Romanò, Sabrina

Link to this page

Authority KeyName Variants
orcid::0000-0001-8959-2281
  • Romanò, Sabrina (3)
Projects

Author's Bibliography

Carbon quantum dots surface chemistry: Evaluation of Photo and Cytotoxic activity

Prekodravac, Jovana; Vasiljević, Bojana R.; Žakula, Jelena; Popović, Maja; Pavlović, Vladimir; Ciasca, Gabriele; Romanò, Sabrina; Todorović Marković, Biljana

(2024)

TY  - JOUR
AU  - Prekodravac, Jovana
AU  - Vasiljević, Bojana R.
AU  - Žakula, Jelena
AU  - Popović, Maja
AU  - Pavlović, Vladimir
AU  - Ciasca, Gabriele
AU  - Romanò, Sabrina
AU  - Todorović Marković, Biljana
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12446
AB  - Carbon quantum dots (CQDs) have exceptional physical-chemical properties that make them suitable for a wide range of uses, such as the photocatalytic removal of organic contaminants from water. Here, we provide a one-step, ecologically friendly, and economical method for creating iron/nitrogen co-doped (Fe/N-CQD) and nitrogen-doped (N-CQD) quantum dot nanomaterials. The characteristics of the developed nanomaterials were investigated with regard to how surface chemistry impacts their capacity for adsorption and photoactivity in a case study of a specific water pollutant reduction. The influence of the two irradiation sources-operating in the UV and visible ranges-on the photoactivity of materials was highlighted. Finally, their eco-friendliness was examined on four different human tumor cell lines.
T2  - Optical Materials
T1  - Carbon quantum dots surface chemistry: Evaluation of Photo and Cytotoxic activity
VL  - 147
SP  - 114629
DO  - 10.1016/j.optmat.2023.114629
ER  - 
@article{
author = "Prekodravac, Jovana and Vasiljević, Bojana R. and Žakula, Jelena and Popović, Maja and Pavlović, Vladimir and Ciasca, Gabriele and Romanò, Sabrina and Todorović Marković, Biljana",
year = "2024",
abstract = "Carbon quantum dots (CQDs) have exceptional physical-chemical properties that make them suitable for a wide range of uses, such as the photocatalytic removal of organic contaminants from water. Here, we provide a one-step, ecologically friendly, and economical method for creating iron/nitrogen co-doped (Fe/N-CQD) and nitrogen-doped (N-CQD) quantum dot nanomaterials. The characteristics of the developed nanomaterials were investigated with regard to how surface chemistry impacts their capacity for adsorption and photoactivity in a case study of a specific water pollutant reduction. The influence of the two irradiation sources-operating in the UV and visible ranges-on the photoactivity of materials was highlighted. Finally, their eco-friendliness was examined on four different human tumor cell lines.",
journal = "Optical Materials",
title = "Carbon quantum dots surface chemistry: Evaluation of Photo and Cytotoxic activity",
volume = "147",
pages = "114629",
doi = "10.1016/j.optmat.2023.114629"
}
Prekodravac, J., Vasiljević, B. R., Žakula, J., Popović, M., Pavlović, V., Ciasca, G., Romanò, S.,& Todorović Marković, B.. (2024). Carbon quantum dots surface chemistry: Evaluation of Photo and Cytotoxic activity. in Optical Materials, 147, 114629.
https://doi.org/10.1016/j.optmat.2023.114629
Prekodravac J, Vasiljević BR, Žakula J, Popović M, Pavlović V, Ciasca G, Romanò S, Todorović Marković B. Carbon quantum dots surface chemistry: Evaluation of Photo and Cytotoxic activity. in Optical Materials. 2024;147:114629.
doi:10.1016/j.optmat.2023.114629 .
Prekodravac, Jovana, Vasiljević, Bojana R., Žakula, Jelena, Popović, Maja, Pavlović, Vladimir, Ciasca, Gabriele, Romanò, Sabrina, Todorović Marković, Biljana, "Carbon quantum dots surface chemistry: Evaluation of Photo and Cytotoxic activity" in Optical Materials, 147 (2024):114629,
https://doi.org/10.1016/j.optmat.2023.114629 . .

