorodumova, Natalia V.

Link to this page

Authority KeyName Variants
d082344d-3547-48fc-9e33-b0ece00a47f8
  • Skorodumova, Natalia V. (3)

Author's Bibliography

A study of ordered mesoporous carbon doped with Co and Ni as a catalyst of oxygen reduction reaction in both alkaline and acidic media

Gavrilov, Nemanja M.; Momčilović, Milan Z.; Dobrota, Ana S.; Stanković, Dalibor M.; Jokić, Bojan M.; Babić, Biljana M.; Skorodumova, Natalia V.; Mentus, Slavko V.; Pašti, Igor A.

(2018)

TY  - JOUR
AU  - Gavrilov, Nemanja M.
AU  - Momčilović, Milan Z.
AU  - Dobrota, Ana S.
AU  - Stanković, Dalibor M.
AU  - Jokić, Bojan M.
AU  - Babić, Biljana M.
AU  - Skorodumova, Natalia V.
AU  - Mentus, Slavko V.
AU  - Pašti, Igor A.
PY  - 2018
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0257897218305838
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7727
AB  - The incorporation of trace amounts (<0.2%) of Co and Ni noticeably enhanced the catalytic activity of nitrogen-free ordered mesoporous carbon (OMC) towards oxygen reduction reaction (ORR). (Co,Ni)-doped OMCs were characterized by N2-adsorption measurements, X-ray powder diffraction, field emission scanning electron microscopy and Raman spectroscopy methods, and their ORR activity was estimated by voltammetry on rotating disk electrode in acidic and alkaline media. (Co,Ni)-doped OMCs show modest activities in acidic media, while the catalytic activity in alkaline media is rather high. The measured activities are compared to the Pt-based and Pt-free ORR catalysts reported in the literature. The number of electrons consumed per O2in metal-doped OMCs was found to vary between 2 and 4, which is advantageous in comparison to metal-free OMC. Also, the mass activities of metal-doped OMCs were found to be up to 2.5 times higher compared to that of metal-free OMC. We suggest that the ORR activity is governed by a balance between (i) textural properties, which determine the electrochemically accessible surface of the catalyst and which are influenced by the addition of a metal precursor, and (ii) novel active sites formed upon the introduction of metals into the carbon structure. In particular, our Density Functional Theory calculations suggest that Co and Ni atoms embedded into the single vacancies of graphene can activate the O2molecule and contribute to the decomposition of peroxide.
T2  - Surface and Coatings Technology
T1  - A study of ordered mesoporous carbon doped with Co and Ni as a catalyst of oxygen reduction reaction in both alkaline and acidic media
VL  - 349
SP  - 511
EP  - 521
DO  - 10.1016/j.surfcoat.2018.06.008
ER  - 
@article{
author = "Gavrilov, Nemanja M. and Momčilović, Milan Z. and Dobrota, Ana S. and Stanković, Dalibor M. and Jokić, Bojan M. and Babić, Biljana M. and Skorodumova, Natalia V. and Mentus, Slavko V. and Pašti, Igor A.",
year = "2018",
url = "https://linkinghub.elsevier.com/retrieve/pii/S0257897218305838, http://vinar.vin.bg.ac.rs/handle/123456789/7727",
