Luce, Marco

Link to this page

Authority KeyName Variants
acb8d326-52c7-4e43-8cb5-4aa7f40990fe
  • Luce, Marco (2)
Projects

Author's Bibliography

Conjugates of Gold Nanoparticles and Antitumor Gold(III) Complexes as a Tool for Their AFM and SERS Detection in Biological Tissue

Bondžić, Aleksandra M.; Leskovac, Andreja; Petrović, Sandra; Vasić Anićijević, Dragana D.; Luce, Marco; Massai, Lara; Generosi, Amanda; Paci, Barbara; Cricenti, Antonio; Messori, Luigi; Vasić, Vesna M.

(2019)

TY  - JOUR
AU  - Bondžić, Aleksandra M.
AU  - Leskovac, Andreja
AU  - Petrović, Sandra
AU  - Vasić Anićijević, Dragana D.
AU  - Luce, Marco
AU  - Massai, Lara
AU  - Generosi, Amanda
AU  - Paci, Barbara
AU  - Cricenti, Antonio
AU  - Messori, Luigi
AU  - Vasić, Vesna M.
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8747
AB  - Citrate-capped gold nanoparticles (AuNPs) were functionalized with three distinct antitumor gold(III) complexes, e.g., [Au(N,N)(OH)2][PF6], where (N,N)=2,2′-bipyridine; [Au(C,N)(AcO)2], where (C,N)=deprotonated 6-(1,1-dimethylbenzyl)-pyridine; [Au(C,N,N)(OH)][PF6], where (C,N,N)=deprotonated 6-(1,1-dimethylbenzyl)-2,2′-bipyridine, to assess the chance of tracking their subcellular distribution by atomic force microscopy (AFM), and surface enhanced Raman spectroscopy (SERS) techniques. An extensive physicochemical characterization of the formed conjugates was, thus, carried out by applying a variety of methods (density functional theory—DFT, UV/Vis spectrophotometry, AFM, Raman spectroscopy, and SERS). The resulting gold(III) complexes/AuNPs conjugates turned out to be pretty stable. Interestingly, they exhibited a dramatically increased resonance intensity in the Raman spectra induced by AuNPs. For testing the use of the functionalized AuNPs for biosensing, their distribution in the nuclear, cytosolic, and membrane cell fractions obtained from human lymphocytes was investigated by AFM and SERS. The conjugates were detected in the membrane and nuclear cell fractions but not in the cytosol. The AFM method confirmed that conjugates induced changes in the morphology and nanostructure of the membrane and nuclear fractions. The obtained results point out that the conjugates formed between AuNPs and gold(III) complexes may be used as a tool for tracking metallodrug distribution in the different cell fractions.
T2  - International Journal of Molecular Sciences
T1  - Conjugates of Gold Nanoparticles and Antitumor Gold(III) Complexes as a Tool for Their AFM and SERS Detection in Biological Tissue
VL  - 20
IS  - 24
SP  - 6306
DO  - 10.3390/ijms20246306
ER  - 
@article{
author = "Bondžić, Aleksandra M. and Leskovac, Andreja and Petrović, Sandra and Vasić Anićijević, Dragana D. and Luce, Marco and Massai, Lara and Generosi, Amanda and Paci, Barbara and Cricenti, Antonio and Messori, Luigi and Vasić, Vesna M.",
year = "2019",
