Zhang, Weifeng

Link to this page

Authority KeyName Variants
1ecc6d09-49f3-4f80-b39a-f76792a27db8
  • Zhang, Weifeng (2)
Projects

Author's Bibliography

Absence of long-range magnetic order in Fe1−δ Te2 (δ ≈ 0.1) crystals

Tian, Jianjun; Ivanovski, Valentin N.; Abeykoon, Milinda; Martin, Rodica M.; Baranets, Sviatoslav; Martin, Catalin; Liu, Yu; Du, Qianheng; Wang, Aifeng; Chen, Shuzhang; Tong, Xiao; Zhang, Weifeng; Bobev, Svilen; Koteski, Vasil J.; Petrović, Čedomir

(2021)

TY  - JOUR
AU  - Tian, Jianjun
AU  - Ivanovski, Valentin N.
AU  - Abeykoon, Milinda
AU  - Martin, Rodica M.
AU  - Baranets, Sviatoslav
AU  - Martin, Catalin
AU  - Liu, Yu
AU  - Du, Qianheng
AU  - Wang, Aifeng
AU  - Chen, Shuzhang
AU  - Tong, Xiao
AU  - Zhang, Weifeng
AU  - Bobev, Svilen
AU  - Koteski, Vasil J.
AU  - Petrović, Čedomir
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10108
AB  - Transition metal dichalcogenides attract considerable attention due to a variety of interesting properties, including long-range magnetism in nanocrystals. Here we investigate the magnetic, thermal, and electrical properties of an FeTe2 single crystal with iron vacancy defects. Magnetic measurements show a paramagnetic state and the absence of magnetic order with low anisotropy in the magnetic susceptibility. Fe 3d orbitals are well hybridized, contributing to the bad metal electrical resistivity. Observed thermal conductivity values below room temperature are rather low and comparable to those of high-performance thermoelectric materials. Our results indicate that FeTe2 can form in a highly defective marcasite crystal structure which can be exploited in future materials design.
T2  - Physical Review B
T1  - Absence of long-range magnetic order in Fe1−δ Te2  (δ ≈ 0.1) crystals
VL  - 104
IS  - 22
SP  - 224109
DO  - 10.1103/PhysRevB.104.224109
ER  - 
@article{
author = "Tian, Jianjun and Ivanovski, Valentin N. and Abeykoon, Milinda and Martin, Rodica M. and Baranets, Sviatoslav and Martin, Catalin and Liu, Yu and Du, Qianheng and Wang, Aifeng and Chen, Shuzhang and Tong, Xiao and Zhang, Weifeng and Bobev, Svilen and Koteski, Vasil J. and Petrović, Čedomir",
year = "2021",
abstract = "Transition metal dichalcogenides attract considerable attention due to a variety of interesting properties, including long-range magnetism in nanocrystals. Here we investigate the magnetic, thermal, and electrical properties of an FeTe2 single crystal with iron vacancy defects. Magnetic measurements show a paramagnetic state and the absence of magnetic order with low anisotropy in the magnetic susceptibility. Fe 3d orbitals are well hybridized, contributing to the bad metal electrical resistivity. Observed thermal conductivity values below room temperature are rather low and comparable to those of high-performance thermoelectric materials. Our results indicate that FeTe2 can form in a highly defective marcasite crystal structure which can be exploited in future materials design.",
journal = "Physical Review B",
title = "Absence of long-range magnetic order in Fe1−δ Te2  (δ ≈ 0.1) crystals",
volume = "104",
number = "22",
pages = "224109",
doi = "10.1103/PhysRevB.104.224109"
}
Tian, J., Ivanovski, V. N., Abeykoon, M., Martin, R. M., Baranets, S., Martin, C., Liu, Y., Du, Q., Wang, A., Chen, S., Tong, X., Zhang, W., Bobev, S., Koteski, V. J.,& Petrović, Č.. (2021). Absence of long-range magnetic order in Fe1−δ Te2  (δ ≈ 0.1) crystals. in Physical Review B, 104(22), 224109.
https://doi.org/10.1103/PhysRevB.104.224109
Tian J, Ivanovski VN, Abeykoon M, Martin RM, Baranets S, Martin C, Liu Y, Du Q, Wang A, Chen S, Tong X, Zhang W, Bobev S, Koteski VJ, Petrović Č. Absence of long-range magnetic order in Fe1−δ Te2  (δ ≈ 0.1) crystals. in Physical Review B. 2021;104(22):224109.
doi:10.1103/PhysRevB.104.224109 .
Tian, Jianjun, Ivanovski, Valentin N., Abeykoon, Milinda, Martin, Rodica M., Baranets, Sviatoslav, Martin, Catalin, Liu, Yu, Du, Qianheng, Wang, Aifeng, Chen, Shuzhang, Tong, Xiao, Zhang, Weifeng, Bobev, Svilen, Koteski, Vasil J., Petrović, Čedomir, "Absence of long-range magnetic order in Fe1−δ Te2  (δ ≈ 0.1) crystals" in Physical Review B, 104, no. 22 (2021):224109,
https://doi.org/10.1103/PhysRevB.104.224109 . .
2
2

Fe0.36(4)Pd 0.64(4)Se 2 : Magnetic Spin-Glass Polymorph of FeSe2 and PdSe2 Stable at Ambient Pressure

Tian, Jianjun; Ivanovski, Valentin N.; Szalda, David; Lei, Hechang; Wang, Aifeng; Liu, Yu; Zhang, Weifeng; Koteski, Vasil J.; Petrović, Čedomir

(2019)

TY  - JOUR
AU  - Tian, Jianjun
AU  - Ivanovski, Valentin N.
AU  - Szalda, David
AU  - Lei, Hechang
AU  - Wang, Aifeng
AU  - Liu, Yu
AU  - Zhang, Weifeng
AU  - Koteski, Vasil J.
AU  - Petrović, Čedomir
PY  - 2019
UR  - http://pubs.acs.org/doi/10.1021/acs.inorgchem.8b03089
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8082
AB  - We report the synthesis and characterization of Fe 0.36(4) Pd 0.64(4) Se 2 with a pyrite-type structure. Fe 0.36(4) Pd 0.64(4) Se 2 was synthesized using ambient pressure flux crystal growth methods even though the space group Pa3 is high-pressure polymorph for both FeSe 2 and PdSe 2 . Combined experimental and theoretical analysis reveal magnetic spin glass state below 23 K in 1000 Oe that stems from random Fe/Pd occupancies on the same atomic site. The frozen-in magnetic randomness contributes significantly to electronic transport. Electronic structure calculations confirm dominant d-electron character of hybridized bands and large density of states near the Fermi level. Flux-grown single crystal alloys in Pd-Fe-Se atomic system therefore open new pathway for exploring different polymorphs in crystal structures and their novel properties. © 2019 American Chemical Society.
T2  - Inorganic Chemistry
T1  - Fe0.36(4)Pd 0.64(4)Se 2 : Magnetic Spin-Glass Polymorph of FeSe2 and PdSe2 Stable at Ambient Pressure
VL  - 58
IS  - 5
SP  - 3107
EP  - 3114
DO  - 10.1021/acs.inorgchem.8b03089
ER  - 
@article{
author = "Tian, Jianjun and Ivanovski, Valentin N. and Szalda, David and Lei, Hechang and Wang, Aifeng and Liu, Yu and Zhang, Weifeng and Koteski, Vasil J. and Petrović, Čedomir",
year = "2019",
abstract = "We report the synthesis and characterization of Fe 0.36(4) Pd 0.64(4) Se 2 with a pyrite-type structure. Fe 0.36(4) Pd 0.64(4) Se 2 was synthesized using ambient pressure flux crystal growth methods even though the space group Pa3 is high-pressure polymorph for both FeSe 2 and PdSe 2 . Combined experimental and theoretical analysis reveal magnetic spin glass state below 23 K in 1000 Oe that stems from random Fe/Pd occupancies on the same atomic site. The frozen-in magnetic randomness contributes significantly to electronic transport. Electronic structure calculations confirm dominant d-electron character of hybridized bands and large density of states near the Fermi level. Flux-grown single crystal alloys in Pd-Fe-Se atomic system therefore open new pathway for exploring different polymorphs in crystal structures and their novel properties. © 2019 American Chemical Society.",
journal = "Inorganic Chemistry",
title = "Fe0.36(4)Pd 0.64(4)Se 2 : Magnetic Spin-Glass Polymorph of FeSe2 and PdSe2 Stable at Ambient Pressure",
volume = "58",
number = "5",
pages = "3107-3114",
doi = "10.1021/acs.inorgchem.8b03089"
}
Tian, J., Ivanovski, V. N., Szalda, D., Lei, H., Wang, A., Liu, Y., Zhang, W., Koteski, V. J.,& Petrović, Č.. (2019). Fe0.36(4)Pd 0.64(4)Se 2 : Magnetic Spin-Glass Polymorph of FeSe2 and PdSe2 Stable at Ambient Pressure. in Inorganic Chemistry, 58(5), 3107-3114.
https://doi.org/10.1021/acs.inorgchem.8b03089
Tian J, Ivanovski VN, Szalda D, Lei H, Wang A, Liu Y, Zhang W, Koteski VJ, Petrović Č. Fe0.36(4)Pd 0.64(4)Se 2 : Magnetic Spin-Glass Polymorph of FeSe2 and PdSe2 Stable at Ambient Pressure. in Inorganic Chemistry. 2019;58(5):3107-3114.
doi:10.1021/acs.inorgchem.8b03089 .
Tian, Jianjun, Ivanovski, Valentin N., Szalda, David, Lei, Hechang, Wang, Aifeng, Liu, Yu, Zhang, Weifeng, Koteski, Vasil J., Petrović, Čedomir, "Fe0.36(4)Pd 0.64(4)Se 2 : Magnetic Spin-Glass Polymorph of FeSe2 and PdSe2 Stable at Ambient Pressure" in Inorganic Chemistry, 58, no. 5 (2019):3107-3114,
https://doi.org/10.1021/acs.inorgchem.8b03089 . .
4
2
4