Zhang, Zaoxiao

Link to this page

Authority KeyName Variants
5fcd695c-85da-48b6-8b6e-01a15adc9145
  • Zhang, Zaoxiao (9)
Projects
China Education Association for International Exchange [202006] Fundamental Research Funds for the Central Universities [xzd012020062]
National Key Research and Development Program of China [2018YFE0202000] National Natural Science Foundation of China [52176203, 52050027]
National Natural Science Foundation of China (NSFC) [21736008] Natural Science Foundation of Shaanxi Province [2020JM-014]
NSFC [52050027] China-Central Eastern European Countries Higher Education Institutions Consortium [202006]
China Education Association for Inter-national Exchange [202006] Fundamental Research Funds for the Central Universities [XJ2017023]
Fundamental Research Funds for the Central Universities [xzd012020062] Hong Kong SAR [PolyU 152064/18E]
Hong Kong SAR [PolyU 152214/17E] Hong Kong Scholar [XJ2017023]
National Key Research and Development Program [2018YFE0202000] National Key Research and Development Program (No. 2018YFE0202000)
National Natural Science Foundation of China [21736008] National Natural Science Foundation of China [51876150]
National Natural Science Foundation of China [52076178] National Natural Science Foundation of China (No. 52076178)
National Natural Science Foundation of China (NSFC) [51876150] Natural Science Foundation Project of Shaanxi Province [2020JM-014]
Natural Science Foundation Project of Shaanxi Province [2020JM-014, 2021JQ-890] Natural Science Foundation Project of Shaanxi Province, China [2020JM- 014, 2021JQ-890]
Shaanxi Province [No. 2020JM-014] Young Talent Fund for Science and Technology in Xi’an City, China [095920211329]

Author's Bibliography

A novel design for fin profile in metal hydride reactor towards heat transfer enhancement: Theoretical derivations and analysis

Wang, Jing; Dai, Min; Liu, Jiaxuan; Wu, Zhen; Zhang, Zaoxiao; Grbović-Novaković, Jasmina; Yang, Fusheng

(2023)

TY  - JOUR
AU  - Wang, Jing
AU  - Dai, Min
AU  - Liu, Jiaxuan
AU  - Wu, Zhen
AU  - Zhang, Zaoxiao
AU  - Grbović-Novaković, Jasmina
AU  - Yang, Fusheng
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11545
AB  - Hydrogen storage using metal hydrides is one of the research hotspots in the field of energy storage. However, metal hydride powders are known to have low thermal conductivity, which causes significant temperature fluctuation and hinders further reaction, hence efficient thermal management is a must for hydrogen storage using metal hydrides. In this paper, based on the principle of entransy dissipation, the optimal profile of fin in a cylindrical reactor under steady-state conditions is deduced. The expression for the temperature distribution of the bed is also obtained, which could clearly account for the influences of multiple involving factors, such as fin thickness, fin spacing, and radius of reactor. Through simulation, the characteristic time of hydrogen absorption for reactor inserting the optimized fin, is shortened by 19.1 % compared with the conventional uniform thickness fin. The influence of the geometric parameters of storage reactor was further discussed. When the ratio of the inner and outer radius of the reactor is confined (rr/rt ≤ 2), linear thinning fin can be seen as a reasonable simplification of the optimized fin with comparable heat transfer enhancement effect. This study proves that the thermal management of metal hydride reactors, particularly those inserting high thermal conductivity materials like graphite, can be optimized quantitatively by entransy theory
T2  - Journal of Energy Storage
T1  - A novel design for fin profile in metal hydride reactor towards heat transfer enhancement: Theoretical derivations and analysis
VL  - 72
SP  - 108570
DO  - 10.1016/j.est.2023.108570
ER  - 
@article{
author = "Wang, Jing and Dai, Min and Liu, Jiaxuan and Wu, Zhen and Zhang, Zaoxiao and Grbović-Novaković, Jasmina and Yang, Fusheng",
year = "2023",
abstract = "Hydrogen storage using metal hydrides is one of the research hotspots in the field of energy storage. However, metal hydride powders are known to have low thermal conductivity, which causes significant temperature fluctuation and hinders further reaction, hence efficient thermal management is a must for hydrogen storage using metal hydrides. In this paper, based on the principle of entransy dissipation, the optimal profile of fin in a cylindrical reactor under steady-state conditions is deduced. The expression for the temperature distribution of the bed is also obtained, which could clearly account for the influences of multiple involving factors, such as fin thickness, fin spacing, and radius of reactor. Through simulation, the characteristic time of hydrogen absorption for reactor inserting the optimized fin, is shortened by 19.1 % compared with the conventional uniform thickness fin. The influence of the geometric parameters of storage reactor was further discussed. When the ratio of the inner and outer radius of the reactor is confined (rr/rt ≤ 2), linear thinning fin can be seen as a reasonable simplification of the optimized fin with comparable heat transfer enhancement effect. This study proves that the thermal management of metal hydride reactors, particularly those inserting high thermal conductivity materials like graphite, can be optimized quantitatively by entransy theory",
journal = "Journal of Energy Storage",
title = "A novel design for fin profile in metal hydride reactor towards heat transfer enhancement: Theoretical derivations and analysis",
volume = "72",
pages = "108570",
doi = "10.1016/j.est.2023.108570"
}
Wang, J., Dai, M., Liu, J., Wu, Z., Zhang, Z., Grbović-Novaković, J.,& Yang, F.. (2023). A novel design for fin profile in metal hydride reactor towards heat transfer enhancement: Theoretical derivations and analysis. in Journal of Energy Storage, 72, 108570.
https://doi.org/10.1016/j.est.2023.108570
Wang J, Dai M, Liu J, Wu Z, Zhang Z, Grbović-Novaković J, Yang F. A novel design for fin profile in metal hydride reactor towards heat transfer enhancement: Theoretical derivations and analysis. in Journal of Energy Storage. 2023;72:108570.
doi:10.1016/j.est.2023.108570 .
Wang, Jing, Dai, Min, Liu, Jiaxuan, Wu, Zhen, Zhang, Zaoxiao, Grbović-Novaković, Jasmina, Yang, Fusheng, "A novel design for fin profile in metal hydride reactor towards heat transfer enhancement: Theoretical derivations and analysis" in Journal of Energy Storage, 72 (2023):108570,
https://doi.org/10.1016/j.est.2023.108570 . .
1
3

Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: A review

Yang, Fusheng; Wang, Jing; Zhang, Yang; Wu, Zhen; Zhang, Zaoxiao; Zhao, Fengqi; Huot, Jacques; Grbović-Novaković, Jasmina; Novaković, Nikola

(2022)

TY  - JOUR
AU  - Yang, Fusheng
AU  - Wang, Jing
AU  - Zhang, Yang
AU  - Wu, Zhen
AU  - Zhang, Zaoxiao
AU  - Zhao, Fengqi
AU  - Huot, Jacques
AU  - Grbović-Novaković, Jasmina
AU  - Novaković, Nikola
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10168
AB  - High entropy alloys (HEA) represent a kind of materials with unique structural and functional properties, and have attracted wide attentions in many fields including hydrogen storage. Due to the huge diversity in the composition of HEAs, novel hydrogen storage materials with superior comprehensive performance are expected to be developed following the concept, with some notable progress made in the past decade. In this study, the present research status in HEAs for hydrogen storage is summarized from the aspects of theoretical guide, composition and preparation, microstructure and hydrogen storage properties. Moreover, the key issues in future development and possible application scenarios are analyzed.
T2  - International Journal of Hydrogen Energy
T1  - Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: A review
VL  - 47
IS  - 21
SP  - 11236
EP  - 11249
DO  - 10.1016/j.ijhydene.2022.01.141
ER  - 
@article{
author = "Yang, Fusheng and Wang, Jing and Zhang, Yang and Wu, Zhen and Zhang, Zaoxiao and Zhao, Fengqi and Huot, Jacques and Grbović-Novaković, Jasmina and Novaković, Nikola",
year = "2022",
abstract = "High entropy alloys (HEA) represent a kind of materials with unique structural and functional properties, and have attracted wide attentions in many fields including hydrogen storage. Due to the huge diversity in the composition of HEAs, novel hydrogen storage materials with superior comprehensive performance are expected to be developed following the concept, with some notable progress made in the past decade. In this study, the present research status in HEAs for hydrogen storage is summarized from the aspects of theoretical guide, composition and preparation, microstructure and hydrogen storage properties. Moreover, the key issues in future development and possible application scenarios are analyzed.",
journal = "International Journal of Hydrogen Energy",
title = "Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: A review",
volume = "47",
number = "21",
pages = "11236-11249",
doi = "10.1016/j.ijhydene.2022.01.141"
}
Yang, F., Wang, J., Zhang, Y., Wu, Z., Zhang, Z., Zhao, F., Huot, J., Grbović-Novaković, J.,& Novaković, N.. (2022). Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: A review. in International Journal of Hydrogen Energy, 47(21), 11236-11249.
https://doi.org/10.1016/j.ijhydene.2022.01.141
Yang F, Wang J, Zhang Y, Wu Z, Zhang Z, Zhao F, Huot J, Grbović-Novaković J, Novaković N. Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: A review. in International Journal of Hydrogen Energy. 2022;47(21):11236-11249.
doi:10.1016/j.ijhydene.2022.01.141 .
Yang, Fusheng, Wang, Jing, Zhang, Yang, Wu, Zhen, Zhang, Zaoxiao, Zhao, Fengqi, Huot, Jacques, Grbović-Novaković, Jasmina, Novaković, Nikola, "Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: A review" in International Journal of Hydrogen Energy, 47, no. 21 (2022):11236-11249,
https://doi.org/10.1016/j.ijhydene.2022.01.141 . .
1
70
2
67

