Pandurović, Mila

Link to this page

Authority KeyName Variants
orcid::0000-0002-9059-7845
  • Pandurović, Mila (86)
Projects
Physics and Detector R&D in HEP Experiments DESY
MC-PAD - Marie Curie Training Network on Particle Detectors AMD Adria to the University of Belgrade-School of Electrical Engineering
Australian Research Council [CE200100008] Beijing Municipal Science and Technology Commission project [Z181100004218003]
Bundesministerium fur Bildung und Forschung, FRG [05H09GUF, 05H09VHC, 05H09VHF, 05H16PEA], UK Science and Technology Facilities Council, UK Particle Physics and Astronomy Research Council, FNRS-FWO-Vlaanderen, IISN-IIKW, Belgian Science Policy, Polish Ministry of Science and Higher Education [DPN/N168/DESY/2009], Deutsche Forschungsgemeinschaft, VEGA SR [2/7062/27], Swedish Natural Science Research Council, Ministry of Education of the Czech Republic [LC527, INGO-1P05LA259, MSM0021620859], Swiss National Science Foundation, CONACYT [48778-F], Russian Foundation for Basic Research (RFBR) [1329.2008.2], European Social Fund, National Resources (EPEAEK II)-PYTHAGORAS II, Romanian National Authority for Scientific Research [PN 09370101], Helmholtz Association (HGF) [VH-NG-401], IWT Bundesministerium fur Bildung und Forschung, FRG [05 H1 1GUA/1, 05 H1 1PAA/1, 05 H1 1PAB/9, 05 H1 1PEA/6, 05 H1 1VHA/7, 05 H1 1VHB/5], UK Science and Technology Facilities Council, UK Particle Physics and Astronomy Research Council, FNRS-FWO-Vlaanderen, IISN-IIKW, IWT, Interuniversity Attraction Poles, Belgian Science Policy, Polish Ministry of Science and Higher Education [PBS/DESY/70/2006], Deutsche Forschungsgemeinschaft, VEGA SR [2/7062/27], Swedish Natural Science Research Council, Ministry of Education of the Czech Republic [LC527, INGO-1P05LA259, MSM0021620859], Swiss National Science Foundation, CONACYT, Mexico [48778-F], Russian Foundation for Basic Research (RFBR) [1329.2008.2], European Social Fund (75%), National Resources (25%)-(EPEAEK II)-PYTHAGORAS II
Bundesministerium fur Bildung und Forschung, FRG, [05 H11GUA/1, 05 H11PAA/1, 05 H11PAB/9, 05 H11PEA/6, 05 H11VHA/7, 05H11VHB/5], UK Science and Technology Facilities Council, UK Particle Physics and Astronomy Research Council, FNRS-FWO-Vlaanderen, IISN-IIKW, IWT, Interuniversity Attraction Poles Programme, Belgian Science Policy., Polish Ministry of Science and Higher Education [PBS/DESY/70/2006], Deutsche Forschungsgemeinschaft, VEGA [2/7062/27], Swedish Natural Science Research Council, Ministry of Education of the Czech Republic [LC527, INGO-1P05LA259, MSM0021620859], Swiss National Science Foundation, CONACYT, Mexico [48778-F], Russian Foundation for Basic Research (RFBR) [1329.2008.2], European Social Fund Bundesministerium fur Bildung und Forschung, FRG [05 H1 1GUA/1, 05 H1 1PAA/1, 05 H1 1PAB/9, 05 H1 1PEA/6, 05 H1 1VHA/7, 05 H1 1VHB/5], UK Science and Technology Facilities Council, UK Particle Physics and Astronomy Research Council, FNRS-FWO-Vlaanderen, IISN-IIKW, IWT, Interuniversity Attraction Poles Programme, Belgian Science Policy, Polish Ministry of Science and Higher Education [PBS/DESY/70/2006], Deutsche Forschungsgemeinschaft, VEGA SR [2/7062/27]
CAS Center for Excellence in Particle Physics CAS/SAFEA International Partnership Program for Creative Research Teams [H751S018S5]
Chinese Academy of Science Special Grant for Large Scientific Project [113111KYSB20170005] CLIC Physics and Detectors study
Commission of the European Communities [RII3-026126], Japan Society for Promotion of Science [18GS0202], Polish Ministry of Science and Higher Education [372/6.PRUE/2007/7, 141/6.PR UE/2007/7], Romanian Ministry of Education, Research and Innovation through the Authority CNCSIS [IDEI-253/2007], Ministry of Science of the Republic of Serbia Department of Energy
DESY directorate DESY directorate, Bundesministerium fur Bildung und Forschung, FRG [05H09GUF, 05H09VHC, 05H09VHF, 05H16PEA], UK Science and Technology Facilities Council, UK Particle Physics and Astronomy Research Council, FNRS-FWO-Vlaanderen, IISN-IIKW, IWT, Interuniversity Attraction Poles Programme, Belgian Science Policy, Polish Ministry of Science and Higher Education [DPN/N168/DESY/2009], Deutsche Forschungsgemeinschaft, VEGA SR [2/7062/27], Swedish Natural Science Research Council, Ministry of Education of the Czech Republic [LC527, INGO-LA09042, MSM0021620859], Swiss National Science Foundation, CONACYT, Mexico [48778-F], Russian Foundation for Basic Research (RFBR) [1329.2008.2], Rosatom, European Social Fund, National Resources, Romanian National Authority for Scientific Research [PN 09370101], Ministry of Science of Montenegro [05-1/3-3352], Helmholtz Association (HGF) [VH-NG-401]
DESY directorate, Initiative and Networking Fund of the Helmholtz Association (HGF) [VH-NG-401, S0-072], Bundesministerium fur Bildung und Forschung, FRG [05H09GUF, 05H09VHC, 05H09VHF, 05H16PEA], UK Science and Technology Facilities Council, UK Particle Physics and Astronomy Research Council, FNRS-FWO-Vlaanderen, IISN-IIKW, IWT, Interuniversity Attraction Poles Programme, Belgian Science Policy, Polish Ministry of Science and Higher Education [DPN/N168/DESY/2009], VEGA SR [2/7062/ 27], Swedish Natural Science Research Council, Ministry of Education of the Czech Republic [LC527, INGO-LA09042, MSM0021620859], Swiss National Science Foundation, CONACYT, Mexico [48778-F], Russian Foundation for Basic Research (RFBR) [1329.2008.2], Romanian National Authority for Scientific Research [PN 09370101], Ministry of Science of Montenegro [05-1/3-3352] DFG [GRK-2149]
EGI Federation, National Science Foundation, U.S. Department of Energys Office of Science, Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT), Chile, Ministry of Education, Youth and Sports, Czech Republic [INGO II-LG 14033], DFG cluster of excellence Origin and Structure of the Universe, Germany, German - Israel Foundation (GIF), Israel Science Foundation (ISF), I-CORE programme of VATAT, ISF, Israel Academy of Sciences, Israel, Research Council of Norway, Polish Ministry of Science and Higher Education [3501/H2020/2016/2], National Science Centre, Poland, HARMONIA [2013/10/M/ST2/00629, UMO-2015/18/M/ST2/00518], Romanian agency UEFISCDI, Romanian agency ROSA, State of Research, Development and Innovation of Spain [FPA2011-15330-E, FPA2015-71956-REDT], Gates Foundation, United Kingdom, UK Science and Technology Facilities Council (STFC), United Kingdom, U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences and Office of High Energy Physics [DE-AC02-06CH11357] Emmy Noether [Grant No. 420484612]
ERC [742789, Xenoscope and 724320, ULTIMATE] European Social Fund (, Bundesministerium fur Bildung und Forschung, FRG [05 HI IGUA/1, 05 H1 IPAA/1, 05 H1 IVHA/7, 05 H11VHB/5], UK Science and Technology Facilities Council, FNRS-FWO-Vlaanderen, Polish Ministry of Science and Higher Education [PBS/DESY/70/2006]
European Social Fund, National Resources, Bundesministerium fur Bildung und Forschung, FRG [05 H1 1GUA/1, 05 H1 1PAA/1, 05 H1 1PAB/9, 05 H1 1PEA/6, 05 HI 1VHA/7, 05 H1 1VHB/5], UK Science and Technology Facilities Council, UK Particle Physics and Astronomy Research Council, FNRS-FWO-Vlaanderen, IISN-IIKW, IWT, Interuniversity Attraction Poles Programme, Belgian Science Policy, Polish Ministry of Science and Higher Education [PBSIDESY/70/2006], VEGA SR [2/7062/27], Swedish Natural Science Research Council, CONACYT [48778-F], Deutsche Forschungsgemeinschaft, Ministry of Education of the Czech Republic [LC527, INGO-IP05LA259], Swiss National Science Foundation European Union Horizon Research and Innovation programme [654168]
European Union’s Horizon 2020 [Grants 742789, 101020842] FCT, NWO
Fermi Research Alliance, LLC [DE-AC02-07CH11359] FNRS-FWO-Vlaanderen, IISN-IIKW, IWT, Interuniversity Attraction Poles Programme, Belgian Science Policy, Polish Ministry of Science and Higher Education [PBS/DESY/70/2006], Deutsche Forschungsgemeinschaft, VEGA SR [2/7062/27], Ministry of Education of the Czech Republic [lLC527, INGO-1P05LA259, MSM0021620859], Swiss National Science Foundation, CONACYT, Mexico [48778-F], Russian Foundation for Basic Research (RFBR) [1329.2008.2], European Social Fund, National Resources, EPEAEK II, PYTHAGORAS II

Author's Bibliography

Radon background in rare event searches at DARWIN experiment

Pandurović, Mila

(Niš : RAD Centre, 2023)

TY  - CONF
AU  - Pandurović, Mila
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12234
AB  - One of the most intriguing questions of new physics is the possible existence of, so called, “dark” or “missing” matter. One of the possible candidate for the cold dark matter, is the weakly interacting massive particle (WIMP) which is investigated using several types of experiments. Among many, the direct detection liquid noble gasses experiments are the leading ones in terms of sensitivity to >GeV WIMP mass parameter space. The foreseen future European astroparticle observatory, DARWIN, is designed as an ultimate direct detection liquid xenon based experiment in dark matter searches. DARWIN’s rich experimental program of also includes other rare event searches, such as an investigation of the Majorana nature of neutrinos though neutrinoless double beta decay, the search for the axion, a hypothetical particle proposed as a solution of the strong CP problem or many others. Rare event searches, besides large scale detectors with low detection threshold, require high control and almost background free environment. Two types of background processes can mimic the WIMP recoil signal, nuclear and electronic recoil events. The dominant electronic recoil background is coming from the radon progenies (Rn222). Since it is created by radioactive decay inside all detector materials, the effective detector shielding is hindered. Here we present the requirements of radon level in xenon target necessary to reach the foreseen sensitivity in rare event searches. We also give the state-of-the-art of radon mitigation strategies which include material selection and screening, on-line radon removal techniques, as well as the off-line methods of tagging electronic recoil events from radon progenies.
PB  - Niš : RAD Centre
C3  - RAD 2023 : 11th International Conference on Radiation Natural Sciences, Medicine, Engineering, Technology and Ecology : Book of Abstracts
T1  - Radon background in rare event searches at DARWIN experiment
SP  - 279
EP  - 279
DO  - 10.21175/rad.abstr.book.2023.43.3
ER  - 
@conference{
author = "Pandurović, Mila",
year = "2023",
abstract = "One of the most intriguing questions of new physics is the possible existence of, so called, “dark” or “missing” matter. One of the possible candidate for the cold dark matter, is the weakly interacting massive particle (WIMP) which is investigated using several types of experiments. Among many, the direct detection liquid noble gasses experiments are the leading ones in terms of sensitivity to >GeV WIMP mass parameter space. The foreseen future European astroparticle observatory, DARWIN, is designed as an ultimate direct detection liquid xenon based experiment in dark matter searches. DARWIN’s rich experimental program of also includes other rare event searches, such as an investigation of the Majorana nature of neutrinos though neutrinoless double beta decay, the search for the axion, a hypothetical particle proposed as a solution of the strong CP problem or many others. Rare event searches, besides large scale detectors with low detection threshold, require high control and almost background free environment. Two types of background processes can mimic the WIMP recoil signal, nuclear and electronic recoil events. The dominant electronic recoil background is coming from the radon progenies (Rn222). Since it is created by radioactive decay inside all detector materials, the effective detector shielding is hindered. Here we present the requirements of radon level in xenon target necessary to reach the foreseen sensitivity in rare event searches. We also give the state-of-the-art of radon mitigation strategies which include material selection and screening, on-line radon removal techniques, as well as the off-line methods of tagging electronic recoil events from radon progenies.",
publisher = "Niš : RAD Centre",
journal = "RAD 2023 : 11th International Conference on Radiation Natural Sciences, Medicine, Engineering, Technology and Ecology : Book of Abstracts",
title = "Radon background in rare event searches at DARWIN experiment",
pages = "279-279",
doi = "10.21175/rad.abstr.book.2023.43.3"
}
Pandurović, M.. (2023). Radon background in rare event searches at DARWIN experiment. in RAD 2023 : 11th International Conference on Radiation Natural Sciences, Medicine, Engineering, Technology and Ecology : Book of Abstracts
Niš : RAD Centre., 279-279.
https://doi.org/10.21175/rad.abstr.book.2023.43.3
Pandurović M. Radon background in rare event searches at DARWIN experiment. in RAD 2023 : 11th International Conference on Radiation Natural Sciences, Medicine, Engineering, Technology and Ecology : Book of Abstracts. 2023;:279-279.
doi:10.21175/rad.abstr.book.2023.43.3 .
Pandurović, Mila, "Radon background in rare event searches at DARWIN experiment" in RAD 2023 : 11th International Conference on Radiation Natural Sciences, Medicine, Engineering, Technology and Ecology : Book of Abstracts (2023):279-279,
https://doi.org/10.21175/rad.abstr.book.2023.43.3 . .

Influence of Gold Nanoparticle Shape and Single-Cell Localization on Energy Deposition Efficiency and Irradiation Specificity in Photon Radiotherapy

Milutinović, Slobodan; Pandurović, Mila; Vujisić, Miloš

(2023)

TY  - JOUR
AU  - Milutinović, Slobodan
AU  - Pandurović, Mila
AU  - Vujisić, Miloš
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11573
AB  - Gold nanoparticles (AuNPs) have been investigated extensively in the past twenty years as a sensitizing agent in photon radiotherapy. Targeted delivery of AuNPs to specifc sites in cells and tissues contributes to highly localized radiation dose enhancement, whereby the surrounding healthy structures can be largely spared from the unwanted radiation efects. Te efciency of introduced AuNPs with regard to dose enhancement depends on the properties of the nanoparticles since not all of deposited radiation energy reaches the intended biological target but is partially absorbed within the nanoparticles themselves or distributed elsewhere. Te present paper investigates the infuence of AuNP shape and localization on the enhancement and intracellular distribution of deposited energy in radiation therapy with photons. Energy deposition patterns are calculated with nanoscale accuracy through Monte Carlo simulations of radiation transport, which are optimized to accommodate a structured geometrical representation of the region loaded with AuNPs, i.e., to allow discrete modeling of individual nanoparticles. Same-volume nanoparticles of three commonly encountered shapes—nanospheres, nanorods, and square nanoplates—are examined, in order to inspect the diferences in the propagation and absorption of secondary charged particles produced by the incident photons. Five diferent spatial distributions of spherical AuNPs at the single-cell level are studied in the simulations and compared according to the energy deposited in the cell nucleus. Photon energy, nanoparticle size, and concentration are also varied across simulation runs, and their infuence is analyzed in connection to nanoparticle shape and localization. Te obtained results reveal how the investigated nanoparticle properties afect their dose-enhancing ability and irradiation specifcity in AuNP-augmented radiotherapy.
T2  - Nanomaterials and Nanotechnology
T1  - Influence of Gold Nanoparticle Shape and Single-Cell Localization on Energy Deposition Efficiency and Irradiation Specificity in Photon Radiotherapy
VL  - 2023
SP  - 1
EP  - 18
DO  - 10.1155/2023/9841614
ER  - 
@article{
author = "Milutinović, Slobodan and Pandurović, Mila and Vujisić, Miloš",
year = "2023",
abstract = "Gold nanoparticles (AuNPs) have been investigated extensively in the past twenty years as a sensitizing agent in photon radiotherapy. Targeted delivery of AuNPs to specifc sites in cells and tissues contributes to highly localized radiation dose enhancement, whereby the surrounding healthy structures can be largely spared from the unwanted radiation efects. Te efciency of introduced AuNPs with regard to dose enhancement depends on the properties of the nanoparticles since not all of deposited radiation energy reaches the intended biological target but is partially absorbed within the nanoparticles themselves or distributed elsewhere. Te present paper investigates the infuence of AuNP shape and localization on the enhancement and intracellular distribution of deposited energy in radiation therapy with photons. Energy deposition patterns are calculated with nanoscale accuracy through Monte Carlo simulations of radiation transport, which are optimized to accommodate a structured geometrical representation of the region loaded with AuNPs, i.e., to allow discrete modeling of individual nanoparticles. Same-volume nanoparticles of three commonly encountered shapes—nanospheres, nanorods, and square nanoplates—are examined, in order to inspect the diferences in the propagation and absorption of secondary charged particles produced by the incident photons. Five diferent spatial distributions of spherical AuNPs at the single-cell level are studied in the simulations and compared according to the energy deposited in the cell nucleus. Photon energy, nanoparticle size, and concentration are also varied across simulation runs, and their infuence is analyzed in connection to nanoparticle shape and localization. Te obtained results reveal how the investigated nanoparticle properties afect their dose-enhancing ability and irradiation specifcity in AuNP-augmented radiotherapy.",
journal = "Nanomaterials and Nanotechnology",
title = "Influence of Gold Nanoparticle Shape and Single-Cell Localization on Energy Deposition Efficiency and Irradiation Specificity in Photon Radiotherapy",
volume = "2023",
pages = "1-18",
doi = "10.1155/2023/9841614"
}
Milutinović, S., Pandurović, M.,& Vujisić, M.. (2023). Influence of Gold Nanoparticle Shape and Single-Cell Localization on Energy Deposition Efficiency and Irradiation Specificity in Photon Radiotherapy. in Nanomaterials and Nanotechnology, 2023, 1-18.
https://doi.org/10.1155/2023/9841614
Milutinović S, Pandurović M, Vujisić M. Influence of Gold Nanoparticle Shape and Single-Cell Localization on Energy Deposition Efficiency and Irradiation Specificity in Photon Radiotherapy. in Nanomaterials and Nanotechnology. 2023;2023:1-18.
doi:10.1155/2023/9841614 .
Milutinović, Slobodan, Pandurović, Mila, Vujisić, Miloš, "Influence of Gold Nanoparticle Shape and Single-Cell Localization on Energy Deposition Efficiency and Irradiation Specificity in Photon Radiotherapy" in Nanomaterials and Nanotechnology, 2023 (2023):1-18,
https://doi.org/10.1155/2023/9841614 . .

A next-generation liquid xenon observatory for dark matter and neutrino physics

Aalbers, J.; AbdusSalam, S. S.; Abe, K.; Aerne, V.; Agostini, F.; Maouloud, S. Ahmed; Akerib, D. S.; Akimov, D. Y.; Akshat, J.; Musalhi, A. K. Al; Alder, F.; Alsum, S. K.; Althueser, L.; Amarasinghe, C. S.; Amaro, F. D.; Ames, A.; Anderson, T. J.; Andrieu, B.; Angelides, N.; Angelino, E.; Angevaare, J.; Antochi, V. C.; Martin, D. Antón; Antunović, Biljana; Aprile, E.; Araújo, H. M.; Armstrong, J. E.; Arneodo, F.; Arthurs, M.; Asadi, P.; Baek, S.; Bai, X.; Bajpai, D.; Baker, A.; Balajthy, J.; Balashov, S.; Balzer, M.; Bandyopadhyay, A.; Bang, J.; Barberio, E.; Bargemann, J. W.; Baudis, L.; Bauer, D.; Baur, D.; Baxter, A.; Baxter, A. L.; Bazyk, M.; Beattie, K.; Behrens, J.; Bell, N. F.; Bellagamba, L.; Beltrame, P.; Benabderrahmane, M.; Bernard, E. P.; Bertone, G. F.; Bhattacharjee, P.; Bhatti, A.; Biekert, A.; Biesiadzinski, T. P.; Binau, A. R.; Biondi, R.; Biondi, Y.; Birch, H. J.; Bishara, F.; Bismark, A.; Blanco, C.; Blockinger, G. M.; Bodnia, E.; Boehm, C.; Bolozdynya, A. I.; Bolton, P. D.; Bottaro, S.; Bourgeois, C.; Boxer, B.; Brás, P.; Breskin, A.; Breur, P. A.; Brew, C. A. J.; Brod, J.; Brookes, E.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bui, T. K.; Burdin, S.; Buse, S.; Busenitz, J. K.; Buttazzo, D.; Buuck, M.; Buzulutskov, A.; Cabrita, R.; Cai, C.; Cai, D.; Capelli, C.; Cardoso, J. M. R.; Carmona-Benitez, M. C.; Cascella, M.; Catena, R.; Chakraborty, S.; Chan, C.; Chang, S.; Chauvin, A.; Chawla, A.; Chen, H.; Chepel, V.; Chott, N. I.; Cichon, D.; Chavez, A. Cimental; Cimmino, B.; Clark, M.; Co, R. T.; Colijn, A. P.; Conrad, J.; Converse, M. V.; Costa, M.; Cottle, A.; Cox, G.; Creaner, O.; Garcia, J. J. Cuenca; Cussonneau, J. P.; Cutter, J. E.; Dahl, C. E.; D’Andrea, V.; David, A.; Decowski, M. P.; Dent, J. B.; Deppisch, F. F.; Viveiros, L. de; Gangi, P. Di; Giovanni, A. Di; Pede, S. Di; Dierle, J.; Diglio, S.; Dobson, J. E. Y.; Doerenkamp, M.; Douillet, D.; Drexlin, G.; Druszkiewicz, E.; Dunsky, D.; Eitel, K.; Elykov, A.; Emken, T.; Engel, R.; Eriksen, S. R.; Fairbairn, M.; Fan, A.; Fan, J. J.; Farrell, S. J.; Fayer, S.; Fearon, N. M.; Ferella, A.; Ferrari, C.; Fieguth, A.; Fieguth, A.; Fiorucci, S.; Fischer, H.; Flaecher, H.; Flierman, M.; Florek, T.; Foot, R.; Fox, P. J.; Franceschini, R.; Fraser, E. D.; Frenk, C. S.; Frohlich, S.; Fruth, T.; Fulgione, W.; Fuselli, C.; Gaemers, P.; Gaior, R.; Gaitskell, R. J.; Galloway, M.; Gao, F.; Garcia, I. Garcia; Genovesi, J.; Ghag, C.; Ghosh, S.; Gibson, E.; Gil, W.; Giovagnoli, D.; Girard, F.; Glade-Beucke, R.; Glück, F.; Gokhale, S.; Gouvêa, A. de; Gráf, L.; Grandi, L.; Grigat, J.; Grinstein, B.; Grinten, M. G. D. van der; Grössle, R.; Guan, H.; Guida, M.; Gumbsheimer, R.; Gwilliam, C. B.; Hall, C. R.; Hall, L. J.; Hammann, R.; Han, K.; Hannen, V.; Hansmann-Menzemer, S.; Harata, R.; Hardin, S. P.; Hardy, E.; Hardy, C. A.; Harigaya, K.; Harnik, R.; Haselschwardt, S. J.; Hernandez, M.; Hertel, S. A.; Higuera, A.; Hils, C.; Hochrein, S.; Hoetzsch, L.; Hoferichter, M.; Hood, N.; Hooper, D.; Horn, M.; Howlett, J.; Huang, D. Q.; Huang, Y.; Hunt, D.; Iacovacci, M.; Iaquaniello, G.; Ide, R.; Ignarra, C. M.; Iloglu, G.; Itow, Y.; Jacquet, E.; Jahangir, O.; Jakob, J.; James, R. S.; Jansen, A.; Ji, W.; Ji, X.; Joerg, F.; Johnson, J.; Joy, A.; Kaboth, A. C.; Kalhor, L.; Kamaha, A. C.; Kanezaki, K.; Kar, K.; Kara, M.; Kato, N.; Kavrigin, P.; Kazama, S.; Keaveney, A. W.; Kellerer, J.; Khaitan, D.; Khazov, A.; Khundzakishvili, G.; Khurana, I.; Kilminster, B.; Kleifges, M.; Ko, P.; Kobayashi, M.; Kodroff, D.; Koltmann, G.; Kopec, A.; Kopmann, A.; Kopp, J.; Korley, L.; Kornoukhov, V. N.; Korolkova, E. V.; Kraus, H.; Krauss, L. M.; Kravitz, S.; Kreczko, L.; Kudryavtsev, V. A.; Kuger, F.; Kumar, J.; Paredes, B. López; LaCascio, L.; Laha, R.; Laine, Q.; Landsman, H.; Lang, R. F.; Leason, E. A.; Lee, J.; Leonard, D. S.; Lesko, K. T.; Levinson, L.; Levy, C.; Li, I.; Li, S. C.; Li, T.; Liang, S.; Liebenthal, C. S.; Lin, J.; Lin, Q.; Lindemann, S.; Lindner, M.; Lindote, A.; Linehan, R.; Lippincott, W. H.; Liu, X.; Liu, K.; Liu, J.; Loizeau, J.; Lombardi, F.; Long, J.; Lopes, M. I.; Asamar, E. Lopez; Lorenzon, W.; Lu, C.; Luitz, S.; Ma, Y.; Machado, P. A. N.; Macolino, C.; Maeda, T.; Mahlstedt, J.; Majewski, P. A.; Manalaysay, A.; Mancuso, A.; Manenti, L.; Manfredini, A.; Mannino, R. L.; Marangou, N.; March-Russell, J.; Marignetti, F.; Undagoitia, T. Marrodán; Martens, K.; Martin, R.; Martinez-Soler, I.; Masbou, J.; Masson, D.; Masson, E.; Mastroianni, S.; Mastronardi, M.; Matias-Lopes, J. A.; McCarthy, M. E.; McFadden, N.; McGinness, E.; McKinsey, D. N.; McLaughlin, J.; McMichael, K.; Meinhardt, P.; Menéndez, J.; Meng, Y.; Messina, M.; Midha, R.; Milisavljević, D.; Miller, E. H.; Milošević, B.; Milutinović, Slobodan M.; Mitra, S. A.; Miuchi, K.; Mizrachi, E.; Mizukoshi, K.; Molinario, A.; Monte, A.; Monteiro, C. M. B.; Monzani, M. E.; Moore, J. S.; Mora, K.; Morad, J. A.; Mendoza, J. D. Morales; Moriyama, S.; Morrison, E.; Morteau, E.; Mosbacher, Y.; Mount, B. J.; Mueller, J.; Murphy, A. St J.; Murra, M.; Naim, D.; Nakamura, S.; Nash, E.; Navaieelavasani, N.; Naylor, A.; Nedlik, C.; Nelson, H. N.; Neves, F.; Newstead, J. L.; Ni, K.; Nikoleyczik, J. A.; Niro, V.; Oberlack, U. G.; Obradović, M.; Odgers, K.; O’Hare, C. A. J.; Oikonomou, P.; Olcina, I.; Oliver-Mallory, K.; Oranday, A.; Orpwood, J.; Ostrovskiy, I.; Ozaki, K.; Paetsch, B.; Pal, S.; Palacio, J.; Palladino, K. J.; Palmer, J.; Panci, P.; Pandurović, Mila; Parlati, A.; Parveen, N.; Patton, S. J.; Peč, V.; Pellegrini, Q.; Penning, B.; Pereira, G.; Peres, R.; Perez-Gonzalez, Y.; Perry, E.; Pershing, T.; Petrossian-Byrne, R.; Pienaar, J.; Piepke, A.; Pieramico, G.; Pierre, M.; Piotter, M.; Pizzella, V.; Plante, G.; Pollmann, T.; Porzio, D.; Qi, J.; Qie, Y.; Qin, J.; Quevedo, F.; Raj, N.; Silva, M. Rajado; Ramanathan, K.; García, D. Ramírez; Ravanis, J.; Redard-Jacot, L.; Redigolo, D.; Reichard, S.; Reichenbacher, J.; Rhyne, C. A.; Richards, A.; Riffard, Q.; Rischbieter, G. R. C.; Rocchetti, A.; Rosenfeld, S. L.; Rosero, R.; Rupp, N.; Rushton, T.; Saha, S.; Salucci, P.; Sanchez, L.; Sanchez-Lucas, P.; Santone, D.; Santos, J. M. F. dos; Sarnoff, I.; Sartorelli, G.; Sazzad, A. B. M. R.; Scheibelhut, M.; Schnee, R. W.; Schrank, M.; Schreiner, J.; Schulte, P.; Schulte, D.; Eissing, H. Schulze; Schumann, M.; Schwemberger, T.; Schwenk, A.; Schwetz, T.; Lavina, L. Scotto; Scovell, P. R.; Sekiya, H.; Selvi, M.; Semenov, E.; Semeria, F.; Shagin, P.; Shaw, S.; Shi, S.; Shockley, E.; Shutt, T. A.; Si-Ahmed, R.; Silk, J. J.; Silva, C.; Silva, M. C.; Simgen, H.; Šimkovic, F.; Sinev, G.; Singh, R.; Skulski, W.; Smirnov, J.; Smith, R.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Soria, J.; Sparmann, T. J.; Stancu, I.; Steidl, M.; Stevens, A.; Stifter, K.; Strigari, L. E.; Subotić, D.; Suerfu, B.; Suliga, A. M.; Sumner, T. J.; Szabo, P.; Szydagis, M.; Takeda, A.; Takeuchi, Y.; Tan, P.-L.; Taricco, C.; Taylor, W. C.; Temples, D. J.; Terliuk, A.; Terman, P. A.; Thers, D.; Thieme, K.; Thümmler, T.; Tiedt, D. R.; Timalsina, M.; To, W. H.; Toennies, F.; Tong, Z.; Toschi, F.; Tovey, D. R.; Tranter, J.; Trask, M.; Trinchero, G. C.; Tripathi, M.; Tronstad, D. R.; Trotta, R.; Tsai, Y. D.; Tunnell, C. D.; Turner, W. G.; Ueno, R.; Urquijo, P.; Utku, U.; Vaitkus, A.; Valerius, K.; Vassilev, E.; Vecchi, S.; Velan, V.; Vetter, S.; Vincent, A. C.; Vittorio, L.; Volta, G.; Krosigk, B. von; Piechowski, M. von; Vorkapić, Draen; Wagner, C. E. M.; Wang, A. M.; Wang, B.; Wang, Y.; Wang, W.; Wang, J. J.; Wang, L.-T.; Wang, M.; Wang, Y.; Watson, J. R.; Wei, Y.; Weinheimer, C.; Weisman, E.; Weiss, M.; Wenz, D.; West, S. M.; Whitis, T. J.; Williams, M.; Wilson, M. J.; Winkler, D.; Wittweg, C.; Wolf, J.; Wolf, T.; Wolfs, F. L. H.; Woodford, S.; Woodward, D.; Wright, C. J.; Wu, V. H. S.; Wu, P.; Wüstling, S.; Wurm, M.; Xia, Q.; Xiang, X.; Xing, Y.; Xu, J.; Xu, Z.; Xu, D.; Yamashita, M.; Yamazaki, R.; Yan, H.; Yang, L.; Yang, Y.; Ye, J.; Yeh, M.; Young, I.; Yu, H. B.; Yu, T. T.; Yuan, L.; Zavattini, G.; Zerbo, S.; Zhang, Y.; Zhong, M.; Zhou, N.; Zhou, X.; Zhu, T.; Zhu, Y.; Zhuang, Y.; Zopounidis, J. P.; Zuber, K.; Zupan, J.