abstract = "Citrate-capped gold nanoparticles (AuNPs) were functionalized with three distinct antitumor gold(III) complexes, e.g., [Au(N,N)(OH)2][PF6], where (N,N)=2,2′-bipyridine; [Au(C,N)(AcO)2], where (C,N)=deprotonated 6-(1,1-dimethylbenzyl)-pyridine; [Au(C,N,N)(OH)][PF6], where (C,N,N)=deprotonated 6-(1,1-dimethylbenzyl)-2,2′-bipyridine, to assess the chance of tracking their subcellular distribution by atomic force microscopy (AFM), and surface enhanced Raman spectroscopy (SERS) techniques. An extensive physicochemical characterization of the formed conjugates was, thus, carried out by applying a variety of methods (density functional theory—DFT, UV/Vis spectrophotometry, AFM, Raman spectroscopy, and SERS). The resulting gold(III) complexes/AuNPs conjugates turned out to be pretty stable. Interestingly, they exhibited a dramatically increased resonance intensity in the Raman spectra induced by AuNPs. For testing the use of the functionalized AuNPs for biosensing, their distribution in the nuclear, cytosolic, and membrane cell fractions obtained from human lymphocytes was investigated by AFM and SERS. The conjugates were detected in the membrane and nuclear cell fractions but not in the cytosol. The AFM method confirmed that conjugates induced changes in the morphology and nanostructure of the membrane and nuclear fractions. The obtained results point out that the conjugates formed between AuNPs and gold(III) complexes may be used as a tool for tracking metallodrug distribution in the different cell fractions.",
journal = "International Journal of Molecular Sciences",
title = "Conjugates of Gold Nanoparticles and Antitumor Gold(III) Complexes as a Tool for Their AFM and SERS Detection in Biological Tissue",
volume = "20",
number = "24",
pages = "6306",
doi = "10.3390/ijms20246306"
}
Bondžić, A. M., Leskovac, A., Petrović, S., Vasić Anićijević, D. D., Luce, M., Massai, L., Generosi, A., Paci, B., Cricenti, A., Messori, L.,& Vasić, V. M.. (2019). Conjugates of Gold Nanoparticles and Antitumor Gold(III) Complexes as a Tool for Their AFM and SERS Detection in Biological Tissue. in International Journal of Molecular Sciences, 20(24), 6306.
https://doi.org/10.3390/ijms20246306
Bondžić AM, Leskovac A, Petrović S, Vasić Anićijević DD, Luce M, Massai L, Generosi A, Paci B, Cricenti A, Messori L, Vasić VM. Conjugates of Gold Nanoparticles and Antitumor Gold(III) Complexes as a Tool for Their AFM and SERS Detection in Biological Tissue. in International Journal of Molecular Sciences. 2019;20(24):6306.
doi:10.3390/ijms20246306 .
Bondžić, Aleksandra M., Leskovac, Andreja, Petrović, Sandra, Vasić Anićijević, Dragana D., Luce, Marco, Massai, Lara, Generosi, Amanda, Paci, Barbara, Cricenti, Antonio, Messori, Luigi, Vasić, Vesna M., "Conjugates of Gold Nanoparticles and Antitumor Gold(III) Complexes as a Tool for Their AFM and SERS Detection in Biological Tissue" in International Journal of Molecular Sciences, 20, no. 24 (2019):6306,
https://doi.org/10.3390/ijms20246306 . .
5
1
4