A multi-function desalination system based on hydrolysis reaction of hydride and fuel cell water recovery

Yao, Jing; Guo, Leilei; Zhu, Pengfei; Yang, Fusheng; Yan, Hongli; Kurko, Sandra V.; Yartys, Volodymyr A.; Zhang, Zaoxiao; Wu, Zhen

(2021)

TY  - JOUR
AU  - Yao, Jing
AU  - Guo, Leilei
AU  - Zhu, Pengfei
AU  - Yang, Fusheng
AU  - Yan, Hongli
AU  - Kurko, Sandra V.
AU  - Yartys, Volodymyr A.
AU  - Zhang, Zaoxiao
AU  - Wu, Zhen
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9945
AB  - Desalination is an important method to take full advantage of the sea water to produce fresh water. However, the systems or devices reported previously still have the limitations in the energy supply and portability when used in some specific application scenarios, such as island and remote coastal area. In this paper, a multi-function desalination system is proposed, which could provide fresh water, electrical energy, and even the cold energy based on the hydrolysis reaction of hydride and fuel cell water recovery. Besides, the system could be modified to increase the flexibility of the system operation to satisfy the various energy demands under different conditions. A lumped parameter model of the proposed system is developed to evaluate the system performance. The results show that the fuel cell helps to increase the absolute humidity of the wet air by 15.5% and to increase the water production by condensing the wet air by 1.8 times compared with simple water harvest from the ambient environment. The modified system demonstrates more stable performance of the water production than the original desalination system, which means that the modified system is less affected by the parameter variation. The maximum water production of the kW level system could achieve 11.10 kg/h. Comparing with the previous reports, the unit power consumption of the modified system could reach the lowest level (about 880 Wh/kg), showing the promising water production performance of the system developed in this work.
T2  - Energy Conversion and Management
T1  - A multi-function desalination system based on hydrolysis reaction of hydride and fuel cell water recovery
VL  - 247
SP  - 114728
DO  - 10.1016/j.enconman.2021.114728
ER  - 
@article{
author = "Yao, Jing and Guo, Leilei and Zhu, Pengfei and Yang, Fusheng and Yan, Hongli and Kurko, Sandra V. and Yartys, Volodymyr A. and Zhang, Zaoxiao and Wu, Zhen",
year = "2021",
abstract = "Desalination is an important method to take full advantage of the sea water to produce fresh water. However, the systems or devices reported previously still have the limitations in the energy supply and portability when used in some specific application scenarios, such as island and remote coastal area. In this paper, a multi-function desalination system is proposed, which could provide fresh water, electrical energy, and even the cold energy based on the hydrolysis reaction of hydride and fuel cell water recovery. Besides, the system could be modified to increase the flexibility of the system operation to satisfy the various energy demands under different conditions. A lumped parameter model of the proposed system is developed to evaluate the system performance. The results show that the fuel cell helps to increase the absolute humidity of the wet air by 15.5% and to increase the water production by condensing the wet air by 1.8 times compared with simple water harvest from the ambient environment. The modified system demonstrates more stable performance of the water production than the original desalination system, which means that the modified system is less affected by the parameter variation. The maximum water production of the kW level system could achieve 11.10 kg/h. Comparing with the previous reports, the unit power consumption of the modified system could reach the lowest level (about 880 Wh/kg), showing the promising water production performance of the system developed in this work.",
journal = "Energy Conversion and Management",
title = "A multi-function desalination system based on hydrolysis reaction of hydride and fuel cell water recovery",
volume = "247",
pages = "114728",
doi = "10.1016/j.enconman.2021.114728"
}
Yao, J., Guo, L., Zhu, P., Yang, F., Yan, H., Kurko, S. V., Yartys, V. A., Zhang, Z.,& Wu, Z.. (2021). A multi-function desalination system based on hydrolysis reaction of hydride and fuel cell water recovery. in Energy Conversion and Management, 247, 114728.
https://doi.org/10.1016/j.enconman.2021.114728
Yao J, Guo L, Zhu P, Yang F, Yan H, Kurko SV, Yartys VA, Zhang Z, Wu Z. A multi-function desalination system based on hydrolysis reaction of hydride and fuel cell water recovery. in Energy Conversion and Management. 2021;247:114728.
doi:10.1016/j.enconman.2021.114728 .
Yao, Jing, Guo, Leilei, Zhu, Pengfei, Yang, Fusheng, Yan, Hongli, Kurko, Sandra V., Yartys, Volodymyr A., Zhang, Zaoxiao, Wu, Zhen, "A multi-function desalination system based on hydrolysis reaction of hydride and fuel cell water recovery" in Energy Conversion and Management, 247 (2021):114728,
https://doi.org/10.1016/j.enconman.2021.114728 . .
6
5

Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell

Zhu, Pengfei; Wu, Zhen; Yao, Jing; Guo, Leilei; Yan, Hongli; Nyamsi, Serge Nyallang; Kurko, Sandra V.; Yang, Fusheng; Zhang, Zaoxiao

(2021)

TY  - JOUR
AU  - Zhu, Pengfei
AU  - Wu, Zhen
AU  - Yao, Jing
AU  - Guo, Leilei
AU  - Yan, Hongli
AU  - Nyamsi, Serge Nyallang
AU  - Kurko, Sandra V.
AU  - Yang, Fusheng
AU  - Zhang, Zaoxiao
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9931
AB  - In order to uncover the inner working mechanism and performance of solid oxide fuel cell (SOFC) with biomass gasification syngas as fuel, a two dimensional SOFC multi-physical field model is established. This study makes up for the deficiency that the previous studies of coupling biomass gasification unit and SOFC stack mostly stay at the system level. The results show that the SOFC fueled by the syngas produced from gasification of biomass with steam as the agent has the best performance. The peak power density could achieve approximately 10240 W m−2. With the improvement of operating temperature, the peak power density of SOFC will be increased. At the temperature of 1123 K, the peak power density could achieve about 15128 W m−2. The average reaction rate of water gas shift (WGS) reaction is −29.73 mol m−3 s−1 when the operating temperature is 1123 K. This indicates that the WGS reaction will proceed in reverse direction at high temperatures, thereby reducing the hydrogen concentration. In addition, increase in the anode flux and decrease in the cell length lead to the increase of SOFC current density. In general, this work could provide guidance for the optimization and practical application of SOFC using biomass syngas as fuel.
T2  - Journal of Power Sources
T1  - Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell
VL  - 512
SP  - 230470
DO  - 10.1016/j.jpowsour.2021.230470
ER  - 
@article{
author = "Zhu, Pengfei and Wu, Zhen and Yao, Jing and Guo, Leilei and Yan, Hongli and Nyamsi, Serge Nyallang and Kurko, Sandra V. and Yang, Fusheng and Zhang, Zaoxiao",
year = "2021",
abstract = "In order to uncover the inner working mechanism and performance of solid oxide fuel cell (SOFC) with biomass gasification syngas as fuel, a two dimensional SOFC multi-physical field model is established. This study makes up for the deficiency that the previous studies of coupling biomass gasification unit and SOFC stack mostly stay at the system level. The results show that the SOFC fueled by the syngas produced from gasification of biomass with steam as the agent has the best performance. The peak power density could achieve approximately 10240 W m−2. With the improvement of operating temperature, the peak power density of SOFC will be increased. At the temperature of 1123 K, the peak power density could achieve about 15128 W m−2. The average reaction rate of water gas shift (WGS) reaction is −29.73 mol m−3 s−1 when the operating temperature is 1123 K. This indicates that the WGS reaction will proceed in reverse direction at high temperatures, thereby reducing the hydrogen concentration. In addition, increase in the anode flux and decrease in the cell length lead to the increase of SOFC current density. In general, this work could provide guidance for the optimization and practical application of SOFC using biomass syngas as fuel.",
journal = "Journal of Power Sources",
title = "Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell",
volume = "512",
pages = "230470",
doi = "10.1016/j.jpowsour.2021.230470"
}
Zhu, P., Wu, Z., Yao, J., Guo, L., Yan, H., Nyamsi, S. N., Kurko, S. V., Yang, F.,& Zhang, Z.. (2021). Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell. in Journal of Power Sources, 512, 230470.
https://doi.org/10.1016/j.jpowsour.2021.230470
Zhu P, Wu Z, Yao J, Guo L, Yan H, Nyamsi SN, Kurko SV, Yang F, Zhang Z. Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell. in Journal of Power Sources. 2021;512:230470.
doi:10.1016/j.jpowsour.2021.230470 .
Zhu, Pengfei, Wu, Zhen, Yao, Jing, Guo, Leilei, Yan, Hongli, Nyamsi, Serge Nyallang, Kurko, Sandra V., Yang, Fusheng, Zhang, Zaoxiao, "Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell" in Journal of Power Sources, 512 (2021):230470,
https://doi.org/10.1016/j.jpowsour.2021.230470 . .
24
21