(2022)

TY  - JOUR
AU  - Aalbers, J.
AU  - AbdusSalam, S. S.
AU  - Abe, K.
AU  - Aerne, V.
AU  - Agostini, F.
AU  - Maouloud, S. Ahmed
AU  - Akerib, D. S.
AU  - Akimov, D. Y.
AU  - Akshat, J.
AU  - Musalhi, A. K. Al
AU  - Alder, F.
AU  - Alsum, S. K.
AU  - Althueser, L.
AU  - Amarasinghe, C. S.
AU  - Amaro, F. D.
AU  - Ames, A.
AU  - Anderson, T. J.
AU  - Andrieu, B.
AU  - Angelides, N.
AU  - Angelino, E.
AU  - Angevaare, J.
AU  - Antochi, V. C.
AU  - Martin, D. Antón
AU  - Antunović, Biljana
AU  - Aprile, E.
AU  - Araújo, H. M.
AU  - Armstrong, J. E.
AU  - Arneodo, F.
AU  - Arthurs, M.
AU  - Asadi, P.
AU  - Baek, S.
AU  - Bai, X.
AU  - Bajpai, D.
AU  - Baker, A.
AU  - Balajthy, J.
AU  - Balashov, S.
AU  - Balzer, M.
AU  - Bandyopadhyay, A.
AU  - Bang, J.
AU  - Barberio, E.
AU  - Bargemann, J. W.
AU  - Baudis, L.
AU  - Bauer, D.
AU  - Baur, D.
AU  - Baxter, A.
AU  - Baxter, A. L.
AU  - Bazyk, M.
AU  - Beattie, K.
AU  - Behrens, J.
AU  - Bell, N. F.
AU  - Bellagamba, L.
AU  - Beltrame, P.
AU  - Benabderrahmane, M.
AU  - Bernard, E. P.
AU  - Bertone, G. F.
AU  - Bhattacharjee, P.
AU  - Bhatti, A.
AU  - Biekert, A.
AU  - Biesiadzinski, T. P.
AU  - Binau, A. R.
AU  - Biondi, R.
AU  - Biondi, Y.
AU  - Birch, H. J.
AU  - Bishara, F.
AU  - Bismark, A.
AU  - Blanco, C.
AU  - Blockinger, G. M.
AU  - Bodnia, E.
AU  - Boehm, C.
AU  - Bolozdynya, A. I.
AU  - Bolton, P. D.
AU  - Bottaro, S.
AU  - Bourgeois, C.
AU  - Boxer, B.
AU  - Brás, P.
AU  - Breskin, A.
AU  - Breur, P. A.
AU  - Brew, C. A. J.
AU  - Brod, J.
AU  - Brookes, E.
AU  - Brown, A.
AU  - Brown, E.
AU  - Bruenner, S.
AU  - Bruno, G.
AU  - Budnik, R.
AU  - Bui, T. K.
AU  - Burdin, S.
AU  - Buse, S.
AU  - Busenitz, J. K.
AU  - Buttazzo, D.
AU  - Buuck, M.
AU  - Buzulutskov, A.
AU  - Cabrita, R.
AU  - Cai, C.
AU  - Cai, D.
AU  - Capelli, C.
AU  - Cardoso, J. M. R.
AU  - Carmona-Benitez, M. C.
AU  - Cascella, M.
AU  - Catena, R.
AU  - Chakraborty, S.
AU  - Chan, C.
AU  - Chang, S.
AU  - Chauvin, A.
AU  - Chawla, A.
AU  - Chen, H.
AU  - Chepel, V.
AU  - Chott, N. I.
AU  - Cichon, D.
AU  - Chavez, A. Cimental
AU  - Cimmino, B.
AU  - Clark, M.
AU  - Co, R. T.
AU  - Colijn, A. P.
AU  - Conrad, J.
AU  - Converse, M. V.
AU  - Costa, M.
AU  - Cottle, A.
AU  - Cox, G.
AU  - Creaner, O.
AU  - Garcia, J. J. Cuenca
AU  - Cussonneau, J. P.
AU  - Cutter, J. E.
AU  - Dahl, C. E.
AU  - D’Andrea, V.
AU  - David, A.
AU  - Decowski, M. P.
AU  - Dent, J. B.
AU  - Deppisch, F. F.
AU  - Viveiros, L. de
AU  - Gangi, P. Di
AU  - Giovanni, A. Di
AU  - Pede, S. Di
AU  - Dierle, J.
AU  - Diglio, S.
AU  - Dobson, J. E. Y.
AU  - Doerenkamp, M.
AU  - Douillet, D.
AU  - Drexlin, G.
AU  - Druszkiewicz, E.
AU  - Dunsky, D.
AU  - Eitel, K.
AU  - Elykov, A.
AU  - Emken, T.
AU  - Engel, R.
AU  - Eriksen, S. R.
AU  - Fairbairn, M.
AU  - Fan, A.
AU  - Fan, J. J.
AU  - Farrell, S. J.
AU  - Fayer, S.
AU  - Fearon, N. M.
AU  - Ferella, A.
AU  - Ferrari, C.
AU  - Fieguth, A.
AU  - Fieguth, A.
AU  - Fiorucci, S.
AU  - Fischer, H.
AU  - Flaecher, H.
AU  - Flierman, M.
AU  - Florek, T.
AU  - Foot, R.
AU  - Fox, P. J.
AU  - Franceschini, R.
AU  - Fraser, E. D.
AU  - Frenk, C. S.
AU  - Frohlich, S.
AU  - Fruth, T.
AU  - Fulgione, W.
AU  - Fuselli, C.
AU  - Gaemers, P.
AU  - Gaior, R.
AU  - Gaitskell, R. J.
AU  - Galloway, M.
AU  - Gao, F.
AU  - Garcia, I. Garcia
AU  - Genovesi, J.
AU  - Ghag, C.
AU  - Ghosh, S.
AU  - Gibson, E.
AU  - Gil, W.
AU  - Giovagnoli, D.
AU  - Girard, F.
AU  - Glade-Beucke, R.
AU  - Glück, F.
AU  - Gokhale, S.
AU  - Gouvêa, A. de
AU  - Gráf, L.
AU  - Grandi, L.
AU  - Grigat, J.
AU  - Grinstein, B.
AU  - Grinten, M. G. D. van der
AU  - Grössle, R.
AU  - Guan, H.
AU  - Guida, M.
AU  - Gumbsheimer, R.
AU  - Gwilliam, C. B.
AU  - Hall, C. R.
AU  - Hall, L. J.
AU  - Hammann, R.
AU  - Han, K.
AU  - Hannen, V.
AU  - Hansmann-Menzemer, S.
AU  - Harata, R.
AU  - Hardin, S. P.
AU  - Hardy, E.
AU  - Hardy, C. A.
AU  - Harigaya, K.
AU  - Harnik, R.
AU  - Haselschwardt, S. J.
AU  - Hernandez, M.
AU  - Hertel, S. A.
AU  - Higuera, A.
AU  - Hils, C.
AU  - Hochrein, S.
AU  - Hoetzsch, L.
AU  - Hoferichter, M.
AU  - Hood, N.
AU  - Hooper, D.
AU  - Horn, M.
AU  - Howlett, J.
AU  - Huang, D. Q.
AU  - Huang, Y.
AU  - Hunt, D.
AU  - Iacovacci, M.
AU  - Iaquaniello, G.
AU  - Ide, R.
AU  - Ignarra, C. M.
AU  - Iloglu, G.
AU  - Itow, Y.
AU  - Jacquet, E.
AU  - Jahangir, O.
AU  - Jakob, J.
AU  - James, R. S.
AU  - Jansen, A.
AU  - Ji, W.
AU  - Ji, X.
AU  - Joerg, F.
AU  - Johnson, J.
AU  - Joy, A.
AU  - Kaboth, A. C.
AU  - Kalhor, L.
AU  - Kamaha, A. C.
AU  - Kanezaki, K.
AU  - Kar, K.
AU  - Kara, M.
AU  - Kato, N.
AU  - Kavrigin, P.
AU  - Kazama, S.
AU  - Keaveney, A. W.
AU  - Kellerer, J.
AU  - Khaitan, D.
AU  - Khazov, A.
AU  - Khundzakishvili, G.
AU  - Khurana, I.
AU  - Kilminster, B.
AU  - Kleifges, M.
AU  - Ko, P.
AU  - Kobayashi, M.
AU  - Kodroff, D.
AU  - Koltmann, G.
AU  - Kopec, A.
AU  - Kopmann, A.
AU  - Kopp, J.
AU  - Korley, L.
AU  - Kornoukhov, V. N.
AU  - Korolkova, E. V.
AU  - Kraus, H.
AU  - Krauss, L. M.
AU  - Kravitz, S.
AU  - Kreczko, L.
AU  - Kudryavtsev, V. A.
AU  - Kuger, F.
AU  - Kumar, J.
AU  - Paredes, B. López
AU  - LaCascio, L.
AU  - Laha, R.
AU  - Laine, Q.
AU  - Landsman, H.
AU  - Lang, R. F.
AU  - Leason, E. A.
AU  - Lee, J.
AU  - Leonard, D. S.
AU  - Lesko, K. T.
AU  - Levinson, L.
AU  - Levy, C.
AU  - Li, I.
AU  - Li, S. C.
AU  - Li, T.
AU  - Liang, S.
AU  - Liebenthal, C. S.
AU  - Lin, J.
AU  - Lin, Q.
AU  - Lindemann, S.
AU  - Lindner, M.
AU  - Lindote, A.
AU  - Linehan, R.
AU  - Lippincott, W. H.
AU  - Liu, X.
AU  - Liu, K.
AU  - Liu, J.
AU  - Loizeau, J.
AU  - Lombardi, F.
AU  - Long, J.
AU  - Lopes, M. I.
AU  - Asamar, E. Lopez
AU  - Lorenzon, W.
AU  - Lu, C.
AU  - Luitz, S.
AU  - Ma, Y.
AU  - Machado, P. A. N.
AU  - Macolino, C.
AU  - Maeda, T.
AU  - Mahlstedt, J.
AU  - Majewski, P. A.
AU  - Manalaysay, A.
AU  - Mancuso, A.
AU  - Manenti, L.
AU  - Manfredini, A.
AU  - Mannino, R. L.
AU  - Marangou, N.
AU  - March-Russell, J.
AU  - Marignetti, F.
AU  - Undagoitia, T. Marrodán
AU  - Martens, K.
AU  - Martin, R.
AU  - Martinez-Soler, I.
AU  - Masbou, J.
AU  - Masson, D.
AU  - Masson, E.
AU  - Mastroianni, S.
AU  - Mastronardi, M.
AU  - Matias-Lopes, J. A.
AU  - McCarthy, M. E.
AU  - McFadden, N.
AU  - McGinness, E.
AU  - McKinsey, D. N.
AU  - McLaughlin, J.
AU  - McMichael, K.
AU  - Meinhardt, P.
AU  - Menéndez, J.
AU  - Meng, Y.
AU  - Messina, M.
AU  - Midha, R.
AU  - Milisavljević, D.
AU  - Miller, E. H.
AU  - Milošević, B.
AU  - Milutinović, Slobodan M.
AU  - Mitra, S. A.
AU  - Miuchi, K.
AU  - Mizrachi, E.
AU  - Mizukoshi, K.
AU  - Molinario, A.
AU  - Monte, A.
AU  - Monteiro, C. M. B.
AU  - Monzani, M. E.
AU  - Moore, J. S.
AU  - Mora, K.
AU  - Morad, J. A.
AU  - Mendoza, J. D. Morales
AU  - Moriyama, S.
AU  - Morrison, E.
AU  - Morteau, E.
AU  - Mosbacher, Y.
AU  - Mount, B. J.
AU  - Mueller, J.
AU  - Murphy, A. St J.
AU  - Murra, M.
AU  - Naim, D.
AU  - Nakamura, S.
AU  - Nash, E.
AU  - Navaieelavasani, N.
AU  - Naylor, A.
AU  - Nedlik, C.
AU  - Nelson, H. N.
AU  - Neves, F.
AU  - Newstead, J. L.
AU  - Ni, K.
AU  - Nikoleyczik, J. A.
AU  - Niro, V.
AU  - Oberlack, U. G.
AU  - Obradović, M.
AU  - Odgers, K.
AU  - O’Hare, C. A. J.
AU  - Oikonomou, P.
AU  - Olcina, I.
AU  - Oliver-Mallory, K.
AU  - Oranday, A.
AU  - Orpwood, J.
AU  - Ostrovskiy, I.
AU  - Ozaki, K.
AU  - Paetsch, B.
AU  - Pal, S.
AU  - Palacio, J.
AU  - Palladino, K. J.
AU  - Palmer, J.
AU  - Panci, P.
AU  - Pandurović, Mila
AU  - Parlati, A.
AU  - Parveen, N.
AU  - Patton, S. J.
AU  - Peč, V.
AU  - Pellegrini, Q.
AU  - Penning, B.
AU  - Pereira, G.
AU  - Peres, R.
AU  - Perez-Gonzalez, Y.
AU  - Perry, E.
AU  - Pershing, T.
AU  - Petrossian-Byrne, R.
AU  - Pienaar, J.
AU  - Piepke, A.
AU  - Pieramico, G.
AU  - Pierre, M.
AU  - Piotter, M.
AU  - Pizzella, V.
AU  - Plante, G.
AU  - Pollmann, T.
AU  - Porzio, D.
AU  - Qi, J.
AU  - Qie, Y.
AU  - Qin, J.
AU  - Quevedo, F.
AU  - Raj, N.
AU  - Silva, M. Rajado
AU  - Ramanathan, K.
AU  - García, D. Ramírez
AU  - Ravanis, J.
AU  - Redard-Jacot, L.
AU  - Redigolo, D.
AU  - Reichard, S.
AU  - Reichenbacher, J.
AU  - Rhyne, C. A.
AU  - Richards, A.
AU  - Riffard, Q.
AU  - Rischbieter, G. R. C.
AU  - Rocchetti, A.
AU  - Rosenfeld, S. L.
AU  - Rosero, R.
AU  - Rupp, N.
AU  - Rushton, T.
AU  - Saha, S.
AU  - Salucci, P.
AU  - Sanchez, L.
AU  - Sanchez-Lucas, P.
AU  - Santone, D.
AU  - Santos, J. M. F. dos
AU  - Sarnoff, I.
AU  - Sartorelli, G.
AU  - Sazzad, A. B. M. R.
AU  - Scheibelhut, M.
AU  - Schnee, R. W.
AU  - Schrank, M.
AU  - Schreiner, J.
AU  - Schulte, P.
AU  - Schulte, D.
AU  - Eissing, H. Schulze
AU  - Schumann, M.
AU  - Schwemberger, T.
AU  - Schwenk, A.
AU  - Schwetz, T.
AU  - Lavina, L. Scotto
AU  - Scovell, P. R.
AU  - Sekiya, H.
AU  - Selvi, M.
AU  - Semenov, E.
AU  - Semeria, F.
AU  - Shagin, P.
AU  - Shaw, S.
AU  - Shi, S.
AU  - Shockley, E.
AU  - Shutt, T. A.
AU  - Si-Ahmed, R.
AU  - Silk, J. J.
AU  - Silva, C.
AU  - Silva, M. C.
AU  - Simgen, H.
AU  - Šimkovic, F.
AU  - Sinev, G.
AU  - Singh, R.
AU  - Skulski, W.
AU  - Smirnov, J.
AU  - Smith, R.
AU  - Solmaz, M.
AU  - Solovov, V. N.
AU  - Sorensen, P.
AU  - Soria, J.
AU  - Sparmann, T. J.
AU  - Stancu, I.
AU  - Steidl, M.
AU  - Stevens, A.
AU  - Stifter, K.
AU  - Strigari, L. E.
AU  - Subotić, D.
AU  - Suerfu, B.
AU  - Suliga, A. M.
AU  - Sumner, T. J.
AU  - Szabo, P.
AU  - Szydagis, M.
AU  - Takeda, A.
AU  - Takeuchi, Y.
AU  - Tan, P.-L.
AU  - Taricco, C.
AU  - Taylor, W. C.
AU  - Temples, D. J.
AU  - Terliuk, A.
AU  - Terman, P. A.
AU  - Thers, D.
AU  - Thieme, K.
AU  - Thümmler, T.
AU  - Tiedt, D. R.
AU  - Timalsina, M.
AU  - To, W. H.
AU  - Toennies, F.
AU  - Tong, Z.
AU  - Toschi, F.
AU  - Tovey, D. R.
AU  - Tranter, J.
AU  - Trask, M.
AU  - Trinchero, G. C.
AU  - Tripathi, M.
AU  - Tronstad, D. R.
AU  - Trotta, R.
AU  - Tsai, Y. D.
AU  - Tunnell, C. D.
AU  - Turner, W. G.
AU  - Ueno, R.
AU  - Urquijo, P.
AU  - Utku, U.
AU  - Vaitkus, A.
AU  - Valerius, K.
AU  - Vassilev, E.
AU  - Vecchi, S.
AU  - Velan, V.
AU  - Vetter, S.
AU  - Vincent, A. C.
AU  - Vittorio, L.
AU  - Volta, G.
AU  - Krosigk, B. von
AU  - Piechowski, M. von
AU  - Vorkapić, Draen
AU  - Wagner, C. E. M.
AU  - Wang, A. M.
AU  - Wang, B.
AU  - Wang, Y.
AU  - Wang, W.
AU  - Wang, J. J.
AU  - Wang, L.-T.
AU  - Wang, M.
AU  - Wang, Y.
AU  - Watson, J. R.
AU  - Wei, Y.
AU  - Weinheimer, C.
AU  - Weisman, E.
AU  - Weiss, M.
AU  - Wenz, D.
AU  - West, S. M.
AU  - Whitis, T. J.
AU  - Williams, M.
AU  - Wilson, M. J.
AU  - Winkler, D.
AU  - Wittweg, C.
AU  - Wolf, J.
AU  - Wolf, T.
AU  - Wolfs, F. L. H.
AU  - Woodford, S.
AU  - Woodward, D.
AU  - Wright, C. J.
AU  - Wu, V. H. S.
AU  - Wu, P.
AU  - Wüstling, S.
AU  - Wurm, M.
AU  - Xia, Q.
AU  - Xiang, X.
AU  - Xing, Y.
AU  - Xu, J.
AU  - Xu, Z.
AU  - Xu, D.
AU  - Yamashita, M.
AU  - Yamazaki, R.
AU  - Yan, H.
AU  - Yang, L.
AU  - Yang, Y.
AU  - Ye, J.
AU  - Yeh, M.
AU  - Young, I.
AU  - Yu, H. B.
AU  - Yu, T. T.
AU  - Yuan, L.
AU  - Zavattini, G.
AU  - Zerbo, S.
AU  - Zhang, Y.
AU  - Zhong, M.
AU  - Zhou, N.
AU  - Zhou, X.
AU  - Zhu, T.
AU  - Zhu, Y.
AU  - Zhuang, Y.
AU  - Zopounidis, J. P.
AU  - Zuber, K.
AU  - Zupan, J.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10594
AB  - The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector.
T2  - Journal of Physics G: Nuclear and Particle Physics
T1  - A next-generation liquid xenon observatory for dark matter and neutrino physics
VL  - 50
IS  - 1
SP  - 013001
DO  - 10.1088/1361-6471/ac841a
ER  - 
@article{
author = "Aalbers, J. and AbdusSalam, S. S. and Abe, K. and Aerne, V. and Agostini, F. and Maouloud, S. Ahmed and Akerib, D. S. and Akimov, D. Y. and Akshat, J. and Musalhi, A. K. Al and Alder, F. and Alsum, S. K. and Althueser, L. and Amarasinghe, C. S. and Amaro, F. D. and Ames, A. and Anderson, T. J. and Andrieu, B. and Angelides, N. and Angelino, E. and Angevaare, J. and Antochi, V. C. and Martin, D. Antón and Antunović, Biljana and Aprile, E. and Araújo, H. M. and Armstrong, J. E. and Arneodo, F. and Arthurs, M. and Asadi, P. and Baek, S. and Bai, X. and Bajpai, D. and Baker, A. and Balajthy, J. and Balashov, S. and Balzer, M. and Bandyopadhyay, A. and Bang, J. and Barberio, E. and Bargemann, J. W. and Baudis, L. and Bauer, D. and Baur, D. and Baxter, A. and Baxter, A. L. and Bazyk, M. and Beattie, K. and Behrens, J. and Bell, N. F. and Bellagamba, L. and Beltrame, P. and Benabderrahmane, M. and Bernard, E. P. and Bertone, G. F. and Bhattacharjee, P. and Bhatti, A. and Biekert, A. and Biesiadzinski, T. P. and Binau, A. R. and Biondi, R. and Biondi, Y. and Birch, H. J. and Bishara, F. and Bismark, A. and Blanco, C. and Blockinger, G. M. and Bodnia, E. and Boehm, C. and Bolozdynya, A. I. and Bolton, P. D. and Bottaro, S. and Bourgeois, C. and Boxer, B. and Brás, P. and Breskin, A. and Breur, P. A. and Brew, C. A. J. and Brod, J. and Brookes, E. and Brown, A. and Brown, E. and Bruenner, S. and Bruno, G. and Budnik, R. and Bui, T. K. and Burdin, S. and Buse, S. and Busenitz, J. K. and Buttazzo, D. and Buuck, M. and Buzulutskov, A. and Cabrita, R. and Cai, C. and Cai, D. and Capelli, C. and Cardoso, J. M. R. and Carmona-Benitez, M. C. and Cascella, M. and Catena, R. and Chakraborty, S. and Chan, C. and Chang, S. and Chauvin, A. and Chawla, A. and Chen, H. and Chepel, V. and Chott, N. I. and Cichon, D. and Chavez, A. Cimental and Cimmino, B. and Clark, M. and Co, R. T. and Colijn, A. P. and Conrad, J. and Converse, M. V. and Costa, M. and Cottle, A. and Cox, G. and Creaner, O. and Garcia, J. J. Cuenca and Cussonneau, J. P. and Cutter, J. E. and Dahl, C. E. and D’Andrea, V. and David, A. and Decowski, M. P. and Dent, J. B. and Deppisch, F. F. and Viveiros, L. de and Gangi, P. Di and Giovanni, A. Di and Pede, S. Di and Dierle, J. and Diglio, S. and Dobson, J. E. Y. and Doerenkamp, M. and Douillet, D. and Drexlin, G. and Druszkiewicz, E. and Dunsky, D. and Eitel, K. and Elykov, A. and Emken, T. and Engel, R. and Eriksen, S. R. and Fairbairn, M. and Fan, A. and Fan, J. J. and Farrell, S. J. and Fayer, S. and Fearon, N. M. and Ferella, A. and Ferrari, C. and Fieguth, A. and Fieguth, A. and Fiorucci, S. and Fischer, H. and Flaecher, H. and Flierman, M. and Florek, T. and Foot, R. and Fox, P. J. and Franceschini, R. and Fraser, E. D. and Frenk, C. S. and Frohlich, S. and Fruth, T. and Fulgione, W. and Fuselli, C. and Gaemers, P. and Gaior, R. and Gaitskell, R. J. and Galloway, M. and Gao, F. and Garcia, I. Garcia and Genovesi, J. and Ghag, C. and Ghosh, S. and Gibson, E. and Gil, W. and Giovagnoli, D. and Girard, F. and Glade-Beucke, R. and Glück, F. and Gokhale, S. and Gouvêa, A. de and Gráf, L. and Grandi, L. and Grigat, J. and Grinstein, B. and Grinten, M. G. D. van der and Grössle, R. and Guan, H. and Guida, M. and Gumbsheimer, R. and Gwilliam, C. B. and Hall, C. R. and Hall, L. J. and Hammann, R. and Han, K. and Hannen, V. and Hansmann-Menzemer, S. and Harata, R. and Hardin, S. P. and Hardy, E. and Hardy, C. A. and Harigaya, K. and Harnik, R. and Haselschwardt, S. J. and Hernandez, M. and Hertel, S. A. and Higuera, A. and Hils, C. and Hochrein, S. and Hoetzsch, L. and Hoferichter, M. and Hood, N. and Hooper, D. and Horn, M. and Howlett, J. and Huang, D. Q. and Huang, Y. and Hunt, D. and Iacovacci, M. and Iaquaniello, G. and Ide, R. and Ignarra, C. M. and Iloglu, G. and Itow, Y. and Jacquet, E. and Jahangir, O. and Jakob, J. and James, R. S. and Jansen, A. and Ji, W. and Ji, X. and Joerg, F. and Johnson, J. and Joy, A. and Kaboth, A. C. and Kalhor, L. and Kamaha, A. C. and Kanezaki, K. and Kar, K. and Kara, M. and Kato, N. and Kavrigin, P. and Kazama, S. and Keaveney, A. W. and Kellerer, J. and Khaitan, D. and Khazov, A. and Khundzakishvili, G. and Khurana, I. and Kilminster, B. and Kleifges, M. and Ko, P. and Kobayashi, M. and Kodroff, D. and Koltmann, G. and Kopec, A. and Kopmann, A. and Kopp, J. and Korley, L. and Kornoukhov, V. N. and Korolkova, E. V. and Kraus, H. and Krauss, L. M. and Kravitz, S. and Kreczko, L. and Kudryavtsev, V. A. and Kuger, F. and Kumar, J. and Paredes, B. López and LaCascio, L. and Laha, R. and Laine, Q. and Landsman, H. and Lang, R. F. and Leason, E. A. and Lee, J. and Leonard, D. S. and Lesko, K. T. and Levinson, L. and Levy, C. and Li, I. and Li, S. C. and Li, T. and Liang, S. and Liebenthal, C. S. and Lin, J. and Lin, Q. and Lindemann, S. and Lindner, M. and Lindote, A. and Linehan, R. and Lippincott, W. H. and Liu, X. and Liu, K. and Liu, J. and Loizeau, J. and Lombardi, F. and Long, J. and Lopes, M. I. and Asamar, E. Lopez and Lorenzon, W. and Lu, C. and Luitz, S. and Ma, Y. and Machado, P. A. N. and Macolino, C. and Maeda, T. and Mahlstedt, J. and Majewski, P. A. and Manalaysay, A. and Mancuso, A. and Manenti, L. and Manfredini, A. and Mannino, R. L. and Marangou, N. and March-Russell, J. and Marignetti, F. and Undagoitia, T. Marrodán and Martens, K. and Martin, R. and Martinez-Soler, I. and Masbou, J. and Masson, D. and Masson, E. and Mastroianni, S. and Mastronardi, M. and Matias-Lopes, J. A. and McCarthy, M. E. and McFadden, N. and McGinness, E. and McKinsey, D. N. and McLaughlin, J. and McMichael, K. and Meinhardt, P. and Menéndez, J. and Meng, Y. and Messina, M. and Midha, R. and Milisavljević, D. and Miller, E. H. and Milošević, B. and Milutinović, Slobodan M. and Mitra, S. A. and Miuchi, K. and Mizrachi, E. and Mizukoshi, K. and Molinario, A. and Monte, A. and Monteiro, C. M. B. and Monzani, M. E. and Moore, J. S. and Mora, K. and Morad, J. A. and Mendoza, J. D. Morales and Moriyama, S. and Morrison, E. and Morteau, E. and Mosbacher, Y. and Mount, B. J. and Mueller, J. and Murphy, A. St J. and Murra, M. and Naim, D. and Nakamura, S. and Nash, E. and Navaieelavasani, N. and Naylor, A. and Nedlik, C. and Nelson, H. N. and Neves, F. and Newstead, J. L. and Ni, K. and Nikoleyczik, J. A. and Niro, V. and Oberlack, U. G. and Obradović, M. and Odgers, K. and O’Hare, C. A. J. and Oikonomou, P. and Olcina, I. and Oliver-Mallory, K. and Oranday, A. and Orpwood, J. and Ostrovskiy, I. and Ozaki, K. and Paetsch, B. and Pal, S. and Palacio, J. and Palladino, K. J. and Palmer, J. and Panci, P. and Pandurović, Mila and Parlati, A. and Parveen, N. and Patton, S. J. and Peč, V. and Pellegrini, Q. and Penning, B. and Pereira, G. and Peres, R. and Perez-Gonzalez, Y. and Perry, E. and Pershing, T. and Petrossian-Byrne, R. and Pienaar, J. and Piepke, A. and Pieramico, G. and Pierre, M. and Piotter, M. and Pizzella, V. and Plante, G. and Pollmann, T. and Porzio, D. and Qi, J. and Qie, Y. and Qin, J. and Quevedo, F. and Raj, N. and Silva, M. Rajado and Ramanathan, K. and García, D. Ramírez and Ravanis, J. and Redard-Jacot, L. and Redigolo, D. and Reichard, S. and Reichenbacher, J. and Rhyne, C. A. and Richards, A. and Riffard, Q. and Rischbieter, G. R. C. and Rocchetti, A. and Rosenfeld, S. L. and Rosero, R. and Rupp, N. and Rushton, T. and Saha, S. and Salucci, P. and Sanchez, L. and Sanchez-Lucas, P. and Santone, D. and Santos, J. M. F. dos and Sarnoff, I. and Sartorelli, G. and Sazzad, A. B. M. R. and Scheibelhut, M. and Schnee, R. W. and Schrank, M. and Schreiner, J. and Schulte, P. and Schulte, D. and Eissing, H. Schulze and Schumann, M. and Schwemberger, T. and Schwenk, A. and Schwetz, T. and Lavina, L. Scotto and Scovell, P. R. and Sekiya, H. and Selvi, M. and Semenov, E. and Semeria, F. and Shagin, P. and Shaw, S. and Shi, S. and Shockley, E. and Shutt, T. A. and Si-Ahmed, R. and Silk, J. J. and Silva, C. and Silva, M. C. and Simgen, H. and Šimkovic, F. and Sinev, G. and Singh, R. and Skulski, W. and Smirnov, J. and Smith, R. and Solmaz, M. and Solovov, V. N. and Sorensen, P. and Soria, J. and Sparmann, T. J. and Stancu, I. and Steidl, M. and Stevens, A. and Stifter, K. and Strigari, L. E. and Subotić, D. and Suerfu, B. and Suliga, A. M. and Sumner, T. J. and Szabo, P. and Szydagis, M. and Takeda, A. and Takeuchi, Y. and Tan, P.-L. and Taricco, C. and Taylor, W. C. and Temples, D. J. and Terliuk, A. and Terman, P. A. and Thers, D. and Thieme, K. and Thümmler, T. and Tiedt, D. R. and Timalsina, M. and To, W. H. and Toennies, F. and Tong, Z. and Toschi, F. and Tovey, D. R. and Tranter, J. and Trask, M. and Trinchero, G. C. and Tripathi, M. and Tronstad, D. R. and Trotta, R. and Tsai, Y. D. and Tunnell, C. D. and Turner, W. G. and Ueno, R. and Urquijo, P. and Utku, U. and Vaitkus, A. and Valerius, K. and Vassilev, E. and Vecchi, S. and Velan, V. and Vetter, S. and Vincent, A. C. and Vittorio, L. and Volta, G. and Krosigk, B. von and Piechowski, M. von and Vorkapić, Draen and Wagner, C. E. M. and Wang, A. M. and Wang, B. and Wang, Y. and Wang, W. and Wang, J. J. and Wang, L.-T. and Wang, M. and Wang, Y. and Watson, J. R. and Wei, Y. and Weinheimer, C. and Weisman, E. and Weiss, M. and Wenz, D. and West, S. M. and Whitis, T. J. and Williams, M. and Wilson, M. J. and Winkler, D. and Wittweg, C. and Wolf, J. and Wolf, T. and Wolfs, F. L. H. and Woodford, S. and Woodward, D. and Wright, C. J. and Wu, V. H. S. and Wu, P. and Wüstling, S. and Wurm, M. and Xia, Q. and Xiang, X. and Xing, Y. and Xu, J. and Xu, Z. and Xu, D. and Yamashita, M. and Yamazaki, R. and Yan, H. and Yang, L. and Yang, Y. and Ye, J. and Yeh, M. and Young, I. and Yu, H. B. and Yu, T. T. and Yuan, L. and Zavattini, G. and Zerbo, S. and Zhang, Y. and Zhong, M. and Zhou, N. and Zhou, X. and Zhu, T. and Zhu, Y. and Zhuang, Y. and Zopounidis, J. P. and Zuber, K. and Zupan, J.",
year = "2022",
abstract = "The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector.",
journal = "Journal of Physics G: Nuclear and Particle Physics",
title = "A next-generation liquid xenon observatory for dark matter and neutrino physics",
volume = "50",
number = "1",
pages = "013001",
doi = "10.1088/1361-6471/ac841a"
}
