Plankova, Alexandra

Link to this page

Authority KeyName Variants
bfd041d3-6753-44ae-9e91-80728500f825
  • Plankova, Alexandra (1)
Projects

Author's Bibliography

Advanced electrochemical platform for determination of cytostatic drug flutamide in various matrices using a boron-doped diamond electrode

Švorc, Lubomir; Borovska, Katarina; Cinkova, Kristina; Stanković, Dalibor M.; Plankova, Alexandra

(2017)

TY  - JOUR
AU  - Švorc, Lubomir
AU  - Borovska, Katarina
AU  - Cinkova, Kristina
AU  - Stanković, Dalibor M.
AU  - Plankova, Alexandra
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7183
AB  - An innovative, rapid and simple electrochemical approach for the reliable quantification of cytostatic drug flutamide (FLU) in various matrices is herein proposed. This platform involves coupling of differential pulse (DPV) and square-wave voltammetry (SWV) with a boron-doped diamond (BDD) electrode as the working electrode and 0.1 M sulphuric acid as the supporting electrolyte. For the first time, the voltammetric profile of FLU was manifested by three irreversible and diffusion-controlled oxidation peaks at + 1.1 (P1), + 1.4 (P2) and + 1.9 V (P3). The analytical performance evaluation was assessed for all three peaks, using both pulse voltammetric techniques with the optimized operating parameters and the highest sensitivity of 1.76 nA/mu M was accomplished for P2 using DPV and 3.54 nA/mu M for P3 using SWV. The corresponding linear concentration ranges were found to be 0.99-42.9 and 4.8-35.5 mu M with the detection limits of 0.42 and 0.18 mu M, respectively. The repeatability varied, depending on the oxidation peaks of FLU, with the relative standard deviations in the range of 3.3-8.8% and 2.9-9.3% for DPV and SWV, respectively. The proposed electrochemical platform was successfully applied in the analysis of pharmaceutical formulations, spiked human urine and water samples with the significant mean recoveries. Using BDD electrode, the current work establishes an advanced, simple and rapid alternative platform to so far used toxic mercury-based electrodes and time demanding chemically modified electrodes in cytostatic sensing. Besides, BDD electrode represents a comfortable electrochemical sensor for routine analysis in pharmaceutical, clinical and environmental chemistry. (C) 2017 Elsevier Ltd. All rights reserved.
T2  - Electrochimica Acta
T1  - Advanced electrochemical platform for determination of cytostatic drug flutamide in various matrices using a boron-doped diamond electrode
VL  - 251
SP  - 621
EP  - 630
DO  - 10.1016/j.electacta.2017.08.077
ER  - 
@article{
author = "Švorc, Lubomir and Borovska, Katarina and Cinkova, Kristina and Stanković, Dalibor M. and Plankova, Alexandra",
year = "2017",
abstract = "An innovative, rapid and simple electrochemical approach for the reliable quantification of cytostatic drug flutamide (FLU) in various matrices is herein proposed. This platform involves coupling of differential pulse (DPV) and square-wave voltammetry (SWV) with a boron-doped diamond (BDD) electrode as the working electrode and 0.1 M sulphuric acid as the supporting electrolyte. For the first time, the voltammetric profile of FLU was manifested by three irreversible and diffusion-controlled oxidation peaks at + 1.1 (P1), + 1.4 (P2) and + 1.9 V (P3). The analytical performance evaluation was assessed for all three peaks, using both pulse voltammetric techniques with the optimized operating parameters and the highest sensitivity of 1.76 nA/mu M was accomplished for P2 using DPV and 3.54 nA/mu M for P3 using SWV. The corresponding linear concentration ranges were found to be 0.99-42.9 and 4.8-35.5 mu M with the detection limits of 0.42 and 0.18 mu M, respectively. The repeatability varied, depending on the oxidation peaks of FLU, with the relative standard deviations in the range of 3.3-8.8% and 2.9-9.3% for DPV and SWV, respectively. The proposed electrochemical platform was successfully applied in the analysis of pharmaceutical formulations, spiked human urine and water samples with the significant mean recoveries. Using BDD electrode, the current work establishes an advanced, simple and rapid alternative platform to so far used toxic mercury-based electrodes and time demanding chemically modified electrodes in cytostatic sensing. Besides, BDD electrode represents a comfortable electrochemical sensor for routine analysis in pharmaceutical, clinical and environmental chemistry. (C) 2017 Elsevier Ltd. All rights reserved.",
journal = "Electrochimica Acta",
title = "Advanced electrochemical platform for determination of cytostatic drug flutamide in various matrices using a boron-doped diamond electrode",
volume = "251",
pages = "621-630",
doi = "10.1016/j.electacta.2017.08.077"
}
Švorc, L., Borovska, K., Cinkova, K., Stanković, D. M.,& Plankova, A.. (2017). Advanced electrochemical platform for determination of cytostatic drug flutamide in various matrices using a boron-doped diamond electrode. in Electrochimica Acta, 251, 621-630.
https://doi.org/10.1016/j.electacta.2017.08.077
Švorc L, Borovska K, Cinkova K, Stanković DM, Plankova A. Advanced electrochemical platform for determination of cytostatic drug flutamide in various matrices using a boron-doped diamond electrode. in Electrochimica Acta. 2017;251:621-630.
doi:10.1016/j.electacta.2017.08.077 .
Švorc, Lubomir, Borovska, Katarina, Cinkova, Kristina, Stanković, Dalibor M., Plankova, Alexandra, "Advanced electrochemical platform for determination of cytostatic drug flutamide in various matrices using a boron-doped diamond electrode" in Electrochimica Acta, 251 (2017):621-630,
https://doi.org/10.1016/j.electacta.2017.08.077 . .
73
55
77