Gamma-ray-induced structural transformation of GQDs towards the improvement of their optical properties, monitoring of selected toxic compounds, and photo-induced effect on bacterial strains

Dorontić, Slađana; Bonasera, Aurelio; Scopelliti, Michelangelo; Marković, Olivera; Bajuk Bogdanović, Danica; Ciasca, Gabriele; Romanò, Sabrina; Dimkić, Ivica; Budimir, Milica; Marinković, Dragana; Jovanović, Svetlana P.

(2022)

TY  - JOUR
AU  - Dorontić, Slađana
AU  - Bonasera, Aurelio
AU  - Scopelliti, Michelangelo
AU  - Marković, Olivera
AU  - Bajuk Bogdanović, Danica
AU  - Ciasca, Gabriele
AU  - Romanò, Sabrina
AU  - Dimkić, Ivica
AU  - Budimir, Milica
AU  - Marinković, Dragana
AU  - Jovanović, Svetlana P.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10406
AB  - Structural modification of different carbon-based nanomaterials is often necessary toimprove their morphology and optical properties, particularly the incorporation of N-atoms ingraphene quantum dots (GQDs). Here, a clean, simple, one-step, and eco-friendly method forN-doping of GQDs using gamma irradiation is reported. GQDs were irradiated in the presenceof the different ethylenediamine (EDA) amounts (1 g, 5 g, and 10 g) and the highest % of N wasdetected in the presence of 10 g. N-doped GQDs emitted strong, blue photoluminescence (PL).Photoluminescence quantum yield was increased from 1.45, as obtained for non-irradiated dots,to 7.24% for those irradiated in the presence of 1 g of EDA. Modified GQDs were investigated asa PL probe for the detection of insecticide Carbofuran (2,2-Dimethyl-2,3-dihydro-1-benzofuran-7-yl methylcarbamate) and herbicide Amitrole (3-amino-1,2,4-triazole). The limit of detection was5.4 µmol L−1for Carbofuran. For the first time, Amitrole was detected by GQDs in a turn-off/turn-onmechanism using Pd(II) ions as a quenching agent. First, Pd(II) ions were quenched (turn-off) PLof GQDs, while after Amitrole addition, PL was recovered linearly with Amitrole concentration(turn-on). LOD was 2.03 µmol L−1. These results suggest that modified GQDs can be used as anefficient new material for Carbofuran and Amitrole detection. Furthermore, the phototoxicity of dotswas investigated on both Gram-positive and Gram-negative bacterial strains. When bacterial cellswere exposed to different GQD concentrations and illuminated with light of 470 nm wavelength, thetoxic effects were not observed.
T2  - Nanomaterials
T1  - Gamma-ray-induced structural transformation of GQDs towards the improvement of their optical properties, monitoring of selected toxic compounds, and photo-induced effect on bacterial strains
VL  - 12
SP  - 2714
DO  - 10.3390/nano12152714
ER  - 
@article{
author = "Dorontić, Slađana and Bonasera, Aurelio and Scopelliti, Michelangelo and Marković, Olivera and Bajuk Bogdanović, Danica and Ciasca, Gabriele and Romanò, Sabrina and Dimkić, Ivica and Budimir, Milica and Marinković, Dragana and Jovanović, Svetlana P.",
year = "2022",