Aalbers, J., AbdusSalam, S. S., Abe, K., Aerne, V., Agostini, F., Maouloud, S. A., Akerib, D. S., Akimov, D. Y., Akshat, J., Musalhi, A. K. A., Alder, F., Alsum, S. K., Althueser, L., Amarasinghe, C. S., Amaro, F. D., Ames, A., Anderson, T. J., Andrieu, B., Angelides, N., Angelino, E., Angevaare, J., Antochi, V. C., Martin, D. A., Antunović, B., Aprile, E., Araújo, H. M., Armstrong, J. E., Arneodo, F., Arthurs, M., Asadi, P., Baek, S., Bai, X., Bajpai, D., Baker, A., Balajthy, J., Balashov, S., Balzer, M., Bandyopadhyay, A., Bang, J., Barberio, E., Bargemann, J. W., Baudis, L., Bauer, D., Baur, D., Baxter, A., Baxter, A. L., Bazyk, M., Beattie, K., Behrens, J., Bell, N. F., Bellagamba, L., Beltrame, P., Benabderrahmane, M., Bernard, E. P., Bertone, G. F., Bhattacharjee, P., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Binau, A. R., Biondi, R., Biondi, Y., Birch, H. J., Bishara, F., Bismark, A., Blanco, C., Blockinger, G. M., Bodnia, E., Boehm, C., Bolozdynya, A. I., Bolton, P. D., Bottaro, S., Bourgeois, C., Boxer, B., Brás, P., Breskin, A., Breur, P. A., Brew, C. A. J., Brod, J., Brookes, E., Brown, A., Brown, E., Bruenner, S., Bruno, G., Budnik, R., Bui, T. K., Burdin, S., Buse, S., Busenitz, J. K., Buttazzo, D., Buuck, M., Buzulutskov, A., Cabrita, R., Cai, C., Cai, D., Capelli, C., Cardoso, J. M. R., Carmona-Benitez, M. C., Cascella, M., Catena, R., Chakraborty, S., Chan, C., Chang, S., Chauvin, A., Chawla, A., Chen, H., Chepel, V., Chott, N. I., Cichon, D., Chavez, A. C., Cimmino, B., Clark, M., Co, R. T., Colijn, A. P., Conrad, J., Converse, M. V., Costa, M., Cottle, A., Cox, G., Creaner, O., Garcia, J. J. C., Cussonneau, J. P., Cutter, J. E., Dahl, C. E., D’Andrea, V., David, A., Decowski, M. P., Dent, J. B., Deppisch, F. F., Viveiros, L. d., Gangi, P. D., Giovanni, A. D., Pede, S. D., Dierle, J., Diglio, S., Dobson, J. E. Y., Doerenkamp, M., Douillet, D., Drexlin, G., Druszkiewicz, E., Dunsky, D., Eitel, K., Elykov, A., Emken, T., Engel, R., Eriksen, S. R., Fairbairn, M., Fan, A., Fan, J. J., Farrell, S. J., Fayer, S., Fearon, N. M., Ferella, A., Ferrari, C., Fieguth, A., Fieguth, A., Fiorucci, S., Fischer, H., Flaecher, H., Flierman, M., Florek, T., Foot, R., Fox, P. J., Franceschini, R., Fraser, E. D., Frenk, C. S., Frohlich, S., Fruth, T., Fulgione, W., Fuselli, C., Gaemers, P., Gaior, R., Gaitskell, R. J., Galloway, M., Gao, F., Garcia, I. G., Genovesi, J., Ghag, C., Ghosh, S., Gibson, E., Gil, W., Giovagnoli, D., Girard, F., Glade-Beucke, R., Glück, F., Gokhale, S., Gouvêa, A. d., Gráf, L., Grandi, L., Grigat, J., Grinstein, B., Grinten, M. G. D. v. d., Grössle, R., Guan, H., Guida, M., Gumbsheimer, R., Gwilliam, C. B., Hall, C. R., Hall, L. J., Hammann, R., Han, K., Hannen, V., Hansmann-Menzemer, S., Harata, R., Hardin, S. P., Hardy, E., Hardy, C. A., Harigaya, K., Harnik, R., Haselschwardt, S. J., Hernandez, M., Hertel, S. A., Higuera, A., Hils, C., Hochrein, S., Hoetzsch, L., Hoferichter, M., Hood, N., Hooper, D., Horn, M., Howlett, J., Huang, D. Q., Huang, Y., Hunt, D., Iacovacci, M., Iaquaniello, G., Ide, R., Ignarra, C. M., Iloglu, G., Itow, Y., Jacquet, E., Jahangir, O., Jakob, J., James, R. S., Jansen, A., Ji, W., Ji, X., Joerg, F., Johnson, J., Joy, A., Kaboth, A. C., Kalhor, L., Kamaha, A. C., Kanezaki, K., Kar, K., Kara, M., Kato, N., Kavrigin, P., Kazama, S., Keaveney, A. W., Kellerer, J., Khaitan, D., Khazov, A., Khundzakishvili, G., Khurana, I., Kilminster, B., Kleifges, M., Ko, P., Kobayashi, M., Kodroff, D., Koltmann, G., Kopec, A., Kopmann, A., Kopp, J., Korley, L., Kornoukhov, V. N., Korolkova, E. V., Kraus, H., Krauss, L. M., Kravitz, S., Kreczko, L., Kudryavtsev, V. A., Kuger, F., Kumar, J., Paredes, B. L., LaCascio, L., Laha, R., Laine, Q., Landsman, H., Lang, R. F., Leason, E. A., Lee, J., Leonard, D. S., Lesko, K. T., Levinson, L., Levy, C., Li, I., Li, S. C., Li, T., Liang, S., Liebenthal, C. S., Lin, J., Lin, Q., Lindemann, S., Lindner, M., Lindote, A., Linehan, R., Lippincott, W. H., Liu, X., Liu, K., Liu, J., Loizeau, J., Lombardi, F., Long, J., Lopes, M. I., Asamar, E. L., Lorenzon, W., Lu, C., Luitz, S., Ma, Y., Machado, P. A. N., Macolino, C., Maeda, T., Mahlstedt, J., Majewski, P. A., Manalaysay, A., Mancuso, A., Manenti, L., Manfredini, A., Mannino, R. L., Marangou, N., March-Russell, J., Marignetti, F., Undagoitia, T. M., Martens, K., Martin, R., Martinez-Soler, I., Masbou, J., Masson, D., Masson, E., Mastroianni, S., Mastronardi, M., Matias-Lopes, J. A., McCarthy, M. E., McFadden, N., McGinness, E., McKinsey, D. N., McLaughlin, J., McMichael, K., Meinhardt, P., Menéndez, J., Meng, Y., Messina, M., Midha, R., Milisavljević, D., Miller, E. H., Milošević, B., Milutinović, S. M., Mitra, S. A., Miuchi, K., Mizrachi, E., Mizukoshi, K., Molinario, A., Monte, A., Monteiro, C. M. B., Monzani, M. E., Moore, J. S., Mora, K., Morad, J. A., Mendoza, J. D. M., Moriyama, S., Morrison, E., Morteau, E., Mosbacher, Y., Mount, B. J., Mueller, J., Murphy, A. S. J., Murra, M., Naim, D., Nakamura, S., Nash, E., Navaieelavasani, N., Naylor, A., Nedlik, C., Nelson, H. N., Neves, F., Newstead, J. L., Ni, K., Nikoleyczik, J. A., Niro, V., Oberlack, U. G., Obradović, M., Odgers, K., O’Hare, C. A. J., Oikonomou, P., Olcina, I., Oliver-Mallory, K., Oranday, A., Orpwood, J., Ostrovskiy, I., Ozaki, K., Paetsch, B., Pal, S., Palacio, J., Palladino, K. J., Palmer, J., Panci, P., Pandurović, M., Parlati, A., Parveen, N., Patton, S. J., Peč, V., Pellegrini, Q., Penning, B., Pereira, G., Peres, R., Perez-Gonzalez, Y., Perry, E., Pershing, T., Petrossian-Byrne, R., Pienaar, J., Piepke, A., Pieramico, G., Pierre, M., Piotter, M., Pizzella, V., Plante, G., Pollmann, T., Porzio, D., Qi, J., Qie, Y., Qin, J., Quevedo, F., Raj, N., Silva, M. R., Ramanathan, K., García, D. R., Ravanis, J., Redard-Jacot, L., Redigolo, D., Reichard, S., Reichenbacher, J., Rhyne, C. A., Richards, A., Riffard, Q., Rischbieter, G. R. C., Rocchetti, A., Rosenfeld, S. L., Rosero, R., Rupp, N., Rushton, T., Saha, S., Salucci, P., Sanchez, L., Sanchez-Lucas, P., Santone, D., Santos, J. M. F. d., Sarnoff, I., Sartorelli, G., Sazzad, A. B. M. R., Scheibelhut, M., Schnee, R. W., Schrank, M., Schreiner, J., Schulte, P., Schulte, D., Eissing, H. S., Schumann, M., Schwemberger, T., Schwenk, A., Schwetz, T., Lavina, L. S., Scovell, P. R., Sekiya, H., Selvi, M., Semenov, E., Semeria, F., Shagin, P., Shaw, S., Shi, S., Shockley, E., Shutt, T. A., Si-Ahmed, R., Silk, J. J., Silva, C., Silva, M. C., Simgen, H., Šimkovic, F., Sinev, G., Singh, R., Skulski, W., Smirnov, J., Smith, R., Solmaz, M., Solovov, V. N., Sorensen, P., Soria, J., Sparmann, T. J., Stancu, I., Steidl, M., Stevens, A., Stifter, K., Strigari, L. E., Subotić, D., Suerfu, B., Suliga, A. M., Sumner, T. J., Szabo, P., Szydagis, M., Takeda, A., Takeuchi, Y., Tan, P.-L., Taricco, C., Taylor, W. C., Temples, D. J., Terliuk, A., Terman, P. A., Thers, D., Thieme, K., Thümmler, T., Tiedt, D. R., Timalsina, M., To, W. H., Toennies, F., Tong, Z., Toschi, F., Tovey, D. R., Tranter, J., Trask, M., Trinchero, G. C., Tripathi, M., Tronstad, D. R., Trotta, R., Tsai, Y. D., Tunnell, C. D., Turner, W. G., Ueno, R., Urquijo, P., Utku, U., Vaitkus, A., Valerius, K., Vassilev, E., Vecchi, S., Velan, V., Vetter, S., Vincent, A. C., Vittorio, L., Volta, G., Krosigk, B. v., Piechowski, M. v., Vorkapić, D., Wagner, C. E. M., Wang, A. M., Wang, B., Wang, Y., Wang, W., Wang, J. J., Wang, L.-T., Wang, M., Wang, Y., Watson, J. R., Wei, Y., Weinheimer, C., Weisman, E., Weiss, M., Wenz, D., West, S. M., Whitis, T. J., Williams, M., Wilson, M. J., Winkler, D., Wittweg, C., Wolf, J., Wolf, T., Wolfs, F. L. H., Woodford, S., Woodward, D., Wright, C. J., Wu, V. H. S., Wu, P., Wüstling, S., Wurm, M., Xia, Q., Xiang, X., Xing, Y., Xu, J., Xu, Z., Xu, D., Yamashita, M., Yamazaki, R., Yan, H., Yang, L., Yang, Y., Ye, J., Yeh, M., Young, I., Yu, H. B., Yu, T. T., Yuan, L., Zavattini, G., Zerbo, S., Zhang, Y., Zhong, M., Zhou, N., Zhou, X., Zhu, T., Zhu, Y., Zhuang, Y., Zopounidis, J. P., Zuber, K.,& Zupan, J.. (2022). A next-generation liquid xenon observatory for dark matter and neutrino physics. in Journal of Physics G: Nuclear and Particle Physics, 50(1), 013001.
https://doi.org/10.1088/1361-6471/ac841a
Aalbers J, AbdusSalam SS, Abe K, Aerne V, Agostini F, Maouloud SA, Akerib DS, Akimov DY, Akshat J, Musalhi AKA, Alder F, Alsum SK, Althueser L, Amarasinghe CS, Amaro FD, Ames A, Anderson TJ, Andrieu B, Angelides N, Angelino E, Angevaare J, Antochi VC, Martin DA, Antunović B, Aprile E, Araújo HM, Armstrong JE, Arneodo F, Arthurs M, Asadi P, Baek S, Bai X, Bajpai D, Baker A, Balajthy J, Balashov S, Balzer M, Bandyopadhyay A, Bang J, Barberio E, Bargemann JW, Baudis L, Bauer D, Baur D, Baxter A, Baxter AL, Bazyk M, Beattie K, Behrens J, Bell NF, Bellagamba L, Beltrame P, Benabderrahmane M, Bernard EP, Bertone GF, Bhattacharjee P, Bhatti A, Biekert A, Biesiadzinski TP, Binau AR, Biondi R, Biondi Y, Birch HJ, Bishara F, Bismark A, Blanco C, Blockinger GM, Bodnia E, Boehm C, Bolozdynya AI, Bolton PD, Bottaro S, Bourgeois C, Boxer B, Brás P, Breskin A, Breur PA, Brew CAJ, Brod J, Brookes E, Brown A, Brown E, Bruenner S, Bruno G, Budnik R, Bui TK, Burdin S, Buse S, Busenitz JK, Buttazzo D, Buuck M, Buzulutskov A, Cabrita R, Cai C, Cai D, Capelli C, Cardoso JMR, Carmona-Benitez MC, Cascella M, Catena R, Chakraborty S, Chan C, Chang S, Chauvin A, Chawla A, Chen H, Chepel V, Chott NI, Cichon D, Chavez AC, Cimmino B, Clark M, Co RT, Colijn AP, Conrad J, Converse MV, Costa M, Cottle A, Cox G, Creaner O, Garcia JJC, Cussonneau JP, Cutter JE, Dahl CE, D’Andrea V, David A, Decowski MP, Dent JB, Deppisch FF, Viveiros LD, Gangi PD, Giovanni AD, Pede SD, Dierle J, Diglio S, Dobson JEY, Doerenkamp M, Douillet D, Drexlin G, Druszkiewicz E, Dunsky D, Eitel K, Elykov A, Emken T, Engel R, Eriksen SR, Fairbairn M, Fan A, Fan JJ, Farrell SJ, Fayer S, Fearon NM, Ferella A, Ferrari C, Fieguth A, Fieguth A, Fiorucci S, Fischer H, Flaecher H, Flierman M, Florek T, Foot R, Fox PJ, Franceschini R, Fraser ED, Frenk CS, Frohlich S, Fruth T, Fulgione W, Fuselli C, Gaemers P, Gaior R, Gaitskell RJ, Galloway M, Gao F, Garcia IG, Genovesi J, Ghag C, Ghosh S, Gibson E, Gil W, Giovagnoli D, Girard F, Glade-Beucke R, Glück F, Gokhale S, Gouvêa AD, Gráf L, Grandi L, Grigat J, Grinstein B, Grinten MGDVD, Grössle R, Guan H, Guida M, Gumbsheimer R, Gwilliam CB, Hall CR, Hall LJ, Hammann R, Han K, Hannen V, Hansmann-Menzemer S, Harata R, Hardin SP, Hardy E, Hardy CA, Harigaya K, Harnik R, Haselschwardt SJ, Hernandez M, Hertel SA, Higuera A, Hils C, Hochrein S, Hoetzsch L, Hoferichter M, Hood N, Hooper D, Horn M, Howlett J, Huang DQ, Huang Y, Hunt D, Iacovacci M, Iaquaniello G, Ide R, Ignarra CM, Iloglu G, Itow Y, Jacquet E, Jahangir O, Jakob J, James RS, Jansen A, Ji W, Ji X, Joerg F, Johnson J, Joy A, Kaboth AC, Kalhor L, Kamaha AC, Kanezaki K, Kar K, Kara M, Kato N, Kavrigin P, Kazama S, Keaveney AW, Kellerer J, Khaitan D, Khazov A, Khundzakishvili G, Khurana I, Kilminster B, Kleifges M, Ko P, Kobayashi M, Kodroff D, Koltmann G, Kopec A, Kopmann A, Kopp J, Korley L, Kornoukhov VN, Korolkova EV, Kraus H, Krauss LM, Kravitz S, Kreczko L, Kudryavtsev VA, Kuger F, Kumar J, Paredes BL, LaCascio L, Laha R, Laine Q, Landsman H, Lang RF, Leason EA, Lee J, Leonard DS, Lesko KT, Levinson L, Levy C, Li I, Li SC, Li T, Liang S, Liebenthal CS, Lin J, Lin Q, Lindemann S, Lindner M, Lindote A, Linehan R, Lippincott WH, Liu X, Liu K, Liu J, Loizeau J, Lombardi F, Long J, Lopes MI, Asamar EL, Lorenzon W, Lu C, Luitz S, Ma Y, Machado PAN, Macolino C, Maeda T, Mahlstedt J, Majewski PA, Manalaysay A, Mancuso A, Manenti L, Manfredini A, Mannino RL, Marangou N, March-Russell J, Marignetti F, Undagoitia TM, Martens K, Martin R, Martinez-Soler I, Masbou J, Masson D, Masson E, Mastroianni S, Mastronardi M, Matias-Lopes JA, McCarthy ME, McFadden N, McGinness E, McKinsey DN, McLaughlin J, McMichael K, Meinhardt P, Menéndez J, Meng Y, Messina M, Midha R, Milisavljević D, Miller EH, Milošević B, Milutinović SM, Mitra SA, Miuchi K, Mizrachi E, Mizukoshi K, Molinario A, Monte A, Monteiro CMB, Monzani ME, Moore JS, Mora K, Morad JA, Mendoza JDM, Moriyama S, Morrison E, Morteau E, Mosbacher Y, Mount BJ, Mueller J, Murphy ASJ, Murra M, Naim D, Nakamura S, Nash E, Navaieelavasani N, Naylor A, Nedlik C, Nelson HN, Neves F, Newstead JL, Ni K, Nikoleyczik JA, Niro V, Oberlack UG, Obradović M, Odgers K, O’Hare CAJ, Oikonomou P, Olcina I, Oliver-Mallory K, Oranday A, Orpwood J, Ostrovskiy I, Ozaki K, Paetsch B, Pal S, Palacio J, Palladino KJ, Palmer J, Panci P, Pandurović M, Parlati A, Parveen N, Patton SJ, Peč V, Pellegrini Q, Penning B, Pereira G, Peres R, Perez-Gonzalez Y, Perry E, Pershing T, Petrossian-Byrne R, Pienaar J, Piepke A, Pieramico G, Pierre M, Piotter M, Pizzella V, Plante G, Pollmann T, Porzio D, Qi J, Qie Y, Qin J, Quevedo F, Raj N, Silva MR, Ramanathan K, García DR, Ravanis J, Redard-Jacot L, Redigolo D, Reichard S, Reichenbacher J, Rhyne CA, Richards A, Riffard Q, Rischbieter GRC, Rocchetti A, Rosenfeld SL, Rosero R, Rupp N, Rushton T, Saha S, Salucci P, Sanchez L, Sanchez-Lucas P, Santone D, Santos JMFD, Sarnoff I, Sartorelli G, Sazzad ABMR, Scheibelhut M, Schnee RW, Schrank M, Schreiner J, Schulte P, Schulte D, Eissing HS, Schumann M, Schwemberger T, Schwenk A, Schwetz T, Lavina LS, Scovell PR, Sekiya H, Selvi M, Semenov E, Semeria F, Shagin P, Shaw S, Shi S, Shockley E, Shutt TA, Si-Ahmed R, Silk JJ, Silva C, Silva MC, Simgen H, Šimkovic F, Sinev G, Singh R, Skulski W, Smirnov J, Smith R, Solmaz M, Solovov VN, Sorensen P, Soria J, Sparmann TJ, Stancu I, Steidl M, Stevens A, Stifter K, Strigari LE, Subotić D, Suerfu B, Suliga AM, Sumner TJ, Szabo P, Szydagis M, Takeda A, Takeuchi Y, Tan P, Taricco C, Taylor WC, Temples DJ, Terliuk A, Terman PA, Thers D, Thieme K, Thümmler T, Tiedt DR, Timalsina M, To WH, Toennies F, Tong Z, Toschi F, Tovey DR, Tranter J, Trask M, Trinchero GC, Tripathi M, Tronstad DR, Trotta R, Tsai YD, Tunnell CD, Turner WG, Ueno R, Urquijo P, Utku U, Vaitkus A, Valerius K, Vassilev E, Vecchi S, Velan V, Vetter S, Vincent AC, Vittorio L, Volta G, Krosigk BV, Piechowski MV, Vorkapić D, Wagner CEM, Wang AM, Wang B, Wang Y, Wang W, Wang JJ, Wang L, Wang M, Wang Y, Watson JR, Wei Y, Weinheimer C, Weisman E, Weiss M, Wenz D, West SM, Whitis TJ, Williams M, Wilson MJ, Winkler D, Wittweg C, Wolf J, Wolf T, Wolfs FLH, Woodford S, Woodward D, Wright CJ, Wu VHS, Wu P, Wüstling S, Wurm M, Xia Q, Xiang X, Xing Y, Xu J, Xu Z, Xu D, Yamashita M, Yamazaki R, Yan H, Yang L, Yang Y, Ye J, Yeh M, Young I, Yu HB, Yu TT, Yuan L, Zavattini G, Zerbo S, Zhang Y, Zhong M, Zhou N, Zhou X, Zhu T, Zhu Y, Zhuang Y, Zopounidis JP, Zuber K, Zupan J. A next-generation liquid xenon observatory for dark matter and neutrino physics. in Journal of Physics G: Nuclear and Particle Physics. 2022;50(1):013001.
doi:10.1088/1361-6471/ac841a .
Aalbers, J., AbdusSalam, S. S., Abe, K., Aerne, V., Agostini, F., Maouloud, S. Ahmed, Akerib, D. S., Akimov, D. Y., Akshat, J., Musalhi, A. K. Al, Alder, F., Alsum, S. K., Althueser, L., Amarasinghe, C. S., Amaro, F. D., Ames, A., Anderson, T. J., Andrieu, B., Angelides, N., Angelino, E., Angevaare, J., Antochi, V. C., Martin, D. Antón, Antunović, Biljana, Aprile, E., Araújo, H. M., Armstrong, J. E., Arneodo, F., Arthurs, M., Asadi, P., Baek, S., Bai, X., Bajpai, D., Baker, A., Balajthy, J., Balashov, S., Balzer, M., Bandyopadhyay, A., Bang, J., Barberio, E., Bargemann, J. W., Baudis, L., Bauer, D., Baur, D., Baxter, A., Baxter, A. L., Bazyk, M., Beattie, K., Behrens, J., Bell, N. F., Bellagamba, L., Beltrame, P., Benabderrahmane, M., Bernard, E. P., Bertone, G. F., Bhattacharjee, P., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Binau, A. R., Biondi, R., Biondi, Y., Birch, H. J., Bishara, F., Bismark, A., Blanco, C., Blockinger, G. M., Bodnia, E., Boehm, C., Bolozdynya, A. I., Bolton, P. D., Bottaro, S., Bourgeois, C., Boxer, B., Brás, P., Breskin, A., Breur, P. A., Brew, C. A. J., Brod, J., Brookes, E., Brown, A., Brown, E., Bruenner, S., Bruno, G., Budnik, R., Bui, T. K., Burdin, S., Buse, S., Busenitz, J. K., Buttazzo, D., Buuck, M., Buzulutskov, A., Cabrita, R., Cai, C., Cai, D., Capelli, C., Cardoso, J. M. R., Carmona-Benitez, M. C., Cascella, M., Catena, R., Chakraborty, S., Chan, C., Chang, S., Chauvin, A., Chawla, A., Chen, H., Chepel, V., Chott, N. I., Cichon, D., Chavez, A. Cimental, Cimmino, B., Clark, M., Co, R. T., Colijn, A. P., Conrad, J., Converse, M. V., Costa, M., Cottle, A., Cox, G., Creaner, O., Garcia, J. J. Cuenca, Cussonneau, J. P., Cutter, J. E., Dahl, C. E., D’Andrea, V., David, A., Decowski, M. P., Dent, J. B., Deppisch, F. F., Viveiros, L. de, Gangi, P. Di, Giovanni, A. Di, Pede, S. Di, Dierle, J., Diglio, S., Dobson, J. E. Y., Doerenkamp, M., Douillet, D., Drexlin, G., Druszkiewicz, E., Dunsky, D., Eitel, K., Elykov, A., Emken, T., Engel, R., Eriksen, S. R., Fairbairn, M., Fan, A., Fan, J. J., Farrell, S. J., Fayer, S., Fearon, N. M., Ferella, A., Ferrari, C., Fieguth, A., Fieguth, A., Fiorucci, S., Fischer, H., Flaecher, H., Flierman, M., Florek, T., Foot, R., Fox, P. J., Franceschini, R., Fraser, E. D., Frenk, C. S., Frohlich, S., Fruth, T., Fulgione, W., Fuselli, C., Gaemers, P., Gaior, R., Gaitskell, R. J., Galloway, M., Gao, F., Garcia, I. Garcia, Genovesi, J., Ghag, C., Ghosh, S., Gibson, E., Gil, W., Giovagnoli, D., Girard, F., Glade-Beucke, R., Glück, F., Gokhale, S., Gouvêa, A. de, Gráf, L., Grandi, L., Grigat, J., Grinstein, B., Grinten, M. G. D. van der, Grössle, R., Guan, H., Guida, M., Gumbsheimer, R., Gwilliam, C. B., Hall, C. R., Hall, L. J., Hammann, R., Han, K., Hannen, V., Hansmann-Menzemer, S., Harata, R., Hardin, S. P., Hardy, E., Hardy, C. A., Harigaya, K., Harnik, R., Haselschwardt, S. J., Hernandez, M., Hertel, S. A., Higuera, A., Hils, C., Hochrein, S., Hoetzsch, L., Hoferichter, M., Hood, N., Hooper, D., Horn, M., Howlett, J., Huang, D. Q., Huang, Y., Hunt, D., Iacovacci, M., Iaquaniello, G., Ide, R., Ignarra, C. M., Iloglu, G., Itow, Y., Jacquet, E., Jahangir, O., Jakob, J., James, R. S., Jansen, A., Ji, W., Ji, X., Joerg, F., Johnson, J., Joy, A., Kaboth, A. C., Kalhor, L., Kamaha, A. C., Kanezaki, K., Kar, K., Kara, M., Kato, N., Kavrigin, P., Kazama, S., Keaveney, A. W., Kellerer, J., Khaitan, D., Khazov, A., Khundzakishvili, G., Khurana, I., Kilminster, B., Kleifges, M., Ko, P., Kobayashi, M., Kodroff, D., Koltmann, G., Kopec, A., Kopmann, A., Kopp, J., Korley, L., Kornoukhov, V. N., Korolkova, E. V., Kraus, H., Krauss, L. M., Kravitz, S., Kreczko, L., Kudryavtsev, V. A., Kuger, F., Kumar, J., Paredes, B. López, LaCascio, L., Laha, R., Laine, Q., Landsman, H., Lang, R. F., Leason, E. A., Lee, J., Leonard, D. S., Lesko, K. T., Levinson, L., Levy, C., Li, I., Li, S. C., Li, T., Liang, S., Liebenthal, C. S., Lin, J., Lin, Q., Lindemann, S., Lindner, M., Lindote, A., Linehan, R., Lippincott, W. H., Liu, X., Liu, K., Liu, J., Loizeau, J., Lombardi, F., Long, J., Lopes, M. I., Asamar, E. Lopez, Lorenzon, W., Lu, C., Luitz, S., Ma, Y., Machado, P. A. N., Macolino, C., Maeda, T., Mahlstedt, J., Majewski, P. A., Manalaysay, A., Mancuso, A., Manenti, L., Manfredini, A., Mannino, R. L., Marangou, N., March-Russell, J., Marignetti, F., Undagoitia, T. Marrodán, Martens, K., Martin, R., Martinez-Soler, I., Masbou, J., Masson, D., Masson, E., Mastroianni, S., Mastronardi, M., Matias-Lopes, J. A., McCarthy, M. E., McFadden, N., McGinness, E., McKinsey, D. N., McLaughlin, J., McMichael, K., Meinhardt, P., Menéndez, J., Meng, Y., Messina, M., Midha, R., Milisavljević, D., Miller, E. H., Milošević, B., Milutinović, Slobodan M., Mitra, S. A., Miuchi, K., Mizrachi, E., Mizukoshi, K., Molinario, A., Monte, A., Monteiro, C. M. B., Monzani, M. E., Moore, J. S., Mora, K., Morad, J. A., Mendoza, J. D. Morales, Moriyama, S., Morrison, E., Morteau, E., Mosbacher, Y., Mount, B. J., Mueller, J., Murphy, A. St J., Murra, M., Naim, D., Nakamura, S., Nash, E., Navaieelavasani, N., Naylor, A., Nedlik, C., Nelson, H. N., Neves, F., Newstead, J. L., Ni, K., Nikoleyczik, J. A., Niro, V., Oberlack, U. G., Obradović, M., Odgers, K., O’Hare, C. A. J., Oikonomou, P., Olcina, I., Oliver-Mallory, K., Oranday, A., Orpwood, J., Ostrovskiy, I., Ozaki, K., Paetsch, B., Pal, S., Palacio, J., Palladino, K. J., Palmer, J., Panci, P., Pandurović, Mila, Parlati, A., Parveen, N., Patton, S. J., Peč, V., Pellegrini, Q., Penning, B., Pereira, G., Peres, R., Perez-Gonzalez, Y., Perry, E., Pershing, T., Petrossian-Byrne, R., Pienaar, J., Piepke, A., Pieramico, G., Pierre, M., Piotter, M., Pizzella, V., Plante, G., Pollmann, T., Porzio, D., Qi, J., Qie, Y., Qin, J., Quevedo, F., Raj, N., Silva, M. Rajado, Ramanathan, K., García, D. Ramírez, Ravanis, J., Redard-Jacot, L., Redigolo, D., Reichard, S., Reichenbacher, J., Rhyne, C. A., Richards, A., Riffard, Q., Rischbieter, G. R. C., Rocchetti, A., Rosenfeld, S. L., Rosero, R., Rupp, N., Rushton, T., Saha, S., Salucci, P., Sanchez, L., Sanchez-Lucas, P., Santone, D., Santos, J. M. F. dos, Sarnoff, I., Sartorelli, G., Sazzad, A. B. M. R., Scheibelhut, M., Schnee, R. W., Schrank, M., Schreiner, J., Schulte, P., Schulte, D., Eissing, H. Schulze, Schumann, M., Schwemberger, T., Schwenk, A., Schwetz, T., Lavina, L. Scotto, Scovell, P. R., Sekiya, H., Selvi, M., Semenov, E., Semeria, F., Shagin, P., Shaw, S., Shi, S., Shockley, E., Shutt, T. A., Si-Ahmed, R., Silk, J. J., Silva, C., Silva, M. C., Simgen, H., Šimkovic, F., Sinev, G., Singh, R., Skulski, W., Smirnov, J., Smith, R., Solmaz, M., Solovov, V. N., Sorensen, P., Soria, J., Sparmann, T. J., Stancu, I., Steidl, M., Stevens, A., Stifter, K., Strigari, L. E., Subotić, D., Suerfu, B., Suliga, A. M., Sumner, T. J., Szabo, P., Szydagis, M., Takeda, A., Takeuchi, Y., Tan, P.-L., Taricco, C., Taylor, W. C., Temples, D. J., Terliuk, A., Terman, P. A., Thers, D., Thieme, K., Thümmler, T., Tiedt, D. R., Timalsina, M., To, W. H., Toennies, F., Tong, Z., Toschi, F., Tovey, D. R., Tranter, J., Trask, M., Trinchero, G. C., Tripathi, M., Tronstad, D. R., Trotta, R., Tsai, Y. D., Tunnell, C. D., Turner, W. G., Ueno, R., Urquijo, P., Utku, U., Vaitkus, A., Valerius, K., Vassilev, E., Vecchi, S., Velan, V., Vetter, S., Vincent, A. C., Vittorio, L., Volta, G., Krosigk, B. von, Piechowski, M. von, Vorkapić, Draen, Wagner, C. E. M., Wang, A. M., Wang, B., Wang, Y., Wang, W., Wang, J. J., Wang, L.-T., Wang, M., Wang, Y., Watson, J. R., Wei, Y., Weinheimer, C., Weisman, E., Weiss, M., Wenz, D., West, S. M., Whitis, T. J., Williams, M., Wilson, M. J., Winkler, D., Wittweg, C., Wolf, J., Wolf, T., Wolfs, F. L. H., Woodford, S., Woodward, D., Wright, C. J., Wu, V. H. S., Wu, P., Wüstling, S., Wurm, M., Xia, Q., Xiang, X., Xing, Y., Xu, J., Xu, Z., Xu, D., Yamashita, M., Yamazaki, R., Yan, H., Yang, L., Yang, Y., Ye, J., Yeh, M., Young, I., Yu, H. B., Yu, T. T., Yuan, L., Zavattini, G., Zerbo, S., Zhang, Y., Zhong, M., Zhou, N., Zhou, X., Zhu, T., Zhu, Y., Zhuang, Y., Zopounidis, J. P., Zuber, K., Zupan, J., "A next-generation liquid xenon observatory for dark matter and neutrino physics" in Journal of Physics G: Nuclear and Particle Physics, 50, no. 1 (2022):013001,
https://doi.org/10.1088/1361-6471/ac841a . .
8
37
27