abstract = "The incorporation of trace amounts (<0.2%) of Co and Ni noticeably enhanced the catalytic activity of nitrogen-free ordered mesoporous carbon (OMC) towards oxygen reduction reaction (ORR). (Co,Ni)-doped OMCs were characterized by N2-adsorption measurements, X-ray powder diffraction, field emission scanning electron microscopy and Raman spectroscopy methods, and their ORR activity was estimated by voltammetry on rotating disk electrode in acidic and alkaline media. (Co,Ni)-doped OMCs show modest activities in acidic media, while the catalytic activity in alkaline media is rather high. The measured activities are compared to the Pt-based and Pt-free ORR catalysts reported in the literature. The number of electrons consumed per O2in metal-doped OMCs was found to vary between 2 and 4, which is advantageous in comparison to metal-free OMC. Also, the mass activities of metal-doped OMCs were found to be up to 2.5 times higher compared to that of metal-free OMC. We suggest that the ORR activity is governed by a balance between (i) textural properties, which determine the electrochemically accessible surface of the catalyst and which are influenced by the addition of a metal precursor, and (ii) novel active sites formed upon the introduction of metals into the carbon structure. In particular, our Density Functional Theory calculations suggest that Co and Ni atoms embedded into the single vacancies of graphene can activate the O2molecule and contribute to the decomposition of peroxide.",
journal = "Surface and Coatings Technology",
title = "A study of ordered mesoporous carbon doped with Co and Ni as a catalyst of oxygen reduction reaction in both alkaline and acidic media",
volume = "349",
pages = "511-521",
doi = "10.1016/j.surfcoat.2018.06.008"
}
Gavrilov, N. M., Momčilović, M. Z., Dobrota, A. S., Stanković, D. M., Jokić, B. M., Babić, B. M., Skorodumova, N. V., Mentus, S. V.,& Pašti, I. A. (2018). A study of ordered mesoporous carbon doped with Co and Ni as a catalyst of oxygen reduction reaction in both alkaline and acidic media.
Surface and Coatings Technology, 349, 511-521.
https://doi.org/10.1016/j.surfcoat.2018.06.008
Gavrilov NM, Momčilović MZ, Dobrota AS, Stanković DM, Jokić BM, Babić BM, Skorodumova NV, Mentus SV, Pašti IA. A study of ordered mesoporous carbon doped with Co and Ni as a catalyst of oxygen reduction reaction in both alkaline and acidic media. Surface and Coatings Technology. 2018;349:511-521
Gavrilov Nemanja M., Momčilović Milan Z., Dobrota Ana S., Stanković Dalibor M., Jokić Bojan M., Babić Biljana M., Skorodumova Natalia V., Mentus Slavko V., Pašti Igor A., "A study of ordered mesoporous carbon doped with Co and Ni as a catalyst of oxygen reduction reaction in both alkaline and acidic media" Surface and Coatings Technology, 349 (2018):511-521,
https://doi.org/10.1016/j.surfcoat.2018.06.008 .
15
11
14