abstract = "Structural modification of different carbon-based nanomaterials is often necessary toimprove their morphology and optical properties, particularly the incorporation of N-atoms ingraphene quantum dots (GQDs). Here, a clean, simple, one-step, and eco-friendly method forN-doping of GQDs using gamma irradiation is reported. GQDs were irradiated in the presenceof the different ethylenediamine (EDA) amounts (1 g, 5 g, and 10 g) and the highest % of N wasdetected in the presence of 10 g. N-doped GQDs emitted strong, blue photoluminescence (PL).Photoluminescence quantum yield was increased from 1.45, as obtained for non-irradiated dots,to 7.24% for those irradiated in the presence of 1 g of EDA. Modified GQDs were investigated asa PL probe for the detection of insecticide Carbofuran (2,2-Dimethyl-2,3-dihydro-1-benzofuran-7-yl methylcarbamate) and herbicide Amitrole (3-amino-1,2,4-triazole). The limit of detection was5.4 µmol L−1for Carbofuran. For the first time, Amitrole was detected by GQDs in a turn-off/turn-onmechanism using Pd(II) ions as a quenching agent. First, Pd(II) ions were quenched (turn-off) PLof GQDs, while after Amitrole addition, PL was recovered linearly with Amitrole concentration(turn-on). LOD was 2.03 µmol L−1. These results suggest that modified GQDs can be used as anefficient new material for Carbofuran and Amitrole detection. Furthermore, the phototoxicity of dotswas investigated on both Gram-positive and Gram-negative bacterial strains. When bacterial cellswere exposed to different GQD concentrations and illuminated with light of 470 nm wavelength, thetoxic effects were not observed.",
journal = "Nanomaterials",
title = "Gamma-ray-induced structural transformation of GQDs towards the improvement of their optical properties, monitoring of selected toxic compounds, and photo-induced effect on bacterial strains",
volume = "12",
pages = "2714",
doi = "10.3390/nano12152714"
}
Dorontić, S., Bonasera, A., Scopelliti, M., Marković, O., Bajuk Bogdanović, D., Ciasca, G., Romanò, S., Dimkić, I., Budimir, M., Marinković, D.,& Jovanović, S. P.. (2022). Gamma-ray-induced structural transformation of GQDs towards the improvement of their optical properties, monitoring of selected toxic compounds, and photo-induced effect on bacterial strains. in Nanomaterials, 12, 2714.
https://doi.org/10.3390/nano12152714
Dorontić S, Bonasera A, Scopelliti M, Marković O, Bajuk Bogdanović D, Ciasca G, Romanò S, Dimkić I, Budimir M, Marinković D, Jovanović SP. Gamma-ray-induced structural transformation of GQDs towards the improvement of their optical properties, monitoring of selected toxic compounds, and photo-induced effect on bacterial strains. in Nanomaterials. 2022;12:2714.
doi:10.3390/nano12152714 .
Dorontić, Slađana, Bonasera, Aurelio, Scopelliti, Michelangelo, Marković, Olivera, Bajuk Bogdanović, Danica, Ciasca, Gabriele, Romanò, Sabrina, Dimkić, Ivica, Budimir, Milica, Marinković, Dragana, Jovanović, Svetlana P., "Gamma-ray-induced structural transformation of GQDs towards the improvement of their optical properties, monitoring of selected toxic compounds, and photo-induced effect on bacterial strains" in Nanomaterials, 12 (2022):2714,
https://doi.org/10.3390/nano12152714 . .
3
3
3