GPU-based optical simulation of the DARWIN detector

Althueser, L.; Antunović, Biljana; Aprile, Elena; Bajpai, D.; Baudis, Laura; Baur, D.; Baxter, Amanda L.; Bellagamba, Lorenzo; Biondi, Riccardo; Biondi, Yanina; Bismark, Alexander; Brown, Andrew; Budnik, Ran; Chauvin, A.; Colijn, A. P.; Cuenca-García, J. J.; D'Andrea, V.; Gangi, P. Di; Dierle, J.; Diglio, S.; Doerenkamp, M.; Eitel, K.; Farrell, S.; Ferella, A. D.; Ferrari, C.; Findley, C.; Fischer, H.; Galloway, M.; Girard, F.; Glade-Beucke, R.; Grandi, L.; Guida, M.; Hansmann-Menzemer, S.; Jörg, F.; Jones, L.; Kavrigin, P.; Krauss, L. M.; Krosigk, B. von; Kuger, F.; Landsman, H.; Lang, R. F.; Li, S.; Liang, S.; Lindner, M.; Loizeau, J.; Lombardi, F.; Undagoitia, T. Marrodán; Masbou, J.; Masson, E.; Matias-Lopes, J.; Milutinović, Slobodan M.; Monteiro, C. M. B.; Murra, M.; Ni, K.; Oberlack, U.; Ostrovskiy, I.; Pandurović, Mila; Peres, R.; Qin, J.; Silva, M. Rajado; García, D. Ramírez; Sanchez-Lucas, P.; Santos, J. M. F. dos; Schumann, M.; Selvi, M.; Semeria, F.; Simgen, H.; Steidl, M.; Tan, P.-L.; Terliuk, A.; Thieme, K.; Trotta, R.; Tunnell, C. D.; Tönnies, F.; Valerius, K.; Vetter, S.; Volta, G.; Wang, W.; Wittweg, C.; Xing, Y.

(2022)

TY  - JOUR
AU  - Althueser, L.
AU  - Antunović, Biljana
AU  - Aprile, Elena
AU  - Bajpai, D.
AU  - Baudis, Laura
AU  - Baur, D.
AU  - Baxter, Amanda L.
AU  - Bellagamba, Lorenzo
AU  - Biondi, Riccardo
AU  - Biondi, Yanina
AU  - Bismark, Alexander
AU  - Brown, Andrew
AU  - Budnik, Ran
AU  - Chauvin, A.
AU  - Colijn, A. P.
AU  - Cuenca-García, J. J.
AU  - D'Andrea, V.
AU  - Gangi, P. Di
AU  - Dierle, J.
AU  - Diglio, S.
AU  - Doerenkamp, M.
AU  - Eitel, K.
AU  - Farrell, S.
AU  - Ferella, A. D.
AU  - Ferrari, C.
AU  - Findley, C.
AU  - Fischer, H.
AU  - Galloway, M.
AU  - Girard, F.
AU  - Glade-Beucke, R.
AU  - Grandi, L.
AU  - Guida, M.
AU  - Hansmann-Menzemer, S.
AU  - Jörg, F.
AU  - Jones, L.
AU  - Kavrigin, P.
AU  - Krauss, L. M.
AU  - Krosigk, B. von
AU  - Kuger, F.
AU  - Landsman, H.
AU  - Lang, R. F.
AU  - Li, S.
AU  - Liang, S.
AU  - Lindner, M.
AU  - Loizeau, J.
AU  - Lombardi, F.
AU  - Undagoitia, T. Marrodán
AU  - Masbou, J.
AU  - Masson, E.
AU  - Matias-Lopes, J.
AU  - Milutinović, Slobodan M.
AU  - Monteiro, C. M. B.
AU  - Murra, M.
AU  - Ni, K.
AU  - Oberlack, U.
AU  - Ostrovskiy, I.
AU  - Pandurović, Mila
AU  - Peres, R.
AU  - Qin, J.
AU  - Silva, M. Rajado
AU  - García, D. Ramírez
AU  - Sanchez-Lucas, P.
AU  - Santos, J. M. F. dos
AU  - Schumann, M.
AU  - Selvi, M.
AU  - Semeria, F.
AU  - Simgen, H.
AU  - Steidl, M.
AU  - Tan, P.-L.
AU  - Terliuk, A.
AU  - Thieme, K.
AU  - Trotta, R.
AU  - Tunnell, C. D.
AU  - Tönnies, F.
AU  - Valerius, K.
AU  - Vetter, S.
AU  - Volta, G.
AU  - Wang, W.
AU  - Wittweg, C.
AU  - Xing, Y.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10373
AB  - Understanding propagation of scintillation light is critical for maximizing the discovery potential of next-generation liquid xenon detectors that use dual-phase time projection chamber technology. This work describes a detailed optical simulation of the DARWIN detector implemented using Chroma, a GPU-based photon tracking framework. To evaluate the framework and to explore ways of maximizing efficiency and minimizing the time of light collection, we simulate several variations of the conventional detector design. Results of these selected studies are presented. More generally, we conclude that the approach used in this work allows one to investigate alternative designs faster and in more detail than using conventional Geant4 optical simulations, making it an attractive tool to guide the development of the ultimate liquid xenon observatory.
T2  - Journal of Instrumentation
T1  - GPU-based optical simulation of the DARWIN detector
VL  - 17
IS  - 07
SP  - P07018
DO  - 10.1088/1748-0221/17/07/P07018
ER  - 
@article{
author = "Althueser, L. and Antunović, Biljana and Aprile, Elena and Bajpai, D. and Baudis, Laura and Baur, D. and Baxter, Amanda L. and Bellagamba, Lorenzo and Biondi, Riccardo and Biondi, Yanina and Bismark, Alexander and Brown, Andrew and Budnik, Ran and Chauvin, A. and Colijn, A. P. and Cuenca-García, J. J. and D'Andrea, V. and Gangi, P. Di and Dierle, J. and Diglio, S. and Doerenkamp, M. and Eitel, K. and Farrell, S. and Ferella, A. D. and Ferrari, C. and Findley, C. and Fischer, H. and Galloway, M. and Girard, F. and Glade-Beucke, R. and Grandi, L. and Guida, M. and Hansmann-Menzemer, S. and Jörg, F. and Jones, L. and Kavrigin, P. and Krauss, L. M. and Krosigk, B. von and Kuger, F. and Landsman, H. and Lang, R. F. and Li, S. and Liang, S. and Lindner, M. and Loizeau, J. and Lombardi, F. and Undagoitia, T. Marrodán and Masbou, J. and Masson, E. and Matias-Lopes, J. and Milutinović, Slobodan M. and Monteiro, C. M. B. and Murra, M. and Ni, K. and Oberlack, U. and Ostrovskiy, I. and Pandurović, Mila and Peres, R. and Qin, J. and Silva, M. Rajado and García, D. Ramírez and Sanchez-Lucas, P. and Santos, J. M. F. dos and Schumann, M. and Selvi, M. and Semeria, F. and Simgen, H. and Steidl, M. and Tan, P.-L. and Terliuk, A. and Thieme, K. and Trotta, R. and Tunnell, C. D. and Tönnies, F. and Valerius, K. and Vetter, S. and Volta, G. and Wang, W. and Wittweg, C. and Xing, Y.",
year = "2022",
abstract = "Understanding propagation of scintillation light is critical for maximizing the discovery potential of next-generation liquid xenon detectors that use dual-phase time projection chamber technology. This work describes a detailed optical simulation of the DARWIN detector implemented using Chroma, a GPU-based photon tracking framework. To evaluate the framework and to explore ways of maximizing efficiency and minimizing the time of light collection, we simulate several variations of the conventional detector design. Results of these selected studies are presented. More generally, we conclude that the approach used in this work allows one to investigate alternative designs faster and in more detail than using conventional Geant4 optical simulations, making it an attractive tool to guide the development of the ultimate liquid xenon observatory.",
journal = "Journal of Instrumentation",
title = "GPU-based optical simulation of the DARWIN detector",
volume = "17",
number = "07",
pages = "P07018",
doi = "10.1088/1748-0221/17/07/P07018"
}
Althueser, L., Antunović, B., Aprile, E., Bajpai, D., Baudis, L., Baur, D., Baxter, A. L., Bellagamba, L., Biondi, R., Biondi, Y., Bismark, A., Brown, A., Budnik, R., Chauvin, A., Colijn, A. P., Cuenca-García, J. J., D'Andrea, V., Gangi, P. D., Dierle, J., Diglio, S., Doerenkamp, M., Eitel, K., Farrell, S., Ferella, A. D., Ferrari, C., Findley, C., Fischer, H., Galloway, M., Girard, F., Glade-Beucke, R., Grandi, L., Guida, M., Hansmann-Menzemer, S., Jörg, F., Jones, L., Kavrigin, P., Krauss, L. M., Krosigk, B. v., Kuger, F., Landsman, H., Lang, R. F., Li, S., Liang, S., Lindner, M., Loizeau, J., Lombardi, F., Undagoitia, T. M., Masbou, J., Masson, E., Matias-Lopes, J., Milutinović, S. M., Monteiro, C. M. B., Murra, M., Ni, K., Oberlack, U., Ostrovskiy, I., Pandurović, M., Peres, R., Qin, J., Silva, M. R., García, D. R., Sanchez-Lucas, P., Santos, J. M. F. d., Schumann, M., Selvi, M., Semeria, F., Simgen, H., Steidl, M., Tan, P.-L., Terliuk, A., Thieme, K., Trotta, R., Tunnell, C. D., Tönnies, F., Valerius, K., Vetter, S., Volta, G., Wang, W., Wittweg, C.,& Xing, Y.. (2022). GPU-based optical simulation of the DARWIN detector. in Journal of Instrumentation, 17(07), P07018.
https://doi.org/10.1088/1748-0221/17/07/P07018
Althueser L, Antunović B, Aprile E, Bajpai D, Baudis L, Baur D, Baxter AL, Bellagamba L, Biondi R, Biondi Y, Bismark A, Brown A, Budnik R, Chauvin A, Colijn AP, Cuenca-García JJ, D'Andrea V, Gangi PD, Dierle J, Diglio S, Doerenkamp M, Eitel K, Farrell S, Ferella AD, Ferrari C, Findley C, Fischer H, Galloway M, Girard F, Glade-Beucke R, Grandi L, Guida M, Hansmann-Menzemer S, Jörg F, Jones L, Kavrigin P, Krauss LM, Krosigk BV, Kuger F, Landsman H, Lang RF, Li S, Liang S, Lindner M, Loizeau J, Lombardi F, Undagoitia TM, Masbou J, Masson E, Matias-Lopes J, Milutinović SM, Monteiro CMB, Murra M, Ni K, Oberlack U, Ostrovskiy I, Pandurović M, Peres R, Qin J, Silva MR, García DR, Sanchez-Lucas P, Santos JMFD, Schumann M, Selvi M, Semeria F, Simgen H, Steidl M, Tan P, Terliuk A, Thieme K, Trotta R, Tunnell CD, Tönnies F, Valerius K, Vetter S, Volta G, Wang W, Wittweg C, Xing Y. GPU-based optical simulation of the DARWIN detector. in Journal of Instrumentation. 2022;17(07):P07018.
doi:10.1088/1748-0221/17/07/P07018 .
Althueser, L., Antunović, Biljana, Aprile, Elena, Bajpai, D., Baudis, Laura, Baur, D., Baxter, Amanda L., Bellagamba, Lorenzo, Biondi, Riccardo, Biondi, Yanina, Bismark, Alexander, Brown, Andrew, Budnik, Ran, Chauvin, A., Colijn, A. P., Cuenca-García, J. J., D'Andrea, V., Gangi, P. Di, Dierle, J., Diglio, S., Doerenkamp, M., Eitel, K., Farrell, S., Ferella, A. D., Ferrari, C., Findley, C., Fischer, H., Galloway, M., Girard, F., Glade-Beucke, R., Grandi, L., Guida, M., Hansmann-Menzemer, S., Jörg, F., Jones, L., Kavrigin, P., Krauss, L. M., Krosigk, B. von, Kuger, F., Landsman, H., Lang, R. F., Li, S., Liang, S., Lindner, M., Loizeau, J., Lombardi, F., Undagoitia, T. Marrodán, Masbou, J., Masson, E., Matias-Lopes, J., Milutinović, Slobodan M., Monteiro, C. M. B., Murra, M., Ni, K., Oberlack, U., Ostrovskiy, I., Pandurović, Mila, Peres, R., Qin, J., Silva, M. Rajado, García, D. Ramírez, Sanchez-Lucas, P., Santos, J. M. F. dos, Schumann, M., Selvi, M., Semeria, F., Simgen, H., Steidl, M., Tan, P.-L., Terliuk, A., Thieme, K., Trotta, R., Tunnell, C. D., Tönnies, F., Valerius, K., Vetter, S., Volta, G., Wang, W., Wittweg, C., Xing, Y., "GPU-based optical simulation of the DARWIN detector" in Journal of Instrumentation, 17, no. 07 (2022):P07018,
https://doi.org/10.1088/1748-0221/17/07/P07018 . .
9
1
1

Measurement of Higgs to WW in the all-jet final state at CEPC vs=250 GeV

Pandurović, Mila

(2021)

TY  - CONF
AU  - Pandurović, Mila
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9805
AB  - The most important pillar in the physics case of future electron-positron colliders in high energy physics is the measurement of the Higgs boson, with its main goal to precisely measure its properties and to probe potential of associated new physics. All next generation electron positron facilities in high energy physics will make use of the Higgsstrahlung Higgs production channel. The physics potential of CEPC for measurement of the cross-section times branching ratio of subdominant decay H ? WW* is presented. The Higgsstrahnlung Higgs production channel is used, at the center of mass energy of 250 GeV. The fully hadronic decay, containing six soft-jets in the final state is of great importance for the detector design, jet pairing and reconstruction as showing the capability of CEPC for W/Z separation. The analysis is performed in full simulation. © Copyright owned by the author(s) under the terms of the Creative Commons
C3  - Proceedings of Science
T1  - Measurement of Higgs to WW in the all-jet final state at CEPC vs=250 GeV
VL  - 390
DO  - 10.22323/1.390.0074
ER  - 
@conference{
author = "Pandurović, Mila",
year = "2021",
abstract = "The most important pillar in the physics case of future electron-positron colliders in high energy physics is the measurement of the Higgs boson, with its main goal to precisely measure its properties and to probe potential of associated new physics. All next generation electron positron facilities in high energy physics will make use of the Higgsstrahlung Higgs production channel. The physics potential of CEPC for measurement of the cross-section times branching ratio of subdominant decay H ? WW* is presented. The Higgsstrahnlung Higgs production channel is used, at the center of mass energy of 250 GeV. The fully hadronic decay, containing six soft-jets in the final state is of great importance for the detector design, jet pairing and reconstruction as showing the capability of CEPC for W/Z separation. The analysis is performed in full simulation. © Copyright owned by the author(s) under the terms of the Creative Commons",
journal = "Proceedings of Science",
title = "Measurement of Higgs to WW in the all-jet final state at CEPC vs=250 GeV",
volume = "390",
doi = "10.22323/1.390.0074"
}
Pandurović, M.. (2021). Measurement of Higgs to WW in the all-jet final state at CEPC vs=250 GeV. in Proceedings of Science, 390.
https://doi.org/10.22323/1.390.0074
Pandurović M. Measurement of Higgs to WW in the all-jet final state at CEPC vs=250 GeV. in Proceedings of Science. 2021;390.
doi:10.22323/1.390.0074 .
Pandurović, Mila, "Measurement of Higgs to WW in the all-jet final state at CEPC vs=250 GeV" in Proceedings of Science, 390 (2021),
https://doi.org/10.22323/1.390.0074 . .

Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of 136 Xe

Agostini, F.; Maouloud, S. E. M. Ahmed; Althueser, L.; Amaro, F.; Antunović, Biljana; Aprile, E.; Baudis, L.; Baur, D.; Biondi, Y.; Bismark, A.; Breur, P. A.; Brown, A.; Bruno, G.; Budnik, R.; Capelli, C.; Cardoso, J.; Cichon, D.; Clark, M.; Colijn, A. P.; Cuenca-García, J. J.; Cussonneau, J. P.; Decowski, M. P.; Depoian, A.; Dierle, J.; Gangi, P. Di; Giovanni, A. Di; Diglio, S.; Santos, J. M. F. dos; Drexlin, G.; Eitel, K.; Engel, R.; Ferella, A. D.; Fischer, H.; Galloway, M.; Gao, F.; Girard, F.; Glück, F.; Grandi, L.; Größle, R.; Gumbsheimer, R.; Hansmann-Menzemer, S.; Jörg, F.; Khundzakishvili, G.; Kopec, A.; Kuger, F.; Krauss, L. M.; Landsman, H.; Lang, R. F.; Lindemann, S.; Lindner, M.; Lopes, J. a. M.; Villalpando, A. Loya; Macolino, C.; Manfredini, A.; Undagoitia, T. Marrodán; Masbou, J.; Masson, E.; Meinhardt, P.; Milutinović, Slobodan; Molinario, A.; Monteiro, C. M. B.; Murra, M.; Oberlack, U. G.; Pandurović, Mila; Peres, R.; Pienaar, J.; Pierre, M.; Pizzella, V.; Qin, J.; García, D. Ramírez; Reichard, S.; Rupp, N.; Sanchez-Lucas, P.; Sartorelli, G.; Schulte, D.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Silva, M.; Simgen, H.; Steidl, M.; Terliuk, A.; Therreau, C.; Thers, D.; Thieme, K.; Trotta, R.; Tunnell, C. D.; Valerius, K.; Volta, G.; Vorkapić, D.; Weinheimer, C.; Wittweg, C.; Wolf, J.; Zopounidis, J. P.; Zuber, K.