The impact of the structure of graphene-based materials on the removal of organophosphorus pesticides from water

Lazarević-Pašti, Tamara; Anićijević, Vladan J.; Baljozović, Miloš; Vasić Anićijević, Dragana D.; Gutić, Sanjin J.; Vasić, Vesna M.; Skorodumova, Natalia V.; Pašti, Igor A.

(2018)

TY  - JOUR
AU  - Lazarević-Pašti, Tamara
AU  - Anićijević, Vladan J.
AU  - Baljozović, Miloš
AU  - Vasić Anićijević, Dragana D.
AU  - Gutić, Sanjin J.
AU  - Vasić, Vesna M.
AU  - Skorodumova, Natalia V.
AU  - Pašti, Igor A.
PY  - 2018
UR  - http://xlink.rsc.org/?DOI=C8EN00171E
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7730
AB  - The wide use of pesticides in modern agriculture and other areas results in an urgent need for their efficient removal from the environment. Adsorption of pesticides is one of the most commonly used strategies for this task. Here we analyze the adsorption of two organophosphorus pesticides, dimethoate (DMT) and chlorpyrifos (CPF), on graphene-based materials. The adsorption was found to be very sensitive to the structure of the adsorbents used. In particular, aliphatic DMT was found to prefer hydrophilic oxidized graphene surfaces. The CPF molecule, which contains an aromatic moiety, prefers adsorption on the surface of a graphene basal plane with high structural order and preserved π electron system. The toxicity of pesticide solutions is reduced after adsorption, suggesting that there is no oxidation of DMT and CPF to more toxic oxo forms. We emphasize that the combination of structural properties of adsorbents and adsorbates defines the adsorption of organophosphorus pesticides on graphene-based materials, while the specific surface area of adsorbents is not the major factor.
T2  - Environmental Science: Nano
T1  - The impact of the structure of graphene-based materials on the removal of organophosphorus pesticides from water
VL  - 5
IS  - 6
SP  - 1482
EP  - 1494
DO  - 10.1039/C8EN00171E
ER  - 
@article{
author = "Lazarević-Pašti, Tamara and Anićijević, Vladan J. and Baljozović, Miloš and Vasić Anićijević, Dragana D. and Gutić, Sanjin J. and Vasić, Vesna M. and Skorodumova, Natalia V. and Pašti, Igor A.",
year = "2018",
url = "http://xlink.rsc.org/?DOI=C8EN00171E, http://vinar.vin.bg.ac.rs/handle/123456789/7730",
abstract = "The wide use of pesticides in modern agriculture and other areas results in an urgent need for their efficient removal from the environment. Adsorption of pesticides is one of the most commonly used strategies for this task. Here we analyze the adsorption of two organophosphorus pesticides, dimethoate (DMT) and chlorpyrifos (CPF), on graphene-based materials. The adsorption was found to be very sensitive to the structure of the adsorbents used. In particular, aliphatic DMT was found to prefer hydrophilic oxidized graphene surfaces. The CPF molecule, which contains an aromatic moiety, prefers adsorption on the surface of a graphene basal plane with high structural order and preserved π electron system. The toxicity of pesticide solutions is reduced after adsorption, suggesting that there is no oxidation of DMT and CPF to more toxic oxo forms. We emphasize that the combination of structural properties of adsorbents and adsorbates defines the adsorption of organophosphorus pesticides on graphene-based materials, while the specific surface area of adsorbents is not the major factor.",
journal = "Environmental Science: Nano",
title = "The impact of the structure of graphene-based materials on the removal of organophosphorus pesticides from water",
volume = "5",
number = "6",
pages = "1482-1494",
doi = "10.1039/C8EN00171E"
}
Lazarević-Pašti, T., Anićijević, V. J., Baljozović, M., Vasić Anićijević, D. D., Gutić, S. J., Vasić, V. M., Skorodumova, N. V.,& Pašti, I. A. (2018). The impact of the structure of graphene-based materials on the removal of organophosphorus pesticides from water.
Environmental Science: Nano, 5(6), 1482-1494.
https://doi.org/10.1039/C8EN00171E
Lazarević-Pašti T, Anićijević VJ, Baljozović M, Vasić Anićijević DD, Gutić SJ, Vasić VM, Skorodumova NV, Pašti IA. The impact of the structure of graphene-based materials on the removal of organophosphorus pesticides from water. Environmental Science: Nano. 2018;5(6):1482-1494
Lazarević-Pašti Tamara, Anićijević Vladan J., Baljozović Miloš, Vasić Anićijević Dragana D., Gutić Sanjin J., Vasić Vesna M., Skorodumova Natalia V., Pašti Igor A., "The impact of the structure of graphene-based materials on the removal of organophosphorus pesticides from water" Environmental Science: Nano, 5, no. 6 (2018):1482-1494,
https://doi.org/10.1039/C8EN00171E .
7
29
15
28

Stabilization of alkali metal ions interaction with OH-functionalized graphene via clustering of OH groups - implications in charge storage applications

Dobrota, Ana S.; Gutić, Sanjin J.; Kalijadis, Ana; Baljozović, Miloš; Mentus, Slavko V.; Skorodumova, Natalia V.; Pašti, Igor A.

(2016)