Facile synthesis of L-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent

Milenković, Mila; Mišović, Aleksandra; Jovanović, Dragana J.; Popović-Bijelić, Ana D.; Ciasca, Gabriele; Romanò, Sabrina; Bonasera, Aurelio; Mojsin, Marija; Pejić, Jelena; Stevanović, Milena J.; Jovanović, Svetlana P.

(2021)

TY  - JOUR
AU  - Milenković, Mila
AU  - Mišović, Aleksandra
AU  - Jovanović, Dragana J.
AU  - Popović-Bijelić, Ana D.
AU  - Ciasca, Gabriele
AU  - Romanò, Sabrina
AU  - Bonasera, Aurelio
AU  - Mojsin, Marija
AU  - Pejić, Jelena
AU  - Stevanović, Milena J.
AU  - Jovanović, Svetlana P.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9873
AB  - Nowadays, a larger number of aggressive and corrosive chemical reagents as well as toxic solvents are used to achieve structural modification and cleaning of the final products. These lead to the production of residual, waste chemicals, which are often reactive, cancerogenic, and toxic to the environment. This study shows a new approach to the modification of graphene quantum dots (GQDs) using gamma irradiation where the usage of reagents was avoided. We achieved the incorporation of S and N atoms in the GQD structure by selecting an aqueous solution of L-cysteine as an irradiation medium. GQDs were exposed to gamma-irradiation at doses of 25, 50 and 200 kGy. After irradiation, the optical, structural, and morphological properties, as well as the possibility of their use as an agent in bioimaging and photodynamic therapy, were studied. We measured an enhanced quantum yield of photoluminescence with the highest dose of 25 kGy (21.60%). Both S- and N-functional groups were detected in all gamma-irradiated GQDs: amino, amide, thiol, and thione. Spin trap electron paramagnetic resonance showed that GQDs irradiated with 25 kGy can generate singlet oxygen upon illumination. Bioimaging on HeLa cells showed the best visibility for cells treated with GQDs irradiated with 25 kGy, while cytotoxicity was not detected after treatment of HeLa cells with gamma-irradiated GQDs.
T2  - Nanomaterials
T1  - Facile synthesis of L-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent
VL  - 11
IS  - 8
SP  - 1879
DO  - 10.3390/nano11081879
ER  - 
@article{
author = "Milenković, Mila and Mišović, Aleksandra and Jovanović, Dragana J. and Popović-Bijelić, Ana D. and Ciasca, Gabriele and Romanò, Sabrina and Bonasera, Aurelio and Mojsin, Marija and Pejić, Jelena and Stevanović, Milena J. and Jovanović, Svetlana P.",
year = "2021",
abstract = "Nowadays, a larger number of aggressive and corrosive chemical reagents as well as toxic solvents are used to achieve structural modification and cleaning of the final products. These lead to the production of residual, waste chemicals, which are often reactive, cancerogenic, and toxic to the environment. This study shows a new approach to the modification of graphene quantum dots (GQDs) using gamma irradiation where the usage of reagents was avoided. We achieved the incorporation of S and N atoms in the GQD structure by selecting an aqueous solution of L-cysteine as an irradiation medium. GQDs were exposed to gamma-irradiation at doses of 25, 50 and 200 kGy. After irradiation, the optical, structural, and morphological properties, as well as the possibility of their use as an agent in bioimaging and photodynamic therapy, were studied. We measured an enhanced quantum yield of photoluminescence with the highest dose of 25 kGy (21.60%). Both S- and N-functional groups were detected in all gamma-irradiated GQDs: amino, amide, thiol, and thione. Spin trap electron paramagnetic resonance showed that GQDs irradiated with 25 kGy can generate singlet oxygen upon illumination. Bioimaging on HeLa cells showed the best visibility for cells treated with GQDs irradiated with 25 kGy, while cytotoxicity was not detected after treatment of HeLa cells with gamma-irradiated GQDs.",
journal = "Nanomaterials",
title = "Facile synthesis of L-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent",
volume = "11",
number = "8",
pages = "1879",
doi = "10.3390/nano11081879"
}
Milenković, M., Mišović, A., Jovanović, D. J., Popović-Bijelić, A. D., Ciasca, G., Romanò, S., Bonasera, A., Mojsin, M., Pejić, J., Stevanović, M. J.,& Jovanović, S. P.. (2021). Facile synthesis of L-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent. in Nanomaterials, 11(8), 1879.
https://doi.org/10.3390/nano11081879
Milenković M, Mišović A, Jovanović DJ, Popović-Bijelić AD, Ciasca G, Romanò S, Bonasera A, Mojsin M, Pejić J, Stevanović MJ, Jovanović SP. Facile synthesis of L-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent. in Nanomaterials. 2021;11(8):1879.
doi:10.3390/nano11081879 .
Milenković, Mila, Mišović, Aleksandra, Jovanović, Dragana J., Popović-Bijelić, Ana D., Ciasca, Gabriele, Romanò, Sabrina, Bonasera, Aurelio, Mojsin, Marija, Pejić, Jelena, Stevanović, Milena J., Jovanović, Svetlana P., "Facile synthesis of L-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent" in Nanomaterials, 11, no. 8 (2021):1879,
https://doi.org/10.3390/nano11081879 . .
5
13
2
10