(2020)

TY  - JOUR
AU  - Agostini, F.
AU  - Maouloud, S. E. M. Ahmed
AU  - Althueser, L.
AU  - Amaro, F.
AU  - Antunović, Biljana
AU  - Aprile, E.
AU  - Baudis, L.
AU  - Baur, D.
AU  - Biondi, Y.
AU  - Bismark, A.
AU  - Breur, P. A.
AU  - Brown, A.
AU  - Bruno, G.
AU  - Budnik, R.
AU  - Capelli, C.
AU  - Cardoso, J.
AU  - Cichon, D.
AU  - Clark, M.
AU  - Colijn, A. P.
AU  - Cuenca-García, J. J.
AU  - Cussonneau, J. P.
AU  - Decowski, M. P.
AU  - Depoian, A.
AU  - Dierle, J.
AU  - Gangi, P. Di
AU  - Giovanni, A. Di
AU  - Diglio, S.
AU  - Santos, J. M. F. dos
AU  - Drexlin, G.
AU  - Eitel, K.
AU  - Engel, R.
AU  - Ferella, A. D.
AU  - Fischer, H.
AU  - Galloway, M.
AU  - Gao, F.
AU  - Girard, F.
AU  - Glück, F.
AU  - Grandi, L.
AU  - Größle, R.
AU  - Gumbsheimer, R.
AU  - Hansmann-Menzemer, S.
AU  - Jörg, F.
AU  - Khundzakishvili, G.
AU  - Kopec, A.
AU  - Kuger, F.
AU  - Krauss, L. M.
AU  - Landsman, H.
AU  - Lang, R. F.
AU  - Lindemann, S.
AU  - Lindner, M.
AU  - Lopes, J. a. M.
AU  - Villalpando, A. Loya
AU  - Macolino, C.
AU  - Manfredini, A.
AU  - Undagoitia, T. Marrodán
AU  - Masbou, J.
AU  - Masson, E.
AU  - Meinhardt, P.
AU  - Milutinović, Slobodan
AU  - Molinario, A.
AU  - Monteiro, C. M. B.
AU  - Murra, M.
AU  - Oberlack, U. G.
AU  - Pandurović, Mila
AU  - Peres, R.
AU  - Pienaar, J.
AU  - Pierre, M.
AU  - Pizzella, V.
AU  - Qin, J.
AU  - García, D. Ramírez
AU  - Reichard, S.
AU  - Rupp, N.
AU  - Sanchez-Lucas, P.
AU  - Sartorelli, G.
AU  - Schulte, D.
AU  - Schumann, M.
AU  - Lavina, L. Scotto
AU  - Selvi, M.
AU  - Silva, M.
AU  - Simgen, H.
AU  - Steidl, M.
AU  - Terliuk, A.
AU  - Therreau, C.
AU  - Thers, D.
AU  - Thieme, K.
AU  - Trotta, R.
AU  - Tunnell, C. D.
AU  - Valerius, K.
AU  - Volta, G.
AU  - Vorkapić, D.
AU  - Weinheimer, C.
AU  - Wittweg, C.
AU  - Wolf, J.
AU  - Zopounidis, J. P.
AU  - Zuber, K.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9633
AB  - The DARWIN observatory is a proposed next-generation experiment to search for particle dark matter and for the neutrinoless double beta decay of $$^{136}$$ 136 Xe. Out of its 50 t total natural xenon inventory, 40 t will be the active target of a time projection chamber which thus contains about 3.6 t of $$^{136}$$ 136 Xe. Here, we show that its projected half-life sensitivity is $$2.4\times {10}^{27}\,{\hbox {year}}$$ 2.4 × 10 27 year , using a fiducial volume of 5 t of natural xenon and 10 year of operation with a background rate of less than 0.2 events/(t $$\cdot $$ · year) in the energy region of interest. This sensitivity is based on a detailed Monte Carlo simulation study of the background and event topologies in the large, homogeneous target. DARWIN will be comparable in its science reach to dedicated double beta decay experiments using xenon enriched in $$^{136}$$ 136 Xe.
T2  - European Physical Journal C. Particles and Fields
T1  - Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of 136 Xe
VL  - 80
IS  - 9
SP  - 1
EP  - 11
DO  - 10.1140/epjc/s10052-020-8196-z
ER  - 
@article{
author = "Agostini, F. and Maouloud, S. E. M. Ahmed and Althueser, L. and Amaro, F. and Antunović, Biljana and Aprile, E. and Baudis, L. and Baur, D. and Biondi, Y. and Bismark, A. and Breur, P. A. and Brown, A. and Bruno, G. and Budnik, R. and Capelli, C. and Cardoso, J. and Cichon, D. and Clark, M. and Colijn, A. P. and Cuenca-García, J. J. and Cussonneau, J. P. and Decowski, M. P. and Depoian, A. and Dierle, J. and Gangi, P. Di and Giovanni, A. Di and Diglio, S. and Santos, J. M. F. dos and Drexlin, G. and Eitel, K. and Engel, R. and Ferella, A. D. and Fischer, H. and Galloway, M. and Gao, F. and Girard, F. and Glück, F. and Grandi, L. and Größle, R. and Gumbsheimer, R. and Hansmann-Menzemer, S. and Jörg, F. and Khundzakishvili, G. and Kopec, A. and Kuger, F. and Krauss, L. M. and Landsman, H. and Lang, R. F. and Lindemann, S. and Lindner, M. and Lopes, J. a. M. and Villalpando, A. Loya and Macolino, C. and Manfredini, A. and Undagoitia, T. Marrodán and Masbou, J. and Masson, E. and Meinhardt, P. and Milutinović, Slobodan and Molinario, A. and Monteiro, C. M. B. and Murra, M. and Oberlack, U. G. and Pandurović, Mila and Peres, R. and Pienaar, J. and Pierre, M. and Pizzella, V. and Qin, J. and García, D. Ramírez and Reichard, S. and Rupp, N. and Sanchez-Lucas, P. and Sartorelli, G. and Schulte, D. and Schumann, M. and Lavina, L. Scotto and Selvi, M. and Silva, M. and Simgen, H. and Steidl, M. and Terliuk, A. and Therreau, C. and Thers, D. and Thieme, K. and Trotta, R. and Tunnell, C. D. and Valerius, K. and Volta, G. and Vorkapić, D. and Weinheimer, C. and Wittweg, C. and Wolf, J. and Zopounidis, J. P. and Zuber, K.",
year = "2020",
abstract = "The DARWIN observatory is a proposed next-generation experiment to search for particle dark matter and for the neutrinoless double beta decay of $$^{136}$$ 136 Xe. Out of its 50 t total natural xenon inventory, 40 t will be the active target of a time projection chamber which thus contains about 3.6 t of $$^{136}$$ 136 Xe. Here, we show that its projected half-life sensitivity is $$2.4\times {10}^{27}\,{\hbox {year}}$$ 2.4 × 10 27 year , using a fiducial volume of 5 t of natural xenon and 10 year of operation with a background rate of less than 0.2 events/(t $$\cdot $$ · year) in the energy region of interest. This sensitivity is based on a detailed Monte Carlo simulation study of the background and event topologies in the large, homogeneous target. DARWIN will be comparable in its science reach to dedicated double beta decay experiments using xenon enriched in $$^{136}$$ 136 Xe.",
journal = "European Physical Journal C. Particles and Fields",
title = "Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of 136 Xe",
volume = "80",
number = "9",
pages = "1-11",
doi = "10.1140/epjc/s10052-020-8196-z"
}
Agostini, F., Maouloud, S. E. M. A., Althueser, L., Amaro, F., Antunović, B., Aprile, E., Baudis, L., Baur, D., Biondi, Y., Bismark, A., Breur, P. A., Brown, A., Bruno, G., Budnik, R., Capelli, C., Cardoso, J., Cichon, D., Clark, M., Colijn, A. P., Cuenca-García, J. J., Cussonneau, J. P., Decowski, M. P., Depoian, A., Dierle, J., Gangi, P. D., Giovanni, A. D., Diglio, S., Santos, J. M. F. d., Drexlin, G., Eitel, K., Engel, R., Ferella, A. D., Fischer, H., Galloway, M., Gao, F., Girard, F., Glück, F., Grandi, L., Größle, R., Gumbsheimer, R., Hansmann-Menzemer, S., Jörg, F., Khundzakishvili, G., Kopec, A., Kuger, F., Krauss, L. M., Landsman, H., Lang, R. F., Lindemann, S., Lindner, M., Lopes, J. a. M., Villalpando, A. L., Macolino, C., Manfredini, A., Undagoitia, T. M., Masbou, J., Masson, E., Meinhardt, P., Milutinović, S., Molinario, A., Monteiro, C. M. B., Murra, M., Oberlack, U. G., Pandurović, M., Peres, R., Pienaar, J., Pierre, M., Pizzella, V., Qin, J., García, D. R., Reichard, S., Rupp, N., Sanchez-Lucas, P., Sartorelli, G., Schulte, D., Schumann, M., Lavina, L. S., Selvi, M., Silva, M., Simgen, H., Steidl, M., Terliuk, A., Therreau, C., Thers, D., Thieme, K., Trotta, R., Tunnell, C. D., Valerius, K., Volta, G., Vorkapić, D., Weinheimer, C., Wittweg, C., Wolf, J., Zopounidis, J. P.,& Zuber, K.. (2020). Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of 136 Xe. in European Physical Journal C. Particles and Fields, 80(9), 1-11.
https://doi.org/10.1140/epjc/s10052-020-8196-z
Agostini F, Maouloud SEMA, Althueser L, Amaro F, Antunović B, Aprile E, Baudis L, Baur D, Biondi Y, Bismark A, Breur PA, Brown A, Bruno G, Budnik R, Capelli C, Cardoso J, Cichon D, Clark M, Colijn AP, Cuenca-García JJ, Cussonneau JP, Decowski MP, Depoian A, Dierle J, Gangi PD, Giovanni AD, Diglio S, Santos JMFD, Drexlin G, Eitel K, Engel R, Ferella AD, Fischer H, Galloway M, Gao F, Girard F, Glück F, Grandi L, Größle R, Gumbsheimer R, Hansmann-Menzemer S, Jörg F, Khundzakishvili G, Kopec A, Kuger F, Krauss LM, Landsman H, Lang RF, Lindemann S, Lindner M, Lopes JAM, Villalpando AL, Macolino C, Manfredini A, Undagoitia TM, Masbou J, Masson E, Meinhardt P, Milutinović S, Molinario A, Monteiro CMB, Murra M, Oberlack UG, Pandurović M, Peres R, Pienaar J, Pierre M, Pizzella V, Qin J, García DR, Reichard S, Rupp N, Sanchez-Lucas P, Sartorelli G, Schulte D, Schumann M, Lavina LS, Selvi M, Silva M, Simgen H, Steidl M, Terliuk A, Therreau C, Thers D, Thieme K, Trotta R, Tunnell CD, Valerius K, Volta G, Vorkapić D, Weinheimer C, Wittweg C, Wolf J, Zopounidis JP, Zuber K. Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of 136 Xe. in European Physical Journal C. Particles and Fields. 2020;80(9):1-11.
doi:10.1140/epjc/s10052-020-8196-z .
Agostini, F., Maouloud, S. E. M. Ahmed, Althueser, L., Amaro, F., Antunović, Biljana, Aprile, E., Baudis, L., Baur, D., Biondi, Y., Bismark, A., Breur, P. A., Brown, A., Bruno, G., Budnik, R., Capelli, C., Cardoso, J., Cichon, D., Clark, M., Colijn, A. P., Cuenca-García, J. J., Cussonneau, J. P., Decowski, M. P., Depoian, A., Dierle, J., Gangi, P. Di, Giovanni, A. Di, Diglio, S., Santos, J. M. F. dos, Drexlin, G., Eitel, K., Engel, R., Ferella, A. D., Fischer, H., Galloway, M., Gao, F., Girard, F., Glück, F., Grandi, L., Größle, R., Gumbsheimer, R., Hansmann-Menzemer, S., Jörg, F., Khundzakishvili, G., Kopec, A., Kuger, F., Krauss, L. M., Landsman, H., Lang, R. F., Lindemann, S., Lindner, M., Lopes, J. a. M., Villalpando, A. Loya, Macolino, C., Manfredini, A., Undagoitia, T. Marrodán, Masbou, J., Masson, E., Meinhardt, P., Milutinović, Slobodan, Molinario, A., Monteiro, C. M. B., Murra, M., Oberlack, U. G., Pandurović, Mila, Peres, R., Pienaar, J., Pierre, M., Pizzella, V., Qin, J., García, D. Ramírez, Reichard, S., Rupp, N., Sanchez-Lucas, P., Sartorelli, G., Schulte, D., Schumann, M., Lavina, L. Scotto, Selvi, M., Silva, M., Simgen, H., Steidl, M., Terliuk, A., Therreau, C., Thers, D., Thieme, K., Trotta, R., Tunnell, C. D., Valerius, K., Volta, G., Vorkapić, D., Weinheimer, C., Wittweg, C., Wolf, J., Zopounidis, J. P., Zuber, K., "Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of 136 Xe" in European Physical Journal C. Particles and Fields, 80, no. 9 (2020):1-11,
https://doi.org/10.1140/epjc/s10052-020-8196-z . .
32
41
17
36

Solar neutrino detection sensitivity in DARWIN via electron scattering

Aalbers, J.; Agostini, F.; Maouloud, S.; Alfonsi, M.; Althueser, L.; Antunović, Biljana; Milošević, B.; Milutinović, Slobodan; Obradović, M.; Pandurović, Mila; Subotić, D.; Vorkapić, D.

(2020)

TY  - JOUR
AU  - Aalbers, J.
AU  - Agostini, F.
AU  - Maouloud, S.
AU  - Alfonsi, M.
AU  - Althueser, L.
AU  - Antunović, Biljana
AU  - Milošević, B.
AU  - Milutinović, Slobodan
AU  - Obradović, M.
AU  - Pandurović, Mila
AU  - Subotić, D.
AU  - Vorkapić, D.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9773
AB  - We detail the sensitivity of the proposed liquid xenon DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: pp,  $$^7$$     7    Be,  $$^{13}$$     13    N,  $$^{15}$$     15    O and pep. The precision of the  $$^{13}$$     13    N,  $$^{15}$$     15    O and pep components is hindered by the double-beta decay of  $$^{136}$$     136    Xe and, thus, would benefit from a depleted target. A high-statistics observation of pp neutrinos would allow us to infer the values of the electroweak mixing angle,  $$\sin ^2\theta _w$$     sin 2   θ w     , and the electron-type neutrino survival probability,  $$P_{ee}$$    P  ee     , in the electron recoil energy region from a few keV up to 200 keV for the first time, with relative precision of 5% and 4%, respectively, with 10 live years of data and a 30 tonne fiducial volume. An observation of pp and  $$^7$$     7    Be neutrinos would constrain the neutrino-inferred solar luminosity down to 0.2%. A combination of all flux measurements would distinguish between the high- (GS98) and low-metallicity (AGS09) solar models with 2.1–2.5 $$\sigma $$   σ    significance, independent of external measurements from other experiments or a measurement of  $$^8$$     8    B neutrinos through coherent elastic neutrino-nucleus scattering in DARWIN. Finally, we demonstrate that with a depleted target DARWIN may be sensitive to the neutrino capture process of  $$^{131}$$     131    Xe.
T2  - European Physical Journal C. Particles and Fields
T1  - Solar neutrino detection sensitivity in DARWIN via electron scattering
VL  - 80
IS  - 12
SP  - 1133
DO  - 10.1140/epjc/s10052-020-08602-7
ER  - 
@article{
author = "Aalbers, J. and Agostini, F. and Maouloud, S. and Alfonsi, M. and Althueser, L. and Antunović, Biljana and Milošević, B. and Milutinović, Slobodan and Obradović, M. and Pandurović, Mila and Subotić, D. and Vorkapić, D.",
year = "2020",
abstract = "We detail the sensitivity of the proposed liquid xenon DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: pp,  $$^7$$     7    Be,  $$^{13}$$     13    N,  $$^{15}$$     15    O and pep. The precision of the  $$^{13}$$     13    N,  $$^{15}$$     15    O and pep components is hindered by the double-beta decay of  $$^{136}$$     136    Xe and, thus, would benefit from a depleted target. A high-statistics observation of pp neutrinos would allow us to infer the values of the electroweak mixing angle,  $$\sin ^2\theta _w$$     sin 2   θ w     , and the electron-type neutrino survival probability,  $$P_{ee}$$    P  ee     , in the electron recoil energy region from a few keV up to 200 keV for the first time, with relative precision of 5% and 4%, respectively, with 10 live years of data and a 30 tonne fiducial volume. An observation of pp and  $$^7$$     7    Be neutrinos would constrain the neutrino-inferred solar luminosity down to 0.2%. A combination of all flux measurements would distinguish between the high- (GS98) and low-metallicity (AGS09) solar models with 2.1–2.5 $$\sigma $$   σ    significance, independent of external measurements from other experiments or a measurement of  $$^8$$     8    B neutrinos through coherent elastic neutrino-nucleus scattering in DARWIN. Finally, we demonstrate that with a depleted target DARWIN may be sensitive to the neutrino capture process of  $$^{131}$$     131    Xe.",
journal = "European Physical Journal C. Particles and Fields",
title = "Solar neutrino detection sensitivity in DARWIN via electron scattering",
volume = "80",
number = "12",
pages = "1133",
doi = "10.1140/epjc/s10052-020-08602-7"
}
Aalbers, J., Agostini, F., Maouloud, S., Alfonsi, M., Althueser, L., Antunović, B., Milošević, B., Milutinović, S., Obradović, M., Pandurović, M., Subotić, D.,& Vorkapić, D.. (2020). Solar neutrino detection sensitivity in DARWIN via electron scattering. in European Physical Journal C. Particles and Fields, 80(12), 1133.
https://doi.org/10.1140/epjc/s10052-020-08602-7
Aalbers J, Agostini F, Maouloud S, Alfonsi M, Althueser L, Antunović B, Milošević B, Milutinović S, Obradović M, Pandurović M, Subotić D, Vorkapić D. Solar neutrino detection sensitivity in DARWIN via electron scattering. in European Physical Journal C. Particles and Fields. 2020;80(12):1133.
doi:10.1140/epjc/s10052-020-08602-7 .
Aalbers, J., Agostini, F., Maouloud, S., Alfonsi, M., Althueser, L., Antunović, Biljana, Milošević, B., Milutinović, Slobodan, Obradović, M., Pandurović, Mila, Subotić, D., Vorkapić, D., "Solar neutrino detection sensitivity in DARWIN via electron scattering" in European Physical Journal C. Particles and Fields, 80, no. 12 (2020):1133,
https://doi.org/10.1140/epjc/s10052-020-08602-7 . .
10
32
6
25

Top-quark physics at the CLIC electron-positron linear collider

Abramowicz, H; Alipour Tehrani, N; Arominski, D; Benhammou, Y; Benoit, M; Blaising, J.-J.; Boronat, M; Borysov, O; Bosley, R R; Božović-Jelisavčić, Ivanka; Boyko, I; Brass, S; Brondolin, E; Bruckman de Renstrom, P.; Buckland, M; Burrows, P N; Chefdeville, M; Chekanov, S; Coates, T; Dannheim, D; Demarteau, M; Denizli, H; Durieux, G; Eigen, G; Elsener, K; Fullana, E; Fuster, J; Gabriel, M; Gaede, F; García, I; Goldstein, J; Gomis Lopez, P; Graf, C; Green, S; Grefe, C; Grojean, C; Hoang, A; Hynds, D; Joffe, A; Kalinowski, J; Kačarević, Goran; Kilian, W; van der Kolk, N; Krawczyk, M; Kucharczyk, M; Leogrande, E; Lesiak, T; Levy, A.; Levy, I; Linssen, L; Maier, A A; Makarenko, V; Marshall, J S; Martin, V; Mateu, V; Matsedonskyi, O; Metcalfe, J; Milutinović-Dumbelović, Gordana; Münker, R M; Nefedov, Yu.; Nowak, K; Nürnberg, A; Pandurović, Mila; Perelló, M; Perez Codina, E; Petric, M; Pitters, F; Price, T; Quast, T; Redford, S; Repond, J; Robson, A; Roloff, P; Ros, E; Rozwadowska, K; Ruiz-Jimeno, A; Sailer, A; Salvatore, F; Schnoor, U; Schulte, D; Senol, A; Shelkov, G; Sicking, E; Simon, F; Simoniello, R; Sopicki, P; Spannagel, S; Stapnes, S; Ström, R; Szalay, M; Thomson, M A; Turbiarz, B; Viazlo, O; Vicente, M; Vila, I; Vos, M; Vossebeld, J; Watson, M. F.; Watson, N K; Weber, M A; Weerts, H; Wells, J D; Widl, A; Williams, M; Winter, A.G.; Wojtoń, T; Wulzer, A; Xu, B; Xia, L; You, T; Żarnecki, A F; Zawiejski, L; Zhang, C.; Zhang, J.; Zhang, Y.; Zhang, Z; Zhemchugov, A

(2019)

TY  - JOUR
AU  - Abramowicz, H
AU  - Alipour Tehrani, N
AU  - Arominski, D
AU  - Benhammou, Y
AU  - Benoit, M
AU  - Blaising, J.-J.
AU  - Boronat, M
AU  - Borysov, O
AU  - Bosley, R R
AU  - Božović-Jelisavčić, Ivanka
AU  - Boyko, I
AU  - Brass, S
AU  - Brondolin, E
AU  - Bruckman de Renstrom, P.
AU  - Buckland, M
AU  - Burrows, P N
AU  - Chefdeville, M
AU  - Chekanov, S
AU  - Coates, T
AU  - Dannheim, D
AU  - Demarteau, M
AU  - Denizli, H
AU  - Durieux, G
AU  - Eigen, G
AU  - Elsener, K
AU  - Fullana, E
AU  - Fuster, J
AU  - Gabriel, M
AU  - Gaede, F
AU  - García, I
AU  - Goldstein, J
AU  - Gomis Lopez, P
AU  - Graf, C
AU  - Green, S
AU  - Grefe, C
AU  - Grojean, C
AU  - Hoang, A
AU  - Hynds, D
AU  - Joffe, A
AU  - Kalinowski, J
AU  - Kačarević, Goran
AU  - Kilian, W
AU  - van der Kolk, N
AU  - Krawczyk, M
AU  - Kucharczyk, M
AU  - Leogrande, E
AU  - Lesiak, T
AU  - Levy, A.
AU  - Levy, I
AU  - Linssen, L
AU  - Maier, A A
AU  - Makarenko, V
AU  - Marshall, J S
AU  - Martin, V
AU  - Mateu, V
AU  - Matsedonskyi, O
AU  - Metcalfe, J
AU  - Milutinović-Dumbelović, Gordana
AU  - Münker, R M
AU  - Nefedov, Yu.
AU  - Nowak, K
AU  - Nürnberg, A
AU  - Pandurović, Mila
AU  - Perelló, M
AU  - Perez Codina, E
AU  - Petric, M
AU  - Pitters, F
AU  - Price, T
AU  - Quast, T
AU  - Redford, S
AU  - Repond, J
AU  - Robson, A
AU  - Roloff, P
AU  - Ros, E
AU  - Rozwadowska, K
AU  - Ruiz-Jimeno, A
AU  - Sailer, A
AU  - Salvatore, F
AU  - Schnoor, U
AU  - Schulte, D
AU  - Senol, A
AU  - Shelkov, G
AU  - Sicking, E
AU  - Simon, F
AU  - Simoniello, R
AU  - Sopicki, P
AU  - Spannagel, S
AU  - Stapnes, S
AU  - Ström, R
AU  - Szalay, M
AU  - Thomson, M A
AU  - Turbiarz, B
AU  - Viazlo, O
AU  - Vicente, M
AU  - Vila, I
AU  - Vos, M
AU  - Vossebeld, J
AU  - Watson, M. F.
AU  - Watson, N K
AU  - Weber, M A
AU  - Weerts, H
AU  - Wells, J D
AU  - Widl, A
AU  - Williams, M
AU  - Winter, A.G.
AU  - Wojtoń, T
AU  - Wulzer, A
AU  - Xu, B
AU  - Xia, L
AU  - You, T
AU  - Żarnecki, A F
AU  - Zawiejski, L
AU  - Zhang, C.
AU  - Zhang, J.
AU  - Zhang, Y.
AU  - Zhang, Z
AU  - Zhemchugov, A
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8656
AB  - The Compact Linear Collider (CLIC) is a proposed future high-luminosity linear electron-positron collider operating at three energy stages, with nominal centre-of-mass energies s = 380 GeV, 1.5 TeV, and 3 TeV. Its aim is to explore the energy frontier, providing sensitivity to physics beyond the Standard Model (BSM) and precision measurements of Standard Model processes with an emphasis on Higgs boson and top-quark physics. The opportunities for top-quark physics at CLIC are discussed in this paper. The initial stage of operation focuses on top-quark pair production measurements, as well as the search for rare flavour-changing neutral current (FCNC) top-quark decays. It also includes a top-quark pair production threshold scan around 350 GeV which provides a precise measurement of the top-quark mass in a well-defined theoretical framework. At the higher-energy stages, studies are made of top-quark pairs produced in association with other particles. A study of t̄tH production including the extraction of the top Yukawa coupling is presented as well as a study of vector boson fusion (VBF) production, which gives direct access to high-energy electroweak interactions. Operation above 1 TeV leads to more highly collimated jet environments where dedicated methods are used to analyse the jet constituents. These techniques enable studies of the top-quark pair production, and hence the sensitivity to BSM physics, to be extended to higher energies. This paper also includes phenomenological interpretations that may be performed using the results from the extensive top-quark physics programme at CLIC. [Figure not available: see fulltext.] © 2019, The Author(s).
T2  - Journal of High Energy Physics
T1  - Top-quark physics at the CLIC electron-positron linear collider
VL  - 2019
IS  - 11
SP  - 3
DO  - 10.1007/JHEP11(2019)003
ER  - 
@article{
author = "Abramowicz, H and Alipour Tehrani, N and Arominski, D and Benhammou, Y and Benoit, M and Blaising, J.-J. and Boronat, M and Borysov, O and Bosley, R R and Božović-Jelisavčić, Ivanka and Boyko, I and Brass, S and Brondolin, E and Bruckman de Renstrom, P. and Buckland, M and Burrows, P N and Chefdeville, M and Chekanov, S and Coates, T and Dannheim, D and Demarteau, M and Denizli, H and Durieux, G and Eigen, G and Elsener, K and Fullana, E and Fuster, J and Gabriel, M and Gaede, F and García, I and Goldstein, J and Gomis Lopez, P and Graf, C and Green, S and Grefe, C and Grojean, C and Hoang, A and Hynds, D and Joffe, A and Kalinowski, J and Kačarević, Goran and Kilian, W and van der Kolk, N and Krawczyk, M and Kucharczyk, M and Leogrande, E and Lesiak, T and Levy, A. and Levy, I and Linssen, L and Maier, A A and Makarenko, V and Marshall, J S and Martin, V and Mateu, V and Matsedonskyi, O and Metcalfe, J and Milutinović-Dumbelović, Gordana and Münker, R M and Nefedov, Yu. and Nowak, K and Nürnberg, A and Pandurović, Mila and Perelló, M and Perez Codina, E and Petric, M and Pitters, F and Price, T and Quast, T and Redford, S and Repond, J and Robson, A and Roloff, P and Ros, E and Rozwadowska, K and Ruiz-Jimeno, A and Sailer, A and Salvatore, F and Schnoor, U and Schulte, D and Senol, A and Shelkov, G and Sicking, E and Simon, F and Simoniello, R and Sopicki, P and Spannagel, S and Stapnes, S and Ström, R and Szalay, M and Thomson, M A and Turbiarz, B and Viazlo, O and Vicente, M and Vila, I and Vos, M and Vossebeld, J and Watson, M. F. and Watson, N K and Weber, M A and Weerts, H and Wells, J D and Widl, A and Williams, M and Winter, A.G. and Wojtoń, T and Wulzer, A and Xu, B and Xia, L and You, T and Żarnecki, A F and Zawiejski, L and Zhang, C. and Zhang, J. and Zhang, Y. and Zhang, Z and Zhemchugov, A",
year = "2019",
abstract = "The Compact Linear Collider (CLIC) is a proposed future high-luminosity linear electron-positron collider operating at three energy stages, with nominal centre-of-mass energies s = 380 GeV, 1.5 TeV, and 3 TeV. Its aim is to explore the energy frontier, providing sensitivity to physics beyond the Standard Model (BSM) and precision measurements of Standard Model processes with an emphasis on Higgs boson and top-quark physics. The opportunities for top-quark physics at CLIC are discussed in this paper. The initial stage of operation focuses on top-quark pair production measurements, as well as the search for rare flavour-changing neutral current (FCNC) top-quark decays. It also includes a top-quark pair production threshold scan around 350 GeV which provides a precise measurement of the top-quark mass in a well-defined theoretical framework. At the higher-energy stages, studies are made of top-quark pairs produced in association with other particles. A study of t̄tH production including the extraction of the top Yukawa coupling is presented as well as a study of vector boson fusion (VBF) production, which gives direct access to high-energy electroweak interactions. Operation above 1 TeV leads to more highly collimated jet environments where dedicated methods are used to analyse the jet constituents. These techniques enable studies of the top-quark pair production, and hence the sensitivity to BSM physics, to be extended to higher energies. This paper also includes phenomenological interpretations that may be performed using the results from the extensive top-quark physics programme at CLIC. [Figure not available: see fulltext.] © 2019, The Author(s).",
journal = "Journal of High Energy Physics",
title = "Top-quark physics at the CLIC electron-positron linear collider",
volume = "2019",
number = "11",
pages = "3",
doi = "10.1007/JHEP11(2019)003"
}
Abramowicz, H., Alipour Tehrani, N., Arominski, D., Benhammou, Y., Benoit, M., Blaising, J.-J., Boronat, M., Borysov, O., Bosley, R. R., Božović-Jelisavčić, I., Boyko, I., Brass, S., Brondolin, E., Bruckman de Renstrom, P., Buckland, M., Burrows, P. N., Chefdeville, M., Chekanov, S., Coates, T., Dannheim, D., Demarteau, M., Denizli, H., Durieux, G., Eigen, G., Elsener, K., Fullana, E., Fuster, J., Gabriel, M., Gaede, F., García, I., Goldstein, J., Gomis Lopez, P., Graf, C., Green, S., Grefe, C., Grojean, C., Hoang, A., Hynds, D., Joffe, A., Kalinowski, J., Kačarević, G., Kilian, W., van der Kolk, N., Krawczyk, M., Kucharczyk, M., Leogrande, E., Lesiak, T., Levy, A., Levy, I., Linssen, L., Maier, A. A., Makarenko, V., Marshall, J. S., Martin, V., Mateu, V., Matsedonskyi, O., Metcalfe, J., Milutinović-Dumbelović, G., Münker, R. M., Nefedov, Yu., Nowak, K., Nürnberg, A., Pandurović, M., Perelló, M., Perez Codina, E., Petric, M., Pitters, F., Price, T., Quast, T., Redford, S., Repond, J., Robson, A., Roloff, P., Ros, E., Rozwadowska, K., Ruiz-Jimeno, A., Sailer, A., Salvatore, F., Schnoor, U., Schulte, D., Senol, A., Shelkov, G., Sicking, E., Simon, F., Simoniello, R., Sopicki, P., Spannagel, S., Stapnes, S., Ström, R., Szalay, M., Thomson, M. A., Turbiarz, B., Viazlo, O., Vicente, M., Vila, I., Vos, M., Vossebeld, J., Watson, M. F., Watson, N. K., Weber, M. A., Weerts, H., Wells, J. D., Widl, A., Williams, M., Winter, A.G., Wojtoń, T., Wulzer, A., Xu, B., Xia, L., You, T., Żarnecki, A. F., Zawiejski, L., Zhang, C., Zhang, J., Zhang, Y., Zhang, Z.,& Zhemchugov, A.. (2019). Top-quark physics at the CLIC electron-positron linear collider. in Journal of High Energy Physics, 2019(11), 3.
https://doi.org/10.1007/JHEP11(2019)003
Abramowicz H, Alipour Tehrani N, Arominski D, Benhammou Y, Benoit M, Blaising J, Boronat M, Borysov O, Bosley RR, Božović-Jelisavčić I, Boyko I, Brass S, Brondolin E, Bruckman de Renstrom P, Buckland M, Burrows PN, Chefdeville M, Chekanov S, Coates T, Dannheim D, Demarteau M, Denizli H, Durieux G, Eigen G, Elsener K, Fullana E, Fuster J, Gabriel M, Gaede F, García I, Goldstein J, Gomis Lopez P, Graf C, Green S, Grefe C, Grojean C, Hoang A, Hynds D, Joffe A, Kalinowski J, Kačarević G, Kilian W, van der Kolk N, Krawczyk M, Kucharczyk M, Leogrande E, Lesiak T, Levy A, Levy I, Linssen L, Maier AA, Makarenko V, Marshall JS, Martin V, Mateu V, Matsedonskyi O, Metcalfe J, Milutinović-Dumbelović G, Münker RM, Nefedov Y, Nowak K, Nürnberg A, Pandurović M, Perelló M, Perez Codina E, Petric M, Pitters F, Price T, Quast T, Redford S, Repond J, Robson A, Roloff P, Ros E, Rozwadowska K, Ruiz-Jimeno A, Sailer A, Salvatore F, Schnoor U, Schulte D, Senol A, Shelkov G, Sicking E, Simon F, Simoniello R, Sopicki P, Spannagel S, Stapnes S, Ström R, Szalay M, Thomson MA, Turbiarz B, Viazlo O, Vicente M, Vila I, Vos M, Vossebeld J, Watson MF, Watson NK, Weber MA, Weerts H, Wells JD, Widl A, Williams M, Winter A, Wojtoń T, Wulzer A, Xu B, Xia L, You T, Żarnecki AF, Zawiejski L, Zhang C, Zhang J, Zhang Y, Zhang Z, Zhemchugov A. Top-quark physics at the CLIC electron-positron linear collider. in Journal of High Energy Physics. 2019;2019(11):3.
doi:10.1007/JHEP11(2019)003 .
Abramowicz, H, Alipour Tehrani, N, Arominski, D, Benhammou, Y, Benoit, M, Blaising, J.-J., Boronat, M, Borysov, O, Bosley, R R, Božović-Jelisavčić, Ivanka, Boyko, I, Brass, S, Brondolin, E, Bruckman de Renstrom, P., Buckland, M, Burrows, P N, Chefdeville, M, Chekanov, S, Coates, T, Dannheim, D, Demarteau, M, Denizli, H, Durieux, G, Eigen, G, Elsener, K, Fullana, E, Fuster, J, Gabriel, M, Gaede, F, García, I, Goldstein, J, Gomis Lopez, P, Graf, C, Green, S, Grefe, C, Grojean, C, Hoang, A, Hynds, D, Joffe, A, Kalinowski, J, Kačarević, Goran, Kilian, W, van der Kolk, N, Krawczyk, M, Kucharczyk, M, Leogrande, E, Lesiak, T, Levy, A., Levy, I, Linssen, L, Maier, A A, Makarenko, V, Marshall, J S, Martin, V, Mateu, V, Matsedonskyi, O, Metcalfe, J, Milutinović-Dumbelović, Gordana, Münker, R M, Nefedov, Yu., Nowak, K, Nürnberg, A, Pandurović, Mila, Perelló, M, Perez Codina, E, Petric, M, Pitters, F, Price, T, Quast, T, Redford, S, Repond, J, Robson, A, Roloff, P, Ros, E, Rozwadowska, K, Ruiz-Jimeno, A, Sailer, A, Salvatore, F, Schnoor, U, Schulte, D, Senol, A, Shelkov, G, Sicking, E, Simon, F, Simoniello, R, Sopicki, P, Spannagel, S, Stapnes, S, Ström, R, Szalay, M, Thomson, M A, Turbiarz, B, Viazlo, O, Vicente, M, Vila, I, Vos, M, Vossebeld, J, Watson, M. F., Watson, N K, Weber, M A, Weerts, H, Wells, J D, Widl, A, Williams, M, Winter, A.G., Wojtoń, T, Wulzer, A, Xu, B, Xia, L, You, T, Żarnecki, A F, Zawiejski, L, Zhang, C., Zhang, J., Zhang, Y., Zhang, Z, Zhemchugov, A, "Top-quark physics at the CLIC electron-positron linear collider" in Journal of High Energy Physics, 2019, no. 11 (2019):3,
https://doi.org/10.1007/JHEP11(2019)003 . .
15
30
18
34