Mechanism of 3,3 -Disulfopropyl-5,5 -Dichlorothiacyanine Anion Interaction With Citrate-Capped Silver Nanoparticles: Adsorption and J-Aggregation

Laban, Bojana B.; Zeković, Ivana Lj.; Vasić Anićijević, Dragana D.; Marković, Mirjana; Vodnik, Vesna; Luce, Marco; Cricenti, Antonio; Dramićanin, Miroslav; Vasić, Vesna M.

(2016)

TY  - JOUR
AU  - Laban, Bojana B.
AU  - Zeković, Ivana Lj.
AU  - Vasić Anićijević, Dragana D.
AU  - Marković, Mirjana
AU  - Vodnik, Vesna
AU  - Luce, Marco
AU  - Cricenti, Antonio
AU  - Dramićanin, Miroslav
AU  - Vasić, Vesna M.
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1212
AB  - The paper presents the results of the experimental and theoretical study of 3,3-disulfopropyl-5,5-dichlorothiacyanine sodium salt (TC) adsorption and J-aggregation on the surface of citrate-capped silver nano particles (AgNPs) with an average particle size 10 nm. Various nanospectroscopy techniques such as UV-vis, TEM, AFM, DLS, zeta potential, and fluorescence measurements were carried out in order to characterize the hybrid system. Besides this, a set of simple density functional theory calculations (DFT) was performed and this suggested that TC dye, from the thermodynamical point of view, most likely interacted with AgNPs via oxygen atom from SO3- groups. The methods, which considered AgNPs as the macromolecule with several binding sites and TC dye as the ligand, were applied for the analysis of saturation curves constructed from the fluorescence data to obtain the binding constant (K-a = 1.5 x 10(6) M-1) and the average number of TC dye molecules bonded per AgNP (similar to 330). Moreover, TC fluorescence was quenched in the presence of AgNPs on the concentration dependent manner, yielding the linear Stern-Volmer relation accounting for both static and dynamic quenching with the quenching constant K-sv = 2.5 x 10(8) M-1. Kinetic measurements of J-aggregation as the dependence of AgNPs/TC concentration ratio confirmed that the J-aggregation occurred via a two-step process, the first of them being the initial adsorption of dye on AgNPs surface, followed by dye molecules rearrangement and the consecutive growth of TC aggregate layers.
T2  - Journal of Physical Chemistry. C
T1  - Mechanism of 3,3 -Disulfopropyl-5,5 -Dichlorothiacyanine Anion Interaction With Citrate-Capped Silver Nanoparticles: Adsorption and J-Aggregation
VL  - 120
IS  - 32
SP  - 18066
EP  - 18074
DO  - 10.1021/acs.jpcc.6b05124
ER  - 
@article{
author = "Laban, Bojana B. and Zeković, Ivana Lj. and Vasić Anićijević, Dragana D. and Marković, Mirjana and Vodnik, Vesna and Luce, Marco and Cricenti, Antonio and Dramićanin, Miroslav and Vasić, Vesna M.",
year = "2016",
abstract = "The paper presents the results of the experimental and theoretical study of 3,3-disulfopropyl-5,5-dichlorothiacyanine sodium salt (TC) adsorption and J-aggregation on the surface of citrate-capped silver nano particles (AgNPs) with an average particle size 10 nm. Various nanospectroscopy techniques such as UV-vis, TEM, AFM, DLS, zeta potential, and fluorescence measurements were carried out in order to characterize the hybrid system. Besides this, a set of simple density functional theory calculations (DFT) was performed and this suggested that TC dye, from the thermodynamical point of view, most likely interacted with AgNPs via oxygen atom from SO3- groups. The methods, which considered AgNPs as the macromolecule with several binding sites and TC dye as the ligand, were applied for the analysis of saturation curves constructed from the fluorescence data to obtain the binding constant (K-a = 1.5 x 10(6) M-1) and the average number of TC dye molecules bonded per AgNP (similar to 330). Moreover, TC fluorescence was quenched in the presence of AgNPs on the concentration dependent manner, yielding the linear Stern-Volmer relation accounting for both static and dynamic quenching with the quenching constant K-sv = 2.5 x 10(8) M-1. Kinetic measurements of J-aggregation as the dependence of AgNPs/TC concentration ratio confirmed that the J-aggregation occurred via a two-step process, the first of them being the initial adsorption of dye on AgNPs surface, followed by dye molecules rearrangement and the consecutive growth of TC aggregate layers.",
journal = "Journal of Physical Chemistry. C",
title = "Mechanism of 3,3 -Disulfopropyl-5,5 -Dichlorothiacyanine Anion Interaction With Citrate-Capped Silver Nanoparticles: Adsorption and J-Aggregation",
volume = "120",
number = "32",
pages = "18066-18074",
doi = "10.1021/acs.jpcc.6b05124"
}
Laban, B. B., Zeković, I. Lj., Vasić Anićijević, D. D., Marković, M., Vodnik, V., Luce, M., Cricenti, A., Dramićanin, M.,& Vasić, V. M.. (2016). Mechanism of 3,3 -Disulfopropyl-5,5 -Dichlorothiacyanine Anion Interaction With Citrate-Capped Silver Nanoparticles: Adsorption and J-Aggregation. in Journal of Physical Chemistry. C, 120(32), 18066-18074.
https://doi.org/10.1021/acs.jpcc.6b05124
Laban BB, Zeković IL, Vasić Anićijević DD, Marković M, Vodnik V, Luce M, Cricenti A, Dramićanin M, Vasić VM. Mechanism of 3,3 -Disulfopropyl-5,5 -Dichlorothiacyanine Anion Interaction With Citrate-Capped Silver Nanoparticles: Adsorption and J-Aggregation. in Journal of Physical Chemistry. C. 2016;120(32):18066-18074.
doi:10.1021/acs.jpcc.6b05124 .
Laban, Bojana B., Zeković, Ivana Lj., Vasić Anićijević, Dragana D., Marković, Mirjana, Vodnik, Vesna, Luce, Marco, Cricenti, Antonio, Dramićanin, Miroslav, Vasić, Vesna M., "Mechanism of 3,3 -Disulfopropyl-5,5 -Dichlorothiacyanine Anion Interaction With Citrate-Capped Silver Nanoparticles: Adsorption and J-Aggregation" in Journal of Physical Chemistry. C, 120, no. 32 (2016):18066-18074,
https://doi.org/10.1021/acs.jpcc.6b05124 . .
15
10
17