TY  - JOUR
AU  - Dobrota, Ana S.
AU  - Gutić, Sanjin J.
AU  - Kalijadis, Ana
AU  - Baljozović, Miloš
AU  - Mentus, Slavko V.
AU  - Skorodumova, Natalia V.
AU  - Pašti, Igor A.
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1155
AB  - Graphene synthesized by reduction of graphene oxide, depending on the degree of reduction, retains a certain amount of surface OH groups. Considering the surface OH groups/graphene layer system by means of density functional theory calculations, we evidenced the tendency of OH groups to cluster, resulting in enhanced system stability and no band gap opening. In the oxygen concentration range between 1.8 and 8.47 at%, with the addition of each new OH group, integral binding energy decreases, while differential binding energy shows the boost at even numbers of OH groups. Furthermore, we found that the clustering of OH groups over graphene basal plane plays a crucial role in enhancing the interactions with alkali metals. Namely, if alkali metal atoms interact with individual OH groups only, the interaction leads to an irreversible formation of MOH phase. When alkali atoms interact with clusters containing odd number of OH groups, a reversible transfer of an electron charge from the metal atom to the substrate takes place without OH removal. The strength of the interaction in general increases from Li to K. In an experimental investigation of a graphene sample which dominantly contains OH groups, we have shown that the trend in the specific interaction strength reflects to gravimetric capacitances measured in alkali metal chloride solutions. We propose that the charge stored in OH groups which interact with alkali metal cation and the pi electronic system of the graphene basal plane presents the main part of its pseudocapacitance.
T2  - RSC Advances
T1  - Stabilization of alkali metal ions interaction with OH-functionalized graphene via clustering of OH groups - implications in charge storage applications
VL  - 6
IS  - 63
SP  - 57910
EP  - 57919
DO  - 10.1039/c6ra13509a
ER  - 
@article{
author = "Dobrota, Ana S. and Gutić, Sanjin J. and Kalijadis, Ana and Baljozović, Miloš and Mentus, Slavko V. and Skorodumova, Natalia V. and Pašti, Igor A.",
year = "2016",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1155",
abstract = "Graphene synthesized by reduction of graphene oxide, depending on the degree of reduction, retains a certain amount of surface OH groups. Considering the surface OH groups/graphene layer system by means of density functional theory calculations, we evidenced the tendency of OH groups to cluster, resulting in enhanced system stability and no band gap opening. In the oxygen concentration range between 1.8 and 8.47 at%, with the addition of each new OH group, integral binding energy decreases, while differential binding energy shows the boost at even numbers of OH groups. Furthermore, we found that the clustering of OH groups over graphene basal plane plays a crucial role in enhancing the interactions with alkali metals. Namely, if alkali metal atoms interact with individual OH groups only, the interaction leads to an irreversible formation of MOH phase. When alkali atoms interact with clusters containing odd number of OH groups, a reversible transfer of an electron charge from the metal atom to the substrate takes place without OH removal. The strength of the interaction in general increases from Li to K. In an experimental investigation of a graphene sample which dominantly contains OH groups, we have shown that the trend in the specific interaction strength reflects to gravimetric capacitances measured in alkali metal chloride solutions. We propose that the charge stored in OH groups which interact with alkali metal cation and the pi electronic system of the graphene basal plane presents the main part of its pseudocapacitance.",
journal = "RSC Advances",
title = "Stabilization of alkali metal ions interaction with OH-functionalized graphene via clustering of OH groups - implications in charge storage applications",
volume = "6",
number = "63",
pages = "57910-57919",
doi = "10.1039/c6ra13509a"
}
Dobrota, A. S., Gutić, S. J., Kalijadis, A., Baljozović, M., Mentus, S. V., Skorodumova, N. V.,& Pašti, I. A. (2016). Stabilization of alkali metal ions interaction with OH-functionalized graphene via clustering of OH groups - implications in charge storage applications.
RSC Advances, 6(63), 57910-57919.
https://doi.org/10.1039/c6ra13509a
Dobrota AS, Gutić SJ, Kalijadis A, Baljozović M, Mentus SV, Skorodumova NV, Pašti IA. Stabilization of alkali metal ions interaction with OH-functionalized graphene via clustering of OH groups - implications in charge storage applications. RSC Advances. 2016;6(63):57910-57919
Dobrota Ana S., Gutić Sanjin J., Kalijadis Ana, Baljozović Miloš, Mentus Slavko V., Skorodumova Natalia V., Pašti Igor A., "Stabilization of alkali metal ions interaction with OH-functionalized graphene via clustering of OH groups - implications in charge storage applications" RSC Advances, 6, no. 63 (2016):57910-57919,
https://doi.org/10.1039/c6ra13509a .
11
12
13