Precision Higgs physics at the CEPC

An, Fenfen; Bai, Yu; Chen, Chunhui; Chen, Xin; Chen, Zhenxing; da Costa, Joao Guimaraes; Cui, Zhenwei; Fang, Yaquan; Fu, Chengdong; Gao, Jun; Gao, Yanyan; Gao, Yuanning; Ge, Shaofeng; Gu, Jiayin; Guo, Fangyi; Guo, Jun; Han, Tao; Han, Shuang; He, Hongjian; He, Xianke; He, Xiaogang; Hu, Jifeng; Hsu, Shih-Chieh; Jin, Shan; Jing, Maoqiang; Jyotishmati, Susmita; Ryuta, Kiuchi; Kuo, Chia-Ming; Lai, Peizhu; Li, Boyang; Li, Congqiao; Li, Gang; Li, Haifeng; Li, Liang; Li, Shu; Li, Tong; Li, Qiang; Liang, Hao; Liang, Zhijun; Liao, Libo; Liu, Bo; Liu, Jianbei; Liu, Tao; Liu, Zhen; Lou, Xinchou; Ma, Lianliang; Mellado, Bruce; Mo, Xin; Pandurović, Mila; Qian, Jianming; Qian, Zhuoni; Rompotis, Nikolaos; Ruan, Manqi; Schuy, Alex; Shan, Lianyou; Shi, Jingyuan; Shi, Xin; Su, Shufang; Wang, Dayong; Wang, Jin; Wang, Liantao; Wang, Yifang; Wei, Yuqian; Xu, Yue; Yang, Haijun; Yang, Ying; Yao, Weiming; Yu, Dan; Zhang, Kaili; Zhang, Zhaoru; Zhao, Mingrui; Zhao, Xianghu; Zhou, Ning

(2019)

TY  - JOUR
AU  - An, Fenfen
AU  - Bai, Yu
AU  - Chen, Chunhui
AU  - Chen, Xin
AU  - Chen, Zhenxing
AU  - da Costa, Joao Guimaraes
AU  - Cui, Zhenwei
AU  - Fang, Yaquan
AU  - Fu, Chengdong
AU  - Gao, Jun
AU  - Gao, Yanyan
AU  - Gao, Yuanning
AU  - Ge, Shaofeng
AU  - Gu, Jiayin
AU  - Guo, Fangyi
AU  - Guo, Jun
AU  - Han, Tao
AU  - Han, Shuang
AU  - He, Hongjian
AU  - He, Xianke
AU  - He, Xiaogang
AU  - Hu, Jifeng
AU  - Hsu, Shih-Chieh
AU  - Jin, Shan
AU  - Jing, Maoqiang
AU  - Jyotishmati, Susmita
AU  - Ryuta, Kiuchi
AU  - Kuo, Chia-Ming
AU  - Lai, Peizhu
AU  - Li, Boyang
AU  - Li, Congqiao
AU  - Li, Gang
AU  - Li, Haifeng
AU  - Li, Liang
AU  - Li, Shu
AU  - Li, Tong
AU  - Li, Qiang
AU  - Liang, Hao
AU  - Liang, Zhijun
AU  - Liao, Libo
AU  - Liu, Bo
AU  - Liu, Jianbei
AU  - Liu, Tao
AU  - Liu, Zhen
AU  - Lou, Xinchou
AU  - Ma, Lianliang
AU  - Mellado, Bruce
AU  - Mo, Xin
AU  - Pandurović, Mila
AU  - Qian, Jianming
AU  - Qian, Zhuoni
AU  - Rompotis, Nikolaos
AU  - Ruan, Manqi
AU  - Schuy, Alex
AU  - Shan, Lianyou
AU  - Shi, Jingyuan
AU  - Shi, Xin
AU  - Su, Shufang
AU  - Wang, Dayong
AU  - Wang, Jin
AU  - Wang, Liantao
AU  - Wang, Yifang
AU  - Wei, Yuqian
AU  - Xu, Yue
AU  - Yang, Haijun
AU  - Yang, Ying
AU  - Yao, Weiming
AU  - Yu, Dan
AU  - Zhang, Kaili
AU  - Zhang, Zhaoru
AU  - Zhao, Mingrui
AU  - Zhao, Xianghu
AU  - Zhou, Ning
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8180
AB  - The discovery of the Higgs boson with its mass around 125 GeV by the ATLAS and CMS Collaborations marked the beginning of a new era in high energy physics. The Higgs boson will be the subject of extensive studies of the ongoing LHC program. At the same time, lepton collider based Higgs factories have been proposed as a possible next step beyond the LHC, with its main goal to precisely measure the properties of the Higgs boson and probe potential new physics associated with the Higgs boson. The Circular Electron Positron Collider (CEPC) is one of such proposed Higgs factories. The CEPC is an e + e - circular collider proposed by and to be hosted in China. Located in a tunnel of approximately 100 km in circumference, it will operate at a center-of-mass energy of 240 GeV as the Higgs factory. In this paper, we present the first estimates on the precision of the Higgs boson property measurements achievable at the CEPC and discuss implications of these measurements. © 2019 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.
T2  - Chinese Physics C
T1  - Precision Higgs physics at the CEPC
VL  - 43
IS  - 4
SP  - 043002
DO  - 10.1088/1674-1137/43/4/043002
ER  - 
@article{
author = "An, Fenfen and Bai, Yu and Chen, Chunhui and Chen, Xin and Chen, Zhenxing and da Costa, Joao Guimaraes and Cui, Zhenwei and Fang, Yaquan and Fu, Chengdong and Gao, Jun and Gao, Yanyan and Gao, Yuanning and Ge, Shaofeng and Gu, Jiayin and Guo, Fangyi and Guo, Jun and Han, Tao and Han, Shuang and He, Hongjian and He, Xianke and He, Xiaogang and Hu, Jifeng and Hsu, Shih-Chieh and Jin, Shan and Jing, Maoqiang and Jyotishmati, Susmita and Ryuta, Kiuchi and Kuo, Chia-Ming and Lai, Peizhu and Li, Boyang and Li, Congqiao and Li, Gang and Li, Haifeng and Li, Liang and Li, Shu and Li, Tong and Li, Qiang and Liang, Hao and Liang, Zhijun and Liao, Libo and Liu, Bo and Liu, Jianbei and Liu, Tao and Liu, Zhen and Lou, Xinchou and Ma, Lianliang and Mellado, Bruce and Mo, Xin and Pandurović, Mila and Qian, Jianming and Qian, Zhuoni and Rompotis, Nikolaos and Ruan, Manqi and Schuy, Alex and Shan, Lianyou and Shi, Jingyuan and Shi, Xin and Su, Shufang and Wang, Dayong and Wang, Jin and Wang, Liantao and Wang, Yifang and Wei, Yuqian and Xu, Yue and Yang, Haijun and Yang, Ying and Yao, Weiming and Yu, Dan and Zhang, Kaili and Zhang, Zhaoru and Zhao, Mingrui and Zhao, Xianghu and Zhou, Ning",
year = "2019",
abstract = "The discovery of the Higgs boson with its mass around 125 GeV by the ATLAS and CMS Collaborations marked the beginning of a new era in high energy physics. The Higgs boson will be the subject of extensive studies of the ongoing LHC program. At the same time, lepton collider based Higgs factories have been proposed as a possible next step beyond the LHC, with its main goal to precisely measure the properties of the Higgs boson and probe potential new physics associated with the Higgs boson. The Circular Electron Positron Collider (CEPC) is one of such proposed Higgs factories. The CEPC is an e + e - circular collider proposed by and to be hosted in China. Located in a tunnel of approximately 100 km in circumference, it will operate at a center-of-mass energy of 240 GeV as the Higgs factory. In this paper, we present the first estimates on the precision of the Higgs boson property measurements achievable at the CEPC and discuss implications of these measurements. © 2019 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.",
journal = "Chinese Physics C",
title = "Precision Higgs physics at the CEPC",
volume = "43",
number = "4",
pages = "043002",
doi = "10.1088/1674-1137/43/4/043002"
}
An, F., Bai, Y., Chen, C., Chen, X., Chen, Z., da Costa, J. G., Cui, Z., Fang, Y., Fu, C., Gao, J., Gao, Y., Gao, Y., Ge, S., Gu, J., Guo, F., Guo, J., Han, T., Han, S., He, H., He, X., He, X., Hu, J., Hsu, S., Jin, S., Jing, M., Jyotishmati, S., Ryuta, K., Kuo, C., Lai, P., Li, B., Li, C., Li, G., Li, H., Li, L., Li, S., Li, T., Li, Q., Liang, H., Liang, Z., Liao, L., Liu, B., Liu, J., Liu, T., Liu, Z., Lou, X., Ma, L., Mellado, B., Mo, X., Pandurović, M., Qian, J., Qian, Z., Rompotis, N., Ruan, M., Schuy, A., Shan, L., Shi, J., Shi, X., Su, S., Wang, D., Wang, J., Wang, L., Wang, Y., Wei, Y., Xu, Y., Yang, H., Yang, Y., Yao, W., Yu, D., Zhang, K., Zhang, Z., Zhao, M., Zhao, X.,& Zhou, N.. (2019). Precision Higgs physics at the CEPC. in Chinese Physics C, 43(4), 043002.
https://doi.org/10.1088/1674-1137/43/4/043002
An F, Bai Y, Chen C, Chen X, Chen Z, da Costa JG, Cui Z, Fang Y, Fu C, Gao J, Gao Y, Gao Y, Ge S, Gu J, Guo F, Guo J, Han T, Han S, He H, He X, He X, Hu J, Hsu S, Jin S, Jing M, Jyotishmati S, Ryuta K, Kuo C, Lai P, Li B, Li C, Li G, Li H, Li L, Li S, Li T, Li Q, Liang H, Liang Z, Liao L, Liu B, Liu J, Liu T, Liu Z, Lou X, Ma L, Mellado B, Mo X, Pandurović M, Qian J, Qian Z, Rompotis N, Ruan M, Schuy A, Shan L, Shi J, Shi X, Su S, Wang D, Wang J, Wang L, Wang Y, Wei Y, Xu Y, Yang H, Yang Y, Yao W, Yu D, Zhang K, Zhang Z, Zhao M, Zhao X, Zhou N. Precision Higgs physics at the CEPC. in Chinese Physics C. 2019;43(4):043002.
doi:10.1088/1674-1137/43/4/043002 .
An, Fenfen, Bai, Yu, Chen, Chunhui, Chen, Xin, Chen, Zhenxing, da Costa, Joao Guimaraes, Cui, Zhenwei, Fang, Yaquan, Fu, Chengdong, Gao, Jun, Gao, Yanyan, Gao, Yuanning, Ge, Shaofeng, Gu, Jiayin, Guo, Fangyi, Guo, Jun, Han, Tao, Han, Shuang, He, Hongjian, He, Xianke, He, Xiaogang, Hu, Jifeng, Hsu, Shih-Chieh, Jin, Shan, Jing, Maoqiang, Jyotishmati, Susmita, Ryuta, Kiuchi, Kuo, Chia-Ming, Lai, Peizhu, Li, Boyang, Li, Congqiao, Li, Gang, Li, Haifeng, Li, Liang, Li, Shu, Li, Tong, Li, Qiang, Liang, Hao, Liang, Zhijun, Liao, Libo, Liu, Bo, Liu, Jianbei, Liu, Tao, Liu, Zhen, Lou, Xinchou, Ma, Lianliang, Mellado, Bruce, Mo, Xin, Pandurović, Mila, Qian, Jianming, Qian, Zhuoni, Rompotis, Nikolaos, Ruan, Manqi, Schuy, Alex, Shan, Lianyou, Shi, Jingyuan, Shi, Xin, Su, Shufang, Wang, Dayong, Wang, Jin, Wang, Liantao, Wang, Yifang, Wei, Yuqian, Xu, Yue, Yang, Haijun, Yang, Ying, Yao, Weiming, Yu, Dan, Zhang, Kaili, Zhang, Zhaoru, Zhao, Mingrui, Zhao, Xianghu, Zhou, Ning, "Precision Higgs physics at the CEPC" in Chinese Physics C, 43, no. 4 (2019):043002,
https://doi.org/10.1088/1674-1137/43/4/043002 . .
2
91
50
85

Physics potential for the measurement of σ(Hz) × BR(H → WW∗) at the 250 GeV ILC

Pandurović, Mila

(2019)

TY  - CONF
AU  - Pandurović, Mila
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8614
UR  - https://arxiv.org/abs/1902.08032
AB  - The potential of measurement of the relative statistical uncertainty of the (HZ) × BR(H → WW∗) decay, at the International Linear Collider (ILC) has been presented. The study is performed at the lowest energy stage of the proposed staged ILC, the 250 GeV stage. Monte Carlo samples representing all SM processes were passed through full detector simulation of the International Large Detector (ILD) model. Fully hadronic final state has been analyzed using an integrated luminosity of 500 fb−1, using multivariate analysis technique. The obtained relative statistical uncertainty ∆(σ · BR)/(σ · BR) of the σ(HZ) · BR(H → WW∗) is 4.1%.
C3  - 2018 International Workshop on Future Linear Colliders, LCWS 2018
T1  - Physics potential for the measurement of σ(Hz) × BR(H → WW∗) at the 250 GeV ILC
UR  - https://hdl.handle.net/21.15107/rcub_vinar_8614
ER  - 
@conference{
author = "Pandurović, Mila",
year = "2019",
abstract = "The potential of measurement of the relative statistical uncertainty of the (HZ) × BR(H → WW∗) decay, at the International Linear Collider (ILC) has been presented. The study is performed at the lowest energy stage of the proposed staged ILC, the 250 GeV stage. Monte Carlo samples representing all SM processes were passed through full detector simulation of the International Large Detector (ILD) model. Fully hadronic final state has been analyzed using an integrated luminosity of 500 fb−1, using multivariate analysis technique. The obtained relative statistical uncertainty ∆(σ · BR)/(σ · BR) of the σ(HZ) · BR(H → WW∗) is 4.1%.",
journal = "2018 International Workshop on Future Linear Colliders, LCWS 2018",
title = "Physics potential for the measurement of σ(Hz) × BR(H → WW∗) at the 250 GeV ILC",
url = "https://hdl.handle.net/21.15107/rcub_vinar_8614"
}
Pandurović, M.. (2019). Physics potential for the measurement of σ(Hz) × BR(H → WW∗) at the 250 GeV ILC. in 2018 International Workshop on Future Linear Colliders, LCWS 2018.
https://hdl.handle.net/21.15107/rcub_vinar_8614
Pandurović M. Physics potential for the measurement of σ(Hz) × BR(H → WW∗) at the 250 GeV ILC. in 2018 International Workshop on Future Linear Colliders, LCWS 2018. 2019;.
https://hdl.handle.net/21.15107/rcub_vinar_8614 .
Pandurović, Mila, "Physics potential for the measurement of σ(Hz) × BR(H → WW∗) at the 250 GeV ILC" in 2018 International Workshop on Future Linear Colliders, LCWS 2018 (2019),
https://hdl.handle.net/21.15107/rcub_vinar_8614 .
1

Physics potential for the measurement of σ(Hz) × BR(H → WW∗) at the 250 GeV ILC

Pandurović, Mila

(2019)

TY  - CONF
AU  - Pandurović, Mila
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8978
AB  - The potential of measurement of the relative statistical uncertainty of the (HZ) × BR(H → WW∗) decay, at the International Linear Collider (ILC) has been presented. The study is performed at the lowest energy stage of the proposed staged ILC, the 250 GeV stage. Monte Carlo samples representing all SM processes were passed through full detector simulation of the International Large Detector (ILD) model. Fully hadronic final state has been analyzed using an integrated luminosity of 500 fb−1, using multivariate analysis technique. The obtained relative statistical uncertainty ∆(σ · BR)/(σ · BR) of the σ(HZ) · BR(H → WW∗) is 4.1%
C3  - 2018 International Workshop on Future Linear Colliders, LCWS 2018
T1  - Physics potential for the measurement of σ(Hz) × BR(H → WW∗) at the 250 GeV ILC
UR  - https://hdl.handle.net/21.15107/rcub_vinar_8978
ER  - 
@conference{
author = "Pandurović, Mila",
year = "2019",
abstract = "The potential of measurement of the relative statistical uncertainty of the (HZ) × BR(H → WW∗) decay, at the International Linear Collider (ILC) has been presented. The study is performed at the lowest energy stage of the proposed staged ILC, the 250 GeV stage. Monte Carlo samples representing all SM processes were passed through full detector simulation of the International Large Detector (ILD) model. Fully hadronic final state has been analyzed using an integrated luminosity of 500 fb−1, using multivariate analysis technique. The obtained relative statistical uncertainty ∆(σ · BR)/(σ · BR) of the σ(HZ) · BR(H → WW∗) is 4.1%",
journal = "2018 International Workshop on Future Linear Colliders, LCWS 2018",
title = "Physics potential for the measurement of σ(Hz) × BR(H → WW∗) at the 250 GeV ILC",
url = "https://hdl.handle.net/21.15107/rcub_vinar_8978"
}
Pandurović, M.. (2019). Physics potential for the measurement of σ(Hz) × BR(H → WW∗) at the 250 GeV ILC. in 2018 International Workshop on Future Linear Colliders, LCWS 2018.
https://hdl.handle.net/21.15107/rcub_vinar_8978
Pandurović M. Physics potential for the measurement of σ(Hz) × BR(H → WW∗) at the 250 GeV ILC. in 2018 International Workshop on Future Linear Colliders, LCWS 2018. 2019;.
https://hdl.handle.net/21.15107/rcub_vinar_8978 .
Pandurović, Mila, "Physics potential for the measurement of σ(Hz) × BR(H → WW∗) at the 250 GeV ILC" in 2018 International Workshop on Future Linear Colliders, LCWS 2018 (2019),
https://hdl.handle.net/21.15107/rcub_vinar_8978 .
1

Measurement of shower development and its Molière radius with a four-plane LumiCal test set-up

Abramowicz, H.; Abusleme, Angel; Afanaciev, K; Benhammou, Y; Bortko, L; Borysov, O; Borysova, M; Božović-Jelisavčić, Ivanka; Chelkov, G; Daniluk, W; Dannheim, D; Elsener, K; Firlej, M; Firu, E; Fiutowski, Tomasz; Ghenescu, V; Gostkin, M; Hempel, M; Henschel, H; Idzik, M; Ignatenko, A; Ishikawa, Akimasa; Kananov, S; Karacheban, O; Klempt, W; Kotov, S; Kotula, J; Kozhevnikov, D; Kruchonok, V; Krupa, B; Kulis, Sz.; Lange, W; Leonard, J; Lesiak, T; Levy, A.; Levy, I; Lohmann, W; Lukić, Strahinja; Moron, J; Moszczynski, A; Neagu, A T; Nuiry, F.-X.; Pandurović, Mila; Pawlik, B; Preda, T; Rosenblat, O; Sailer, A; Schumm, B; Schuwalow, S; Smiljanić, Ivan; Smolyanskiy, P; Swientek, K; Terlecki, P; Uggerhoj, U I; Wistisen, T N; Wojton, T; Yamamoto, Hiroshi; Zawiejski, L; Zgura, I S; Zhemchugov, A

(2018)