Methanol to power through high-efficiency hybrid fuel cell system: Thermodynamic, thermo-economic, and techno-economic (3T) analyses in Northwest China

Wu, Zhen; Zhu, Pengfei; Yao, Jing; Kurko, Sandra V.; Ren, Jianwei; Tan, Peng; Xu, Haoran; Zhang, Zaoxiao; Ni, Meng

(2021)

TY  - JOUR
AU  - Wu, Zhen
AU  - Zhu, Pengfei
AU  - Yao, Jing
AU  - Kurko, Sandra V.
AU  - Ren, Jianwei
AU  - Tan, Peng
AU  - Xu, Haoran
AU  - Zhang, Zaoxiao
AU  - Ni, Meng
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9565
AB  - Advanced efficient energy conversion technology using clean alternative fuel contributes to the alleviation of the energy crisis and environmental deterioration. In this situation, a novel methanol utilization technology for power generation based on hybrid fuel cell system is proposed in this work. The hybrid system consists of a solid oxide fuel cell (SOFC), a gas processing unit (GP) and a proton exchange membrane fuel cell (PEMFC). Thermodynamic analysis of the system shows that the energy conversion efficiency and exergy efficiency are both higher than the previously reported standalone or hybrid energy systems using methanol as fuel, which are 66.2% and 54.2% respectively. Besides, no recirculation ratio of anode off-gas and moderate fuel utilization of about 0.5 are suggested for the SOFC component to balance the power distribution and improve the efficiency. Afterwards, this hybrid fuel cell system is also investigated from thermo-economic and techno-economic perspectives. Take Northwest China as a case, the 1 MWe methanol-fed power plant has a specific electric energy cost of 0.5594 CNY/kWh, much lower than the methanol steam reforming-PEMFC power plant (2.4 CNY/kWh). At the same time, the sensitivity analyses reveal that the cost of the hybrid power system is not sensitive to the market price fluctuation. With financial subsidies for existing renewable power plants, the payback period can be shortened to 1.4 year and the annual return on investment is about 3.58%. These results reveal that this two-stage fuel cell hybrid system is a kind of efficient and economically methanol to power conversion technology, especially for small power scale. © 2021 Elsevier Ltd
T2  - Energy Conversion and Management
T1  - Methanol to power through high-efficiency hybrid fuel cell system: Thermodynamic, thermo-economic, and techno-economic (3T) analyses in Northwest China
VL  - 232
SP  - 113899
DO  - 10.1016/j.enconman.2021.113899
ER  - 
@article{
author = "Wu, Zhen and Zhu, Pengfei and Yao, Jing and Kurko, Sandra V. and Ren, Jianwei and Tan, Peng and Xu, Haoran and Zhang, Zaoxiao and Ni, Meng",
year = "2021",
abstract = "Advanced efficient energy conversion technology using clean alternative fuel contributes to the alleviation of the energy crisis and environmental deterioration. In this situation, a novel methanol utilization technology for power generation based on hybrid fuel cell system is proposed in this work. The hybrid system consists of a solid oxide fuel cell (SOFC), a gas processing unit (GP) and a proton exchange membrane fuel cell (PEMFC). Thermodynamic analysis of the system shows that the energy conversion efficiency and exergy efficiency are both higher than the previously reported standalone or hybrid energy systems using methanol as fuel, which are 66.2% and 54.2% respectively. Besides, no recirculation ratio of anode off-gas and moderate fuel utilization of about 0.5 are suggested for the SOFC component to balance the power distribution and improve the efficiency. Afterwards, this hybrid fuel cell system is also investigated from thermo-economic and techno-economic perspectives. Take Northwest China as a case, the 1 MWe methanol-fed power plant has a specific electric energy cost of 0.5594 CNY/kWh, much lower than the methanol steam reforming-PEMFC power plant (2.4 CNY/kWh). At the same time, the sensitivity analyses reveal that the cost of the hybrid power system is not sensitive to the market price fluctuation. With financial subsidies for existing renewable power plants, the payback period can be shortened to 1.4 year and the annual return on investment is about 3.58%. These results reveal that this two-stage fuel cell hybrid system is a kind of efficient and economically methanol to power conversion technology, especially for small power scale. © 2021 Elsevier Ltd",
journal = "Energy Conversion and Management",
title = "Methanol to power through high-efficiency hybrid fuel cell system: Thermodynamic, thermo-economic, and techno-economic (3T) analyses in Northwest China",
volume = "232",
pages = "113899",
doi = "10.1016/j.enconman.2021.113899"
}
Wu, Z., Zhu, P., Yao, J., Kurko, S. V., Ren, J., Tan, P., Xu, H., Zhang, Z.,& Ni, M.. (2021). Methanol to power through high-efficiency hybrid fuel cell system: Thermodynamic, thermo-economic, and techno-economic (3T) analyses in Northwest China. in Energy Conversion and Management, 232, 113899.
https://doi.org/10.1016/j.enconman.2021.113899
Wu Z, Zhu P, Yao J, Kurko SV, Ren J, Tan P, Xu H, Zhang Z, Ni M. Methanol to power through high-efficiency hybrid fuel cell system: Thermodynamic, thermo-economic, and techno-economic (3T) analyses in Northwest China. in Energy Conversion and Management. 2021;232:113899.
doi:10.1016/j.enconman.2021.113899 .
Wu, Zhen, Zhu, Pengfei, Yao, Jing, Kurko, Sandra V., Ren, Jianwei, Tan, Peng, Xu, Haoran, Zhang, Zaoxiao, Ni, Meng, "Methanol to power through high-efficiency hybrid fuel cell system: Thermodynamic, thermo-economic, and techno-economic (3T) analyses in Northwest China" in Energy Conversion and Management, 232 (2021):113899,
https://doi.org/10.1016/j.enconman.2021.113899 . .
19
2
14

Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation

Wu, Zhen; Yao, Jing; Zhu, Pengfei; Yang, Fusheng; Meng, Xiangyu; Kurko, Sandra V.; Zhang, Zaoxiao

(2021)

TY  - JOUR
AU  - Wu, Zhen
AU  - Yao, Jing
AU  - Zhu, Pengfei
AU  - Yang, Fusheng
AU  - Meng, Xiangyu
AU  - Kurko, Sandra V.
AU  - Zhang, Zaoxiao
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9074
AB  - Advanced biogas power generation technology has been attracting attentions, which contributes to the waste disposal and the mitigation of greenhouse gas emissions. This work proposes and models a novel biogas-fed hybrid power generation system consisting of solid oxide fuel cell, water gas shift reaction, thermal swing adsorption and proton exchange membrane fuel cell (SOFC-WGS