TY  - JOUR
AU  - Abramowicz, H.
AU  - Abusleme, Angel
AU  - Afanaciev, K
AU  - Benhammou, Y
AU  - Bortko, L
AU  - Borysov, O
AU  - Borysova, M
AU  - Božović-Jelisavčić, Ivanka
AU  - Chelkov, G
AU  - Daniluk, W
AU  - Dannheim, D
AU  - Elsener, K
AU  - Firlej, M
AU  - Firu, E
AU  - Fiutowski, Tomasz
AU  - Ghenescu, V
AU  - Gostkin, M
AU  - Hempel, M
AU  - Henschel, H
AU  - Idzik, M
AU  - Ignatenko, A
AU  - Ishikawa, Akimasa
AU  - Kananov, S
AU  - Karacheban, O
AU  - Klempt, W
AU  - Kotov, S
AU  - Kotula, J
AU  - Kozhevnikov, D
AU  - Kruchonok, V
AU  - Krupa, B
AU  - Kulis, Sz.
AU  - Lange, W
AU  - Leonard, J
AU  - Lesiak, T
AU  - Levy, A.
AU  - Levy, I
AU  - Lohmann, W
AU  - Lukić, Strahinja
AU  - Moron, J
AU  - Moszczynski, A
AU  - Neagu, A T
AU  - Nuiry, F.-X.
AU  - Pandurović, Mila
AU  - Pawlik, B
AU  - Preda, T
AU  - Rosenblat, O
AU  - Sailer, A
AU  - Schumm, B
AU  - Schuwalow, S
AU  - Smiljanić, Ivan
AU  - Smolyanskiy, P
AU  - Swientek, K
AU  - Terlecki, P
AU  - Uggerhoj, U I
AU  - Wistisen, T N
AU  - Wojton, T
AU  - Yamamoto, Hiroshi
AU  - Zawiejski, L
AU  - Zgura, I S
AU  - Zhemchugov, A
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7649
AB  - A prototype of a luminometer, designed for a future e(+)e(-) collider detector, and consisting at present of a four-plane module, was tested in the CERN PS accelerator T9 beam. The objective of this beam test was to demonstrate a multi-plane tungsten/silicon operation, to study the development of the electromagnetic shower and to compare it with MC simulations. The Moliere radius has been determined to be 24.0 +/- 0.6 (stat.) +/- 1.5 (syst.) mm using a parametrization of the shower shape. Very good agreement was found between data and a detailed Geant4 simulation.
T2  - European Physical Journal C. Particles and Fields
T1  - Measurement of shower development and its Molière radius with a four-plane LumiCal test set-up
VL  - 78
IS  - 2
SP  - 135
DO  - 10.1140/epjc/s10052-018-5611-9
ER  - 
@article{
author = "Abramowicz, H. and Abusleme, Angel and Afanaciev, K and Benhammou, Y and Bortko, L and Borysov, O and Borysova, M and Božović-Jelisavčić, Ivanka and Chelkov, G and Daniluk, W and Dannheim, D and Elsener, K and Firlej, M and Firu, E and Fiutowski, Tomasz and Ghenescu, V and Gostkin, M and Hempel, M and Henschel, H and Idzik, M and Ignatenko, A and Ishikawa, Akimasa and Kananov, S and Karacheban, O and Klempt, W and Kotov, S and Kotula, J and Kozhevnikov, D and Kruchonok, V and Krupa, B and Kulis, Sz. and Lange, W and Leonard, J and Lesiak, T and Levy, A. and Levy, I and Lohmann, W and Lukić, Strahinja and Moron, J and Moszczynski, A and Neagu, A T and Nuiry, F.-X. and Pandurović, Mila and Pawlik, B and Preda, T and Rosenblat, O and Sailer, A and Schumm, B and Schuwalow, S and Smiljanić, Ivan and Smolyanskiy, P and Swientek, K and Terlecki, P and Uggerhoj, U I and Wistisen, T N and Wojton, T and Yamamoto, Hiroshi and Zawiejski, L and Zgura, I S and Zhemchugov, A",
year = "2018",
abstract = "A prototype of a luminometer, designed for a future e(+)e(-) collider detector, and consisting at present of a four-plane module, was tested in the CERN PS accelerator T9 beam. The objective of this beam test was to demonstrate a multi-plane tungsten/silicon operation, to study the development of the electromagnetic shower and to compare it with MC simulations. The Moliere radius has been determined to be 24.0 +/- 0.6 (stat.) +/- 1.5 (syst.) mm using a parametrization of the shower shape. Very good agreement was found between data and a detailed Geant4 simulation.",
journal = "European Physical Journal C. Particles and Fields",
title = "Measurement of shower development and its Molière radius with a four-plane LumiCal test set-up",
volume = "78",
number = "2",
pages = "135",
doi = "10.1140/epjc/s10052-018-5611-9"
}
Abramowicz, H., Abusleme, A., Afanaciev, K., Benhammou, Y., Bortko, L., Borysov, O., Borysova, M., Božović-Jelisavčić, I., Chelkov, G., Daniluk, W., Dannheim, D., Elsener, K., Firlej, M., Firu, E., Fiutowski, T., Ghenescu, V., Gostkin, M., Hempel, M., Henschel, H., Idzik, M., Ignatenko, A., Ishikawa, A., Kananov, S., Karacheban, O., Klempt, W., Kotov, S., Kotula, J., Kozhevnikov, D., Kruchonok, V., Krupa, B., Kulis, Sz., Lange, W., Leonard, J., Lesiak, T., Levy, A., Levy, I., Lohmann, W., Lukić, S., Moron, J., Moszczynski, A., Neagu, A. T., Nuiry, F.-X., Pandurović, M., Pawlik, B., Preda, T., Rosenblat, O., Sailer, A., Schumm, B., Schuwalow, S., Smiljanić, I., Smolyanskiy, P., Swientek, K., Terlecki, P., Uggerhoj, U. I., Wistisen, T. N., Wojton, T., Yamamoto, H., Zawiejski, L., Zgura, I. S.,& Zhemchugov, A.. (2018). Measurement of shower development and its Molière radius with a four-plane LumiCal test set-up. in European Physical Journal C. Particles and Fields, 78(2), 135.
https://doi.org/10.1140/epjc/s10052-018-5611-9
Abramowicz H, Abusleme A, Afanaciev K, Benhammou Y, Bortko L, Borysov O, Borysova M, Božović-Jelisavčić I, Chelkov G, Daniluk W, Dannheim D, Elsener K, Firlej M, Firu E, Fiutowski T, Ghenescu V, Gostkin M, Hempel M, Henschel H, Idzik M, Ignatenko A, Ishikawa A, Kananov S, Karacheban O, Klempt W, Kotov S, Kotula J, Kozhevnikov D, Kruchonok V, Krupa B, Kulis S, Lange W, Leonard J, Lesiak T, Levy A, Levy I, Lohmann W, Lukić S, Moron J, Moszczynski A, Neagu AT, Nuiry F, Pandurović M, Pawlik B, Preda T, Rosenblat O, Sailer A, Schumm B, Schuwalow S, Smiljanić I, Smolyanskiy P, Swientek K, Terlecki P, Uggerhoj UI, Wistisen TN, Wojton T, Yamamoto H, Zawiejski L, Zgura IS, Zhemchugov A. Measurement of shower development and its Molière radius with a four-plane LumiCal test set-up. in European Physical Journal C. Particles and Fields. 2018;78(2):135.
doi:10.1140/epjc/s10052-018-5611-9 .
Abramowicz, H., Abusleme, Angel, Afanaciev, K, Benhammou, Y, Bortko, L, Borysov, O, Borysova, M, Božović-Jelisavčić, Ivanka, Chelkov, G, Daniluk, W, Dannheim, D, Elsener, K, Firlej, M, Firu, E, Fiutowski, Tomasz, Ghenescu, V, Gostkin, M, Hempel, M, Henschel, H, Idzik, M, Ignatenko, A, Ishikawa, Akimasa, Kananov, S, Karacheban, O, Klempt, W, Kotov, S, Kotula, J, Kozhevnikov, D, Kruchonok, V, Krupa, B, Kulis, Sz., Lange, W, Leonard, J, Lesiak, T, Levy, A., Levy, I, Lohmann, W, Lukić, Strahinja, Moron, J, Moszczynski, A, Neagu, A T, Nuiry, F.-X., Pandurović, Mila, Pawlik, B, Preda, T, Rosenblat, O, Sailer, A, Schumm, B, Schuwalow, S, Smiljanić, Ivan, Smolyanskiy, P, Swientek, K, Terlecki, P, Uggerhoj, U I, Wistisen, T N, Wojton, T, Yamamoto, Hiroshi, Zawiejski, L, Zgura, I S, Zhemchugov, A, "Measurement of shower development and its Molière radius with a four-plane LumiCal test set-up" in European Physical Journal C. Particles and Fields, 78, no. 2 (2018):135,
https://doi.org/10.1140/epjc/s10052-018-5611-9 . .
1
10
6
10

Higgs physics at the CLIC electron-positron linear collider

Abramowicz, H.; Božović-Jelisavčić, Ivanka; Kačarević, Goran; Lukić, Strahinja; Milutinović-Dumbelović, Gordana; Pandurović, Mila

(2017)

TY  - JOUR
AU  - Abramowicz, H.
AU  - Božović-Jelisavčić, Ivanka
AU  - Kačarević, Goran
AU  - Lukić, Strahinja
AU  - Milutinović-Dumbelović, Gordana
AU  - Pandurović, Mila
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1647
AB  - The Compact Linear Collider (CLIC) is an option for a future e(+) e(-) collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: root s = 350 GeV, 1.4 and 3 TeV. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung (e(+) e(-) - GT ZH) and WW-fusion (e(+) e(-) - GT H nu(e) (nu) over bar (e)), resulting in precise measurements of the production cross sections, the Higgs total decay width Gamma(H), and model-independent determinations of the Higgs couplings. Operation at root s GT 1 TeV provides high-statistics samples of Higgs bosons produced through WW-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes e(+) e(-) - GT t (t) over barH and e(+) e(-) - GT HH nu(e) (nu) over bar (e) allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.
T2  - European Physical Journal C. Particles and Fields
T1  - Higgs physics at the CLIC electron-positron linear collider
VL  - 77
IS  - 7
DO  - 10.1140/epjc/s10052-017-4968-5
ER  - 
@article{
author = "Abramowicz, H. and Božović-Jelisavčić, Ivanka and Kačarević, Goran and Lukić, Strahinja and Milutinović-Dumbelović, Gordana and Pandurović, Mila",
year = "2017",
abstract = "The Compact Linear Collider (CLIC) is an option for a future e(+) e(-) collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: root s = 350 GeV, 1.4 and 3 TeV. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung (e(+) e(-) - GT ZH) and WW-fusion (e(+) e(-) - GT H nu(e) (nu) over bar (e)), resulting in precise measurements of the production cross sections, the Higgs total decay width Gamma(H), and model-independent determinations of the Higgs couplings. Operation at root s GT 1 TeV provides high-statistics samples of Higgs bosons produced through WW-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes e(+) e(-) - GT t (t) over barH and e(+) e(-) - GT HH nu(e) (nu) over bar (e) allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.",
journal = "European Physical Journal C. Particles and Fields",
title = "Higgs physics at the CLIC electron-positron linear collider",
volume = "77",
number = "7",
doi = "10.1140/epjc/s10052-017-4968-5"
}
Abramowicz, H., Božović-Jelisavčić, I., Kačarević, G., Lukić, S., Milutinović-Dumbelović, G.,& Pandurović, M.. (2017). Higgs physics at the CLIC electron-positron linear collider. in European Physical Journal C. Particles and Fields, 77(7).
https://doi.org/10.1140/epjc/s10052-017-4968-5
Abramowicz H, Božović-Jelisavčić I, Kačarević G, Lukić S, Milutinović-Dumbelović G, Pandurović M. Higgs physics at the CLIC electron-positron linear collider. in European Physical Journal C. Particles and Fields. 2017;77(7).
doi:10.1140/epjc/s10052-017-4968-5 .
Abramowicz, H., Božović-Jelisavčić, Ivanka, Kačarević, Goran, Lukić, Strahinja, Milutinović-Dumbelović, Gordana, Pandurović, Mila, "Higgs physics at the CLIC electron-positron linear collider" in European Physical Journal C. Particles and Fields, 77, no. 7 (2017),
https://doi.org/10.1140/epjc/s10052-017-4968-5 . .
8
118
77
134

Measurement Of The Branching Ratios For The Standard Model Higgs Decays Into Muon Pairs And Into Z Boson Pairs At A 1.4 TeV CLIC

Milutinović-Dumbelović, Gordana; Božović-Jelisavčić, Ivanka; Grefe, Christian; Kačarević, Goran; Lukić, Strahinja; Pandurović, Mila; Roloff, Philipp; Smiljanić, Ivan; CLICdp Collaboration

(2016)

TY  - CONF
AU  - Milutinović-Dumbelović, Gordana
AU  - Božović-Jelisavčić, Ivanka
AU  - Grefe, Christian
AU  - Kačarević, Goran
AU  - Lukić, Strahinja
AU  - Pandurović, Mila
AU  - Roloff, Philipp
AU  - Smiljanić, Ivan
AU  - CLICdp Collaboration
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7101
AB  - The measurement of the Higgs production cross-section times the branching ratios for its decays into mu(+)mu(-) and ZZ* pairs at a 1.4 TeV CLIC collider is investigated in this paper. The Standard Model Higgs boson with a mass of 126 GeV is dominantly produced via WW fusion in e(+)e(-) collisions at 1.4 TeV centre-of-mass energy. Analyses of both decay channels are based on a full simulation of the CLIC_ ILD detector. All relevant physics and beam-induced background processes are taken into account. An integrated luminosity of 1.5 ab(-1) and unpolarised beams are assumed. For the H - GT ZZ* decay, the purely hadronic final state (ZZ* - GT q (q) over barq (q) over bar) is considered as well as ZZ* decays into two jets and two leptons (ZZ* - GT qql(+)l(-)). It is shown that the branching ratio for the Higgs decay into a muon pair times the Higgs production cross-section can be measured with 38% statistical uncertainty. It is also shown that the statistical uncertainty of the Higgs branching ratio for decay into a Z boson pair times the Higgs production crosssection can be measured with a precision of 18.3% and 5.6% for the hadronic and semi-leptonic ZZ* decays, respectively.
C3  - AIP Conference Proceedings
T1  - Measurement Of The Branching Ratios For The Standard Model Higgs Decays Into Muon Pairs And Into Z Boson Pairs At A 1.4 TeV CLIC
VL  - 1722
DO  - 10.1063/1.4944160
ER  - 
@conference{
author = "Milutinović-Dumbelović, Gordana and Božović-Jelisavčić, Ivanka and Grefe, Christian and Kačarević, Goran and Lukić, Strahinja and Pandurović, Mila and Roloff, Philipp and Smiljanić, Ivan and CLICdp Collaboration",
year = "2016",
abstract = "The measurement of the Higgs production cross-section times the branching ratios for its decays into mu(+)mu(-) and ZZ* pairs at a 1.4 TeV CLIC collider is investigated in this paper. The Standard Model Higgs boson with a mass of 126 GeV is dominantly produced via WW fusion in e(+)e(-) collisions at 1.4 TeV centre-of-mass energy. Analyses of both decay channels are based on a full simulation of the CLIC_ ILD detector. All relevant physics and beam-induced background processes are taken into account. An integrated luminosity of 1.5 ab(-1) and unpolarised beams are assumed. For the H - GT ZZ* decay, the purely hadronic final state (ZZ* - GT q (q) over barq (q) over bar) is considered as well as ZZ* decays into two jets and two leptons (ZZ* - GT qql(+)l(-)). It is shown that the branching ratio for the Higgs decay into a muon pair times the Higgs production cross-section can be measured with 38% statistical uncertainty. It is also shown that the statistical uncertainty of the Higgs branching ratio for decay into a Z boson pair times the Higgs production crosssection can be measured with a precision of 18.3% and 5.6% for the hadronic and semi-leptonic ZZ* decays, respectively.",
journal = "AIP Conference Proceedings",
title = "Measurement Of The Branching Ratios For The Standard Model Higgs Decays Into Muon Pairs And Into Z Boson Pairs At A 1.4 TeV CLIC",
volume = "1722",
doi = "10.1063/1.4944160"
}
Milutinović-Dumbelović, G., Božović-Jelisavčić, I., Grefe, C., Kačarević, G., Lukić, S., Pandurović, M., Roloff, P., Smiljanić, I.,& CLICdp Collaboration. (2016). Measurement Of The Branching Ratios For The Standard Model Higgs Decays Into Muon Pairs And Into Z Boson Pairs At A 1.4 TeV CLIC. in AIP Conference Proceedings, 1722.
https://doi.org/10.1063/1.4944160
Milutinović-Dumbelović G, Božović-Jelisavčić I, Grefe C, Kačarević G, Lukić S, Pandurović M, Roloff P, Smiljanić I, CLICdp Collaboration. Measurement Of The Branching Ratios For The Standard Model Higgs Decays Into Muon Pairs And Into Z Boson Pairs At A 1.4 TeV CLIC. in AIP Conference Proceedings. 2016;1722.
doi:10.1063/1.4944160 .
Milutinović-Dumbelović, Gordana, Božović-Jelisavčić, Ivanka, Grefe, Christian, Kačarević, Goran, Lukić, Strahinja, Pandurović, Mila, Roloff, Philipp, Smiljanić, Ivan, CLICdp Collaboration, "Measurement Of The Branching Ratios For The Standard Model Higgs Decays Into Muon Pairs And Into Z Boson Pairs At A 1.4 TeV CLIC" in AIP Conference Proceedings, 1722 (2016),
https://doi.org/10.1063/1.4944160 . .

Physics potential for the measurement of sigma(H nu(nu)over-bar) x BR(H - GT mu(+) mu(-)) at the 1.4 TeV CLIC collider

Milutinović-Dumbelović, Gordana; Božović-Jelisavčić, Ivanka; Grefe, C.; Kačarević, Goran; Lukić, Strahinja; Pandurović, Mila; Roloff, P.; Smiljanić, Ivan

(2015)

TY  - JOUR
AU  - Milutinović-Dumbelović, Gordana
AU  - Božović-Jelisavčić, Ivanka
AU  - Grefe, C.
AU  - Kačarević, Goran
AU  - Lukić, Strahinja
AU  - Pandurović, Mila
AU  - Roloff, P.
AU  - Smiljanić, Ivan
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/795
AB  - The future compact linear collider (CLIC) offers a possibility for a rich precision physics programme, in particular in the Higgs sector through the energy staging. This is the first paper addressing the measurement of the standard model Higgs boson decay into two muons at 1.4 TeV CLIC. With respect to similar studies at future linear colliders, this paper includes several novel contributions to the statistical uncertainty of the measurement. The latter includes the equivalent photon approximation employed to describe e(+) e(-) and e gamma interactions whenever the virtuality of the mediated photon is smaller than 4 GeV and realistic forward electron tagging based on energy deposition maps in the forward calorimeters, as well as several processes with the Beam-strahlung photons that results in irreducible contribution to the signal. In addition, coincidence of the Bhabha scattering with the signal and background processes is considered, altering the signal selection efficiency. The study is performed using a fully simulated CLIC_ILD detector model. It is shown that the branching ratio for the Higgs decay into a pair of muons BR(H - GT mu(+) mu(-)) times the Higgs production cross-section in WW-fusion sigma(H nu(nu) over bar) can be measured with 38% statistical accuracy at root s = 1.4 TeV, assuming an integrated luminosity of 1.5 ab(-1) with unpolarised beams. If 80 % electron beam polarisation is considered, the statistical uncertainty of the measurement is reduced to 25 %. Systematic uncertainties are negligible in comparison to the statistical uncertainty.
T2  - European Physical Journal C. Particles and Fields
T1  - Physics potential for the measurement of sigma(H nu(nu)over-bar) x BR(H - GT mu(+) mu(-)) at the 1.4 TeV CLIC collider
VL  - 75
IS  - 11
DO  - 10.1140/epjc/s10052-015-3742-9
ER  - 
@article{
author = "Milutinović-Dumbelović, Gordana and Božović-Jelisavčić, Ivanka and Grefe, C. and Kačarević, Goran and Lukić, Strahinja and Pandurović, Mila and Roloff, P. and Smiljanić, Ivan",
year = "2015",
abstract = "The future compact linear collider (CLIC) offers a possibility for a rich precision physics programme, in particular in the Higgs sector through the energy staging. This is the first paper addressing the measurement of the standard model Higgs boson decay into two muons at 1.4 TeV CLIC. With respect to similar studies at future linear colliders, this paper includes several novel contributions to the statistical uncertainty of the measurement. The latter includes the equivalent photon approximation employed to describe e(+) e(-) and e gamma interactions whenever the virtuality of the mediated photon is smaller than 4 GeV and realistic forward electron tagging based on energy deposition maps in the forward calorimeters, as well as several processes with the Beam-strahlung photons that results in irreducible contribution to the signal. In addition, coincidence of the Bhabha scattering with the signal and background processes is considered, altering the signal selection efficiency. The study is performed using a fully simulated CLIC_ILD detector model. It is shown that the branching ratio for the Higgs decay into a pair of muons BR(H - GT mu(+) mu(-)) times the Higgs production cross-section in WW-fusion sigma(H nu(nu) over bar) can be measured with 38% statistical accuracy at root s = 1.4 TeV, assuming an integrated luminosity of 1.5 ab(-1) with unpolarised beams. If 80 % electron beam polarisation is considered, the statistical uncertainty of the measurement is reduced to 25 %. Systematic uncertainties are negligible in comparison to the statistical uncertainty.",
journal = "European Physical Journal C. Particles and Fields",
title = "Physics potential for the measurement of sigma(H nu(nu)over-bar) x BR(H - GT mu(+) mu(-)) at the 1.4 TeV CLIC collider",
volume = "75",
number = "11",
doi = "10.1140/epjc/s10052-015-3742-9"
}
Milutinović-Dumbelović, G., Božović-Jelisavčić, I., Grefe, C., Kačarević, G., Lukić, S., Pandurović, M., Roloff, P.,& Smiljanić, I.. (2015). Physics potential for the measurement of sigma(H nu(nu)over-bar) x BR(H - GT mu(+) mu(-)) at the 1.4 TeV CLIC collider. in European Physical Journal C. Particles and Fields, 75(11).
https://doi.org/10.1140/epjc/s10052-015-3742-9
Milutinović-Dumbelović G, Božović-Jelisavčić I, Grefe C, Kačarević G, Lukić S, Pandurović M, Roloff P, Smiljanić I. Physics potential for the measurement of sigma(H nu(nu)over-bar) x BR(H - GT mu(+) mu(-)) at the 1.4 TeV CLIC collider. in European Physical Journal C. Particles and Fields. 2015;75(11).
doi:10.1140/epjc/s10052-015-3742-9 .
Milutinović-Dumbelović, Gordana, Božović-Jelisavčić, Ivanka, Grefe, C., Kačarević, Goran, Lukić, Strahinja, Pandurović, Mila, Roloff, P., Smiljanić, Ivan, "Physics potential for the measurement of sigma(H nu(nu)over-bar) x BR(H - GT mu(+) mu(-)) at the 1.4 TeV CLIC collider" in European Physical Journal C. Particles and Fields, 75, no. 11 (2015),
https://doi.org/10.1140/epjc/s10052-015-3742-9 . .
1
6
5
7

Performance of fully instrumented detector planes of the forward calorimeter of a Linear Collider detector

Abramowicz, H.; Abusleme, Angel; Afanaciev, K.; Aguilar, J.; Alvarez, E.; Avila, D.; Benhammou, Y.; Bortko, L.; Borysov, O.; Bergholz, M.; Božović-Jelisavčić, Ivanka; Castro, E.; Chelkov, G.; Coca, C.; Daniluk, W.; Dumitru, L.; Elsener, K.; Fadeyev, V.; Firlej, M.; Firu, E.; Fiutowski, Tomasz; Ghenescu, V.; Gostkin, M.; Henschel, H.; Idzik, M.; Ishikawa, Akimasa; Kananov, S.; Kollowa, S.; Kotov, S.; Kotula, J.; Kozhevnikov, D.; Kruchonok, V.; Krupa, B.; Kulis, Sz; Lange, W.; Lesiak, T.; Levy, A.; Levy, I.; Lohmann, W.; Lukić, Strahinja; Milke, C.; Moron, J.; Moszczynski, A.; Neagu, A. T.; Novgorodova, O.; Oliwa, K.; Orlandea, M.; Pandurović, Mila; Pawlik, B.; Preda, T.; Przyborowski, D.; Rosenblat, O.; Sailer, A.; Sato, Y.; Schumm, B.; Schuwalow, S.; Smiljanić, Ivan; Smolyanskiy, P.; Swientek, K.; Teodorescu, E.; Terlecki, P.; Wierba, W.; Wojton, T.; Yamaguchi, S.; Yamamoto, Hitoshi; Zawiejski, L.; Zgural, I. S.; Zhemchugov, A.

(2015)

TY  - JOUR
AU  - Abramowicz, H.
AU  - Abusleme, Angel
AU  - Afanaciev, K.
AU  - Aguilar, J.
AU  - Alvarez, E.
AU  - Avila, D.
AU  - Benhammou, Y.
AU  - Bortko, L.
AU  - Borysov, O.
AU  - Bergholz, M.
AU  - Božović-Jelisavčić, Ivanka
AU  - Castro, E.
AU  - Chelkov, G.
AU  - Coca, C.
AU  - Daniluk, W.
AU  - Dumitru, L.
AU  - Elsener, K.
AU  - Fadeyev, V.
AU  - Firlej, M.
AU  - Firu, E.
AU  - Fiutowski, Tomasz
AU  - Ghenescu, V.
AU  - Gostkin, M.
AU  - Henschel, H.
AU  - Idzik, M.
AU  - Ishikawa, Akimasa
AU  - Kananov, S.
AU  - Kollowa, S.
AU  - Kotov, S.
AU  - Kotula, J.
AU  - Kozhevnikov, D.
AU  - Kruchonok, V.
AU  - Krupa, B.
AU  - Kulis, Sz
AU  - Lange, W.
AU  - Lesiak, T.
AU  - Levy, A.
AU  - Levy, I.
AU  - Lohmann, W.
AU  - Lukić, Strahinja
AU  - Milke, C.
AU  - Moron, J.
AU  - Moszczynski, A.
AU  - Neagu, A. T.
AU  - Novgorodova, O.
AU  - Oliwa, K.
AU  - Orlandea, M.
AU  - Pandurović, Mila
AU  - Pawlik, B.
AU  - Preda, T.
AU  - Przyborowski, D.
AU  - Rosenblat, O.
AU  - Sailer, A.
AU  - Sato, Y.
AU  - Schumm, B.
AU  - Schuwalow, S.
AU  - Smiljanić, Ivan
AU  - Smolyanskiy, P.
AU  - Swientek, K.
AU  - Teodorescu, E.
AU  - Terlecki, P.
AU  - Wierba, W.
AU  - Wojton, T.
AU  - Yamaguchi, S.
AU  - Yamamoto, Hitoshi
AU  - Zawiejski, L.
AU  - Zgural, I. S.
AU  - Zhemchugov, A.
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/657
AB  - Detector-plane prototypes of the very forward calorimetry of a future detector at an e(+)e(-) collider have been built and their performance was measured in an electron beam. The detector plane comprises silicon or GaAs pad sensors, dedicated front-end and ADC ASICs, and an FPGA for data concentration. Measurements of the signal-to-noise ratio and the response as a function of the position of the sensor are presented. A deconvolution method is successfully applied, and a comparison of the measured shower shape as a function of the absorber depth with a Monte-Carlo simulation is given.
T2  - Journal of Instrumentation
T1  - Performance of fully instrumented detector planes of the forward calorimeter of a Linear Collider detector
VL  - 10
DO  - 10.1088/1748-0221/10/05/P05009
ER  - 
@article{
author = "Abramowicz, H. and Abusleme, Angel and Afanaciev, K. and Aguilar, J. and Alvarez, E. and Avila, D. and Benhammou, Y. and Bortko, L. and Borysov, O. and Bergholz, M. and Božović-Jelisavčić, Ivanka and Castro, E. and Chelkov, G. and Coca, C. and Daniluk, W. and Dumitru, L. and Elsener, K. and Fadeyev, V. and Firlej, M. and Firu, E. and Fiutowski, Tomasz and Ghenescu, V. and Gostkin, M. and Henschel, H. and Idzik, M. and Ishikawa, Akimasa and Kananov, S. and Kollowa, S. and Kotov, S. and Kotula, J. and Kozhevnikov, D. and Kruchonok, V. and Krupa, B. and Kulis, Sz and Lange, W. and Lesiak, T. and Levy, A. and Levy, I. and Lohmann, W. and Lukić, Strahinja and Milke, C. and Moron, J. and Moszczynski, A. and Neagu, A. T. and Novgorodova, O. and Oliwa, K. and Orlandea, M. and Pandurović, Mila and Pawlik, B. and Preda, T. and Przyborowski, D. and Rosenblat, O. and Sailer, A. and Sato, Y. and Schumm, B. and Schuwalow, S. and Smiljanić, Ivan and Smolyanskiy, P. and Swientek, K. and Teodorescu, E. and Terlecki, P. and Wierba, W. and Wojton, T. and Yamaguchi, S. and Yamamoto, Hitoshi and Zawiejski, L. and Zgural, I. S. and Zhemchugov, A.",
year = "2015",
abstract = "Detector-plane prototypes of the very forward calorimetry of a future detector at an e(+)e(-) collider have been built and their performance was measured in an electron beam. The detector plane comprises silicon or GaAs pad sensors, dedicated front-end and ADC ASICs, and an FPGA for data concentration. Measurements of the signal-to-noise ratio and the response as a function of the position of the sensor are presented. A deconvolution method is successfully applied, and a comparison of the measured shower shape as a function of the absorber depth with a Monte-Carlo simulation is given.",
journal = "Journal of Instrumentation",
title = "Performance of fully instrumented detector planes of the forward calorimeter of a Linear Collider detector",
volume = "10",
doi = "10.1088/1748-0221/10/05/P05009"
}
Abramowicz, H., Abusleme, A., Afanaciev, K., Aguilar, J., Alvarez, E., Avila, D., Benhammou, Y., Bortko, L., Borysov, O., Bergholz, M., Božović-Jelisavčić, I., Castro, E., Chelkov, G., Coca, C., Daniluk, W., Dumitru, L., Elsener, K., Fadeyev, V., Firlej, M., Firu, E., Fiutowski, T., Ghenescu, V., Gostkin, M., Henschel, H., Idzik, M., Ishikawa, A., Kananov, S., Kollowa, S., Kotov, S., Kotula, J., Kozhevnikov, D., Kruchonok, V., Krupa, B., Kulis, S., Lange, W., Lesiak, T., Levy, A., Levy, I., Lohmann, W., Lukić, S., Milke, C., Moron, J., Moszczynski, A., Neagu, A. T., Novgorodova, O., Oliwa, K., Orlandea, M., Pandurović, M., Pawlik, B., Preda, T., Przyborowski, D., Rosenblat, O., Sailer, A., Sato, Y., Schumm, B., Schuwalow, S., Smiljanić, I., Smolyanskiy, P., Swientek, K., Teodorescu, E., Terlecki, P., Wierba, W., Wojton, T., Yamaguchi, S., Yamamoto, H., Zawiejski, L., Zgural, I. S.,& Zhemchugov, A.. (2015). Performance of fully instrumented detector planes of the forward calorimeter of a Linear Collider detector. in Journal of Instrumentation, 10.
https://doi.org/10.1088/1748-0221/10/05/P05009
Abramowicz H, Abusleme A, Afanaciev K, Aguilar J, Alvarez E, Avila D, Benhammou Y, Bortko L, Borysov O, Bergholz M, Božović-Jelisavčić I, Castro E, Chelkov G, Coca C, Daniluk W, Dumitru L, Elsener K, Fadeyev V, Firlej M, Firu E, Fiutowski T, Ghenescu V, Gostkin M, Henschel H, Idzik M, Ishikawa A, Kananov S, Kollowa S, Kotov S, Kotula J, Kozhevnikov D, Kruchonok V, Krupa B, Kulis S, Lange W, Lesiak T, Levy A, Levy I, Lohmann W, Lukić S, Milke C, Moron J, Moszczynski A, Neagu AT, Novgorodova O, Oliwa K, Orlandea M, Pandurović M, Pawlik B, Preda T, Przyborowski D, Rosenblat O, Sailer A, Sato Y, Schumm B, Schuwalow S, Smiljanić I, Smolyanskiy P, Swientek K, Teodorescu E, Terlecki P, Wierba W, Wojton T, Yamaguchi S, Yamamoto H, Zawiejski L, Zgural IS, Zhemchugov A. Performance of fully instrumented detector planes of the forward calorimeter of a Linear Collider detector. in Journal of Instrumentation. 2015;10.
doi:10.1088/1748-0221/10/05/P05009 .
Abramowicz, H., Abusleme, Angel, Afanaciev, K., Aguilar, J., Alvarez, E., Avila, D., Benhammou, Y., Bortko, L., Borysov, O., Bergholz, M., Božović-Jelisavčić, Ivanka, Castro, E., Chelkov, G., Coca, C., Daniluk, W., Dumitru, L., Elsener, K., Fadeyev, V., Firlej, M., Firu, E., Fiutowski, Tomasz, Ghenescu, V., Gostkin, M., Henschel, H., Idzik, M., Ishikawa, Akimasa, Kananov, S., Kollowa, S., Kotov, S., Kotula, J., Kozhevnikov, D., Kruchonok, V., Krupa, B., Kulis, Sz, Lange, W., Lesiak, T., Levy, A., Levy, I., Lohmann, W., Lukić, Strahinja, Milke, C., Moron, J., Moszczynski, A., Neagu, A. T., Novgorodova, O., Oliwa, K., Orlandea, M., Pandurović, Mila, Pawlik, B., Preda, T., Przyborowski, D., Rosenblat, O., Sailer, A., Sato, Y., Schumm, B., Schuwalow, S., Smiljanić, Ivan, Smolyanskiy, P., Swientek, K., Teodorescu, E., Terlecki, P., Wierba, W., Wojton, T., Yamaguchi, S., Yamamoto, Hitoshi, Zawiejski, L., Zgural, I. S., Zhemchugov, A., "Performance of fully instrumented detector planes of the forward calorimeter of a Linear Collider detector" in Journal of Instrumentation, 10 (2015),
https://doi.org/10.1088/1748-0221/10/05/P05009 . .
10
9
15

Erratum to: Determination of the integrated luminosity at HERA using elastic QED compton events

Aaron, F. D.; Božović-Jelisavčić, Ivanka; Pandurović, Mila

(2014)

TY  - JOUR
AU  - Aaron, F. D.
AU  - Božović-Jelisavčić, Ivanka
AU  - Pandurović, Mila
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5893
T2  - European Physical Journal C. Particles and Fields
T1  - Erratum to: Determination of the integrated luminosity at HERA using elastic QED compton events
VL  - 74
IS  - 2
DO  - 10.1140/epjc/s10052-014-2733-6
ER  - 
@article{
author = "Aaron, F. D. and Božović-Jelisavčić, Ivanka and Pandurović, Mila",
year = "2014",
journal = "European Physical Journal C. Particles and Fields",
title = "Erratum to: Determination of the integrated luminosity at HERA using elastic QED compton events",
volume = "74",
number = "2",
doi = "10.1140/epjc/s10052-014-2733-6"
}
Aaron, F. D., Božović-Jelisavčić, I.,& Pandurović, M.. (2014). Erratum to: Determination of the integrated luminosity at HERA using elastic QED compton events. in European Physical Journal C. Particles and Fields, 74(2).
https://doi.org/10.1140/epjc/s10052-014-2733-6
Aaron FD, Božović-Jelisavčić I, Pandurović M. Erratum to: Determination of the integrated luminosity at HERA using elastic QED compton events. in European Physical Journal C. Particles and Fields. 2014;74(2).
doi:10.1140/epjc/s10052-014-2733-6 .
Aaron, F. D., Božović-Jelisavčić, Ivanka, Pandurović, Mila, "Erratum to: Determination of the integrated luminosity at HERA using elastic QED compton events" in European Physical Journal C. Particles and Fields, 74, no. 2 (2014),
https://doi.org/10.1140/epjc/s10052-014-2733-6 . .
4
9
2

Luminosity measurement at ILC

Božović-Jelisavčić, Ivanka; Lukić, Strahinja; Milutinović-Dumbelović, Gordana; Pandurović, Mila; Smiljanić, Ivan

(2013)

TY  - JOUR
AU  - Božović-Jelisavčić, Ivanka
AU  - Lukić, Strahinja
AU  - Milutinović-Dumbelović, Gordana
AU  - Pandurović, Mila
AU  - Smiljanić, Ivan
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5666
AB  - In this paper we describe a method of luminosity measurement at the future linear collider ILC that estimates and corrects for the impact of the dominant sources of systematic uncertainty originating from the beam-induced effects and the background from physics processes. Based on the relativistic kinematics of the collision frame of the Bhabha process, the beam-beam related uncertainty is reduced to a permille independently of the precision with which the beam parameters are known. With the specific event selection, different from the isolation cuts based on topology of the signal used at LEP, combined with the corrective methods we introduce, the overall systematic uncertainty in the peak region above 80% of the nominal center-of-mass energy meets the physics requirements to be at the few permille level at all ILC energies.
T2  - Journal of Instrumentation
T1  - Luminosity measurement at ILC
VL  - 8
DO  - 10.1088/1748-0221/8/08/P08012
ER  - 
@article{
author = "Božović-Jelisavčić, Ivanka and Lukić, Strahinja and Milutinović-Dumbelović, Gordana and Pandurović, Mila and Smiljanić, Ivan",
year = "2013",
abstract = "In this paper we describe a method of luminosity measurement at the future linear collider ILC that estimates and corrects for the impact of the dominant sources of systematic uncertainty originating from the beam-induced effects and the background from physics processes. Based on the relativistic kinematics of the collision frame of the Bhabha process, the beam-beam related uncertainty is reduced to a permille independently of the precision with which the beam parameters are known. With the specific event selection, different from the isolation cuts based on topology of the signal used at LEP, combined with the corrective methods we introduce, the overall systematic uncertainty in the peak region above 80% of the nominal center-of-mass energy meets the physics requirements to be at the few permille level at all ILC energies.",
journal = "Journal of Instrumentation",
title = "Luminosity measurement at ILC",
volume = "8",
doi = "10.1088/1748-0221/8/08/P08012"
}
Božović-Jelisavčić, I., Lukić, S., Milutinović-Dumbelović, G., Pandurović, M.,& Smiljanić, I.. (2013). Luminosity measurement at ILC. in Journal of Instrumentation, 8.
https://doi.org/10.1088/1748-0221/8/08/P08012
Božović-Jelisavčić I, Lukić S, Milutinović-Dumbelović G, Pandurović M, Smiljanić I. Luminosity measurement at ILC. in Journal of Instrumentation. 2013;8.
doi:10.1088/1748-0221/8/08/P08012 .
Božović-Jelisavčić, Ivanka, Lukić, Strahinja, Milutinović-Dumbelović, Gordana, Pandurović, Mila, Smiljanić, Ivan, "Luminosity measurement at ILC" in Journal of Instrumentation, 8 (2013),
https://doi.org/10.1088/1748-0221/8/08/P08012 . .
12
6
11

Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA

Abramowicz, H.; Božović-Jelisavčić, Ivanka; Pandurović, Mila

(2013)

TY  - JOUR
AU  - Abramowicz, H.
AU  - Božović-Jelisavčić, Ivanka
AU  - Pandurović, Mila
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5484
AB  - Measurements of open charm production cross sections in deep-inelastic ep scattering at HERA from the H1 and ZEUS Collaborations are combined. Reduced cross sections sigma(c (c) over bar)(red) for charm production are obtained in the kinematic range of photon virtuality 2.5 LT = Q(2) LT = 2000 GeV2 and Bjorken scaling variable 3 . 10(-5) LT = x LT = 5 . 10(-2). The combination method accounts for the correlations of the systematic uncertainties among the different data sets. The combined charm data together with the combined inclusive deep-inelastic scattering cross sections from HERA are used as input for a detailed NLO QCD analysis to study the influence of different heavy flavour schemes on the parton distribution functions. The optimal values of the charm mass as a parameter in these different schemes are obtained. The implications on the NLO predictions for W-+/- and Z production cross sections at the LHC are investigated. Using the fixed flavour number scheme, the running mass of the charm quark is determined.
T2  - European Physical Journal C. Particles and Fields
T1  - Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA
VL  - 73
IS  - 2
DO  - 10.1140/epjc/s10052-013-2311-3
ER  - 
@article{
author = "Abramowicz, H. and Božović-Jelisavčić, Ivanka and Pandurović, Mila",
year = "2013",
abstract = "Measurements of open charm production cross sections in deep-inelastic ep scattering at HERA from the H1 and ZEUS Collaborations are combined. Reduced cross sections sigma(c (c) over bar)(red) for charm production are obtained in the kinematic range of photon virtuality 2.5 LT = Q(2) LT = 2000 GeV2 and Bjorken scaling variable 3 . 10(-5) LT = x LT = 5 . 10(-2). The combination method accounts for the correlations of the systematic uncertainties among the different data sets. The combined charm data together with the combined inclusive deep-inelastic scattering cross sections from HERA are used as input for a detailed NLO QCD analysis to study the influence of different heavy flavour schemes on the parton distribution functions. The optimal values of the charm mass as a parameter in these different schemes are obtained. The implications on the NLO predictions for W-+/- and Z production cross sections at the LHC are investigated. Using the fixed flavour number scheme, the running mass of the charm quark is determined.",
journal = "European Physical Journal C. Particles and Fields",
title = "Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA",
volume = "73",
number = "2",
doi = "10.1140/epjc/s10052-013-2311-3"
}
Abramowicz, H., Božović-Jelisavčić, I.,& Pandurović, M.. (2013). Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA. in European Physical Journal C. Particles and Fields, 73(2).
https://doi.org/10.1140/epjc/s10052-013-2311-3
Abramowicz H, Božović-Jelisavčić I, Pandurović M. Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA. in European Physical Journal C. Particles and Fields. 2013;73(2).
doi:10.1140/epjc/s10052-013-2311-3 .
Abramowicz, H., Božović-Jelisavčić, Ivanka, Pandurović, Mila, "Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA" in European Physical Journal C. Particles and Fields, 73, no. 2 (2013),
https://doi.org/10.1140/epjc/s10052-013-2311-3 . .
133
140
194

Measurement of charged particle spectra in deep-inelastic ep scattering at HERA

Alexa, C.; Božović-Jelisavčić, Ivanka; Pandurović, Mila

(2013)

TY  - JOUR
AU  - Alexa, C.
AU  - Božović-Jelisavčić, Ivanka
AU  - Pandurović, Mila
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5487
AB  - Charged particle production in deep-inelastic ep scattering is measured with the H1 detector at HERA. The kinematic range of the analysis covers low photon virtualities, 5 LT Q(2) LT 100 GeV2, and small values of Bjorken-x, 10(-4) LT x LT 10(-2). The analysis is performed in the hadronic centre-of-mass system. The charged particle densities are measured as a function of pseudorapidity (n(*)) and transverse momentum (p(T)(*)) in the range 0 LT n(*) LT 5 and 0 LT p(T)(*) LT 10 GeV in bins of x and Q(2). The data are compared to predictions from different Monte Carlo generators implementing various options for hadronisation and parton evolutions.
T2  - European Physical Journal C. Particles and Fields
T1  - Measurement of charged particle spectra in deep-inelastic ep scattering at HERA
VL  - 73
IS  - 4
DO  - 10.1140/epjc/s10052-013-2406-x
ER  - 
@article{
author = "Alexa, C. and Božović-Jelisavčić, Ivanka and Pandurović, Mila",
year = "2013",
abstract = "Charged particle production in deep-inelastic ep scattering is measured with the H1 detector at HERA. The kinematic range of the analysis covers low photon virtualities, 5 LT Q(2) LT 100 GeV2, and small values of Bjorken-x, 10(-4) LT x LT 10(-2). The analysis is performed in the hadronic centre-of-mass system. The charged particle densities are measured as a function of pseudorapidity (n(*)) and transverse momentum (p(T)(*)) in the range 0 LT n(*) LT 5 and 0 LT p(T)(*) LT 10 GeV in bins of x and Q(2). The data are compared to predictions from different Monte Carlo generators implementing various options for hadronisation and parton evolutions.",
journal = "European Physical Journal C. Particles and Fields",
title = "Measurement of charged particle spectra in deep-inelastic ep scattering at HERA",
volume = "73",
number = "4",
doi = "10.1140/epjc/s10052-013-2406-x"
}
Alexa, C., Božović-Jelisavčić, I.,& Pandurović, M.. (2013). Measurement of charged particle spectra in deep-inelastic ep scattering at HERA. in European Physical Journal C. Particles and Fields, 73(4).
https://doi.org/10.1140/epjc/s10052-013-2406-x
Alexa C, Božović-Jelisavčić I, Pandurović M. Measurement of charged particle spectra in deep-inelastic ep scattering at HERA. in European Physical Journal C. Particles and Fields. 2013;73(4).
doi:10.1140/epjc/s10052-013-2406-x .
Alexa, C., Božović-Jelisavčić, Ivanka, Pandurović, Mila, "Measurement of charged particle spectra in deep-inelastic ep scattering at HERA" in European Physical Journal C. Particles and Fields, 73, no. 4 (2013),
https://doi.org/10.1140/epjc/s10052-013-2406-x . .
8
9
12

Correction of beam-beam effects in luminosity measurement in the forward region at CLIC

Lukić, Strahinja; Božović-Jelisavčić, Ivanka; Pandurović, Mila; Smiljanić, Ivan

(2013)

TY  - JOUR
AU  - Lukić, Strahinja
AU  - Božović-Jelisavčić, Ivanka
AU  - Pandurović, Mila
AU  - Smiljanić, Ivan
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5557
AB  - Procedures for correcting the beam-beam effects in luminosity measurements at CLIC at 3 TeV center-of-mass energy are described and tested using Monte Carlo simulations. The angular counting loss due to the combined Beamstrahlung and initial-state radiation effects is corrected based on the reconstructed velocity of the collision frame of the Bhabha scattering. The distortion of the luminosity spectrum due to the initial-state radiation is corrected by deconvolution. At the end, the counting bias due to the finite calorimeter energy resolution is numerically corrected. To test the procedures, BHLUMI Bhabha event generator, and Guinea-Pig beam-beam simulation were used to generate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. The systematic effects of the beam-beam interaction on the luminosity measurement are corrected with precision of 1.4 permille in the upper 5% of the energy, and 2.7 permille in the range between 80 and 90% of the nominal center-of-mass energy.
T2  - Journal of Instrumentation
T1  - Correction of beam-beam effects in luminosity measurement in the forward region at CLIC
VL  - 8
DO  - 10.1088/1748-0221/8/05/P05008
ER  - 
@article{
author = "Lukić, Strahinja and Božović-Jelisavčić, Ivanka and Pandurović, Mila and Smiljanić, Ivan",
year = "2013",
abstract = "Procedures for correcting the beam-beam effects in luminosity measurements at CLIC at 3 TeV center-of-mass energy are described and tested using Monte Carlo simulations. The angular counting loss due to the combined Beamstrahlung and initial-state radiation effects is corrected based on the reconstructed velocity of the collision frame of the Bhabha scattering. The distortion of the luminosity spectrum due to the initial-state radiation is corrected by deconvolution. At the end, the counting bias due to the finite calorimeter energy resolution is numerically corrected. To test the procedures, BHLUMI Bhabha event generator, and Guinea-Pig beam-beam simulation were used to generate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. The systematic effects of the beam-beam interaction on the luminosity measurement are corrected with precision of 1.4 permille in the upper 5% of the energy, and 2.7 permille in the range between 80 and 90% of the nominal center-of-mass energy.",
journal = "Journal of Instrumentation",
title = "Correction of beam-beam effects in luminosity measurement in the forward region at CLIC",
volume = "8",
doi = "10.1088/1748-0221/8/05/P05008"
}
Lukić, S., Božović-Jelisavčić, I., Pandurović, M.,& Smiljanić, I.. (2013). Correction of beam-beam effects in luminosity measurement in the forward region at CLIC. in Journal of Instrumentation, 8.
https://doi.org/10.1088/1748-0221/8/05/P05008
Lukić S, Božović-Jelisavčić I, Pandurović M, Smiljanić I. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC. in Journal of Instrumentation. 2013;8.
doi:10.1088/1748-0221/8/05/P05008 .
Lukić, Strahinja, Božović-Jelisavčić, Ivanka, Pandurović, Mila, Smiljanić, Ivan, "Correction of beam-beam effects in luminosity measurement in the forward region at CLIC" in Journal of Instrumentation, 8 (2013),
https://doi.org/10.1088/1748-0221/8/05/P05008 . .
7
7
8

Elastic and proton-dissociative photoproduction of J/psi mesons at HERA

Alexa, C.; Božović-Jelisavčić, Ivanka; Pandurović, Mila

(2013)

TY  - JOUR
AU  - Alexa, C.
AU  - Božović-Jelisavčić, Ivanka
AU  - Pandurović, Mila
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5589
AB  - Cross sections for elastic and proton-dissociative photoproduction of J/psi mesons are measured with the H1 detector in positron-proton collisions at HERA. The data were collected at ep centre-of-mass energies root s approximate to 318 GeV and root s approximate to 225 GeV, corresponding to integrated luminosities of L = 130 pb(-1) and L = 10.8 pb(-1), respectively. The cross sections are measured as a function of the photon-proton centre-of-mass energy in the range 25 LT W-gamma p LT 110 GeV. Differential cross sections d sigma/dt, where t is the squared four-momentum transfer at the proton vertex, are measured in the range vertical bar t vertical bar LT 1.2 GeV2 for the elastic process and vertical bar t vertical bar LT 8 GeV2 for proton dissociation. The results are compared to other measurements. The W-gamma p and t-dependences are parametrised using phenomenological fits.
T2  - European Physical Journal C. Particles and Fields
T1  - Elastic and proton-dissociative photoproduction of J/psi mesons at HERA
VL  - 73
IS  - 6
DO  - 10.1140/epjc/s10052-013-2466-y
ER  - 
@article{
author = "Alexa, C. and Božović-Jelisavčić, Ivanka and Pandurović, Mila",
year = "2013",
abstract = "Cross sections for elastic and proton-dissociative photoproduction of J/psi mesons are measured with the H1 detector in positron-proton collisions at HERA. The data were collected at ep centre-of-mass energies root s approximate to 318 GeV and root s approximate to 225 GeV, corresponding to integrated luminosities of L = 130 pb(-1) and L = 10.8 pb(-1), respectively. The cross sections are measured as a function of the photon-proton centre-of-mass energy in the range 25 LT W-gamma p LT 110 GeV. Differential cross sections d sigma/dt, where t is the squared four-momentum transfer at the proton vertex, are measured in the range vertical bar t vertical bar LT 1.2 GeV2 for the elastic process and vertical bar t vertical bar LT 8 GeV2 for proton dissociation. The results are compared to other measurements. The W-gamma p and t-dependences are parametrised using phenomenological fits.",
journal = "European Physical Journal C. Particles and Fields",
title = "Elastic and proton-dissociative photoproduction of J/psi mesons at HERA",
volume = "73",
number = "6",
doi = "10.1140/epjc/s10052-013-2466-y"
}
Alexa, C., Božović-Jelisavčić, I.,& Pandurović, M.. (2013). Elastic and proton-dissociative photoproduction of J/psi mesons at HERA. in European Physical Journal C. Particles and Fields, 73(6).
https://doi.org/10.1140/epjc/s10052-013-2466-y
Alexa C, Božović-Jelisavčić I, Pandurović M. Elastic and proton-dissociative photoproduction of J/psi mesons at HERA. in European Physical Journal C. Particles and Fields. 2013;73(6).
doi:10.1140/epjc/s10052-013-2466-y .
Alexa, C., Božović-Jelisavčić, Ivanka, Pandurović, Mila, "Elastic and proton-dissociative photoproduction of J/psi mesons at HERA" in European Physical Journal C. Particles and Fields, 73, no. 6 (2013),
https://doi.org/10.1140/epjc/s10052-013-2466-y . .
140
111
182

Erratum to: Measurement of D*(+/-) meson production and determination of F-2(c(c)over-bar) at low Q(2) in deep-inelastic scattering at HERA

Aaron, F. D.; Božović-Jelisavčić, Ivanka; Mudrinić, Mihajlo; Pandurović, Mila; Smiljanić, Ivan

(2012)

TY  - JOUR
AU  - Aaron, F. D.
AU  - Božović-Jelisavčić, Ivanka
AU  - Mudrinić, Mihajlo
AU  - Pandurović, Mila
AU  - Smiljanić, Ivan
PY  - 2012
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/4367
T2  - European Physical Journal C. Particles and Fields
T1  - Erratum to: Measurement of D*(+/-) meson production and determination of F-2(c(c)over-bar) at low Q(2) in deep-inelastic scattering at HERA
VL  - 72
IS  - 12
DO  - 10.1140/epjc/s10052-012-2252-2
ER  - 
@article{
author = "Aaron, F. D. and Božović-Jelisavčić, Ivanka and Mudrinić, Mihajlo and Pandurović, Mila and Smiljanić, Ivan",
year = "2012",
journal = "European Physical Journal C. Particles and Fields",
title = "Erratum to: Measurement of D*(+/-) meson production and determination of F-2(c(c)over-bar) at low Q(2) in deep-inelastic scattering at HERA",
volume = "72",
number = "12",
doi = "10.1140/epjc/s10052-012-2252-2"
}
Aaron, F. D., Božović-Jelisavčić, I., Mudrinić, M., Pandurović, M.,& Smiljanić, I.. (2012). Erratum to: Measurement of D*(+/-) meson production and determination of F-2(c(c)over-bar) at low Q(2) in deep-inelastic scattering at HERA. in European Physical Journal C. Particles and Fields, 72(12).
https://doi.org/10.1140/epjc/s10052-012-2252-2
Aaron FD, Božović-Jelisavčić I, Mudrinić M, Pandurović M, Smiljanić I. Erratum to: Measurement of D*(+/-) meson production and determination of F-2(c(c)over-bar) at low Q(2) in deep-inelastic scattering at HERA. in European Physical Journal C. Particles and Fields. 2012;72(12).
doi:10.1140/epjc/s10052-012-2252-2 .
Aaron, F. D., Božović-Jelisavčić, Ivanka, Mudrinić, Mihajlo, Pandurović, Mila, Smiljanić, Ivan, "Erratum to: Measurement of D*(+/-) meson production and determination of F-2(c(c)over-bar) at low Q(2) in deep-inelastic scattering at HERA" in European Physical Journal C. Particles and Fields, 72, no. 12 (2012),
https://doi.org/10.1140/epjc/s10052-012-2252-2 . .
11
11
10

Measurement of the azimuthal correlation between the most forward jet and the scattered positron in deep-inelastic scattering at HERA

Aaron, F. D.; Božović-Jelisavčić, Ivanka; Mudrinić, Mihajlo; Pandurović, Mila; Smiljanić, Ivan

(2012)

TY  - JOUR
AU  - Aaron, F. D.
AU  - Božović-Jelisavčić, Ivanka
AU  - Mudrinić, Mihajlo
AU  - Pandurović, Mila
AU  - Smiljanić, Ivan
PY  - 2012
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/4783
AB  - Deep-inelastic positron-proton scattering events at low photon virtuality, Q(2), with a forward jet, produced at small angles with respect to the proton beam, are measured with the H1 detector at HERA. A subsample of events with an additional jet in the central region is also studied. For both samples, differential cross sections and normalised distributions are measured as a function of the azimuthal angle difference, Delta phi, between the forward jet and the scattered positron in bins of the rapidity distance, Y, between them. The data are compared to predictions of Monte Carlo generators based on different evolution approaches as well as to next-to-leading order calculations in order to test the sensitivity to QCD evolution mechanisms.
T2  - European Physical Journal C. Particles and Fields
T1  - Measurement of the azimuthal correlation between the most forward jet and the scattered positron in deep-inelastic scattering at HERA
VL  - 72
IS  - 3
DO  - 10.1140/epjc/s10052-012-1910-8
ER  - 
@article{
author = "Aaron, F. D. and Božović-Jelisavčić, Ivanka and Mudrinić, Mihajlo and Pandurović, Mila and Smiljanić, Ivan",
year = "2012",
abstract = "Deep-inelastic positron-proton scattering events at low photon virtuality, Q(2), with a forward jet, produced at small angles with respect to the proton beam, are measured with the H1 detector at HERA. A subsample of events with an additional jet in the central region is also studied. For both samples, differential cross sections and normalised distributions are measured as a function of the azimuthal angle difference, Delta phi, between the forward jet and the scattered positron in bins of the rapidity distance, Y, between them. The data are compared to predictions of Monte Carlo generators based on different evolution approaches as well as to next-to-leading order calculations in order to test the sensitivity to QCD evolution mechanisms.",
journal = "European Physical Journal C. Particles and Fields",
title = "Measurement of the azimuthal correlation between the most forward jet and the scattered positron in deep-inelastic scattering at HERA",
volume = "72",
number = "3",
doi = "10.1140/epjc/s10052-012-1910-8"
}
Aaron, F. D., Božović-Jelisavčić, I., Mudrinić, M., Pandurović, M.,& Smiljanić, I.. (2012). Measurement of the azimuthal correlation between the most forward jet and the scattered positron in deep-inelastic scattering at HERA. in European Physical Journal C. Particles and Fields, 72(3).
https://doi.org/10.1140/epjc/s10052-012-1910-8
Aaron FD, Božović-Jelisavčić I, Mudrinić M, Pandurović M, Smiljanić I. Measurement of the azimuthal correlation between the most forward jet and the scattered positron in deep-inelastic scattering at HERA. in European Physical Journal C. Particles and Fields. 2012;72(3).
doi:10.1140/epjc/s10052-012-1910-8 .
Aaron, F. D., Božović-Jelisavčić, Ivanka, Mudrinić, Mihajlo, Pandurović, Mila, Smiljanić, Ivan, "Measurement of the azimuthal correlation between the most forward jet and the scattered positron in deep-inelastic scattering at HERA" in European Physical Journal C. Particles and Fields, 72, no. 3 (2012),
https://doi.org/10.1140/epjc/s10052-012-1910-8 . .
7
8
13

Measurement of dijet production in diffractive deep-inelastic scattering with a leading proton at HERA

Aaron, F. D.; Božović-Jelisavčić, Ivanka; Mudrinić, Mihajlo; Pandurović, Mila; Smiljanić, Ivan

(2012)

TY  - JOUR
AU  - Aaron, F. D.
AU  - Božović-Jelisavčić, Ivanka
AU  - Mudrinić, Mihajlo
AU  - Pandurović, Mila
AU  - Smiljanić, Ivan
PY  - 2012
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/4845
AB  - The cross section of diffractive deep-inelastic scattering ep - GT eXp is measured, where the system X contains at least two jets and the leading final state proton is detected in the H1 Forward Proton Spectrometer. The measurement is performed for fractional proton longitudinal momentum loss x(P) LT 0.1 and covers the range 0.1 LT vertical bar t vertical bar LT 0.7 GeV2 in squared four-momentum transfer at the proton vertex and 4 LT Q(2) LT 110 GeV2 in photon virtuality. The differential cross sections extrapolated to vertical bar t vertical bar LT 1 GeV2 are in agreement with next-to-leading order QCD predictions based on diffractive parton distribution functions extracted from measurements of inclusive and dijet cross sections in diffractive deep-inelastic scattering. The data are also compared with leading order Monte Carlo models.
T2  - European Physical Journal C. Particles and Fields
T1  - Measurement of dijet production in diffractive deep-inelastic scattering with a leading proton at HERA
VL  - 72
IS  - 4
DO  - 10.1140/epjc/s10052-012-1970-9
ER  - 
@article{
author = "Aaron, F. D. and Božović-Jelisavčić, Ivanka and Mudrinić, Mihajlo and Pandurović, Mila and Smiljanić, Ivan",
year = "2012",
abstract = "The cross section of diffractive deep-inelastic scattering ep - GT eXp is measured, where the system X contains at least two jets and the leading final state proton is detected in the H1 Forward Proton Spectrometer. The measurement is performed for fractional proton longitudinal momentum loss x(P) LT 0.1 and covers the range 0.1 LT vertical bar t vertical bar LT 0.7 GeV2 in squared four-momentum transfer at the proton vertex and 4 LT Q(2) LT 110 GeV2 in photon virtuality. The differential cross sections extrapolated to vertical bar t vertical bar LT 1 GeV2 are in agreement with next-to-leading order QCD predictions based on diffractive parton distribution functions extracted from measurements of inclusive and dijet cross sections in diffractive deep-inelastic scattering. The data are also compared with leading order Monte Carlo models.",
journal = "European Physical Journal C. Particles and Fields",
title = "Measurement of dijet production in diffractive deep-inelastic scattering with a leading proton at HERA",
volume = "72",
number = "4",
doi = "10.1140/epjc/s10052-012-1970-9"
}
Aaron, F. D., Božović-Jelisavčić, I., Mudrinić, M., Pandurović, M.,& Smiljanić, I.. (2012). Measurement of dijet production in diffractive deep-inelastic scattering with a leading proton at HERA. in European Physical Journal C. Particles and Fields, 72(4).
https://doi.org/10.1140/epjc/s10052-012-1970-9
Aaron FD, Božović-Jelisavčić I, Mudrinić M, Pandurović M, Smiljanić I. Measurement of dijet production in diffractive deep-inelastic scattering with a leading proton at HERA. in European Physical Journal C. Particles and Fields. 2012;72(4).
doi:10.1140/epjc/s10052-012-1970-9 .
Aaron, F. D., Božović-Jelisavčić, Ivanka, Mudrinić, Mihajlo, Pandurović, Mila, Smiljanić, Ivan, "Measurement of dijet production in diffractive deep-inelastic scattering with a leading proton at HERA" in European Physical Journal C. Particles and Fields, 72, no. 4 (2012),
https://doi.org/10.1140/epjc/s10052-012-1970-9 . .
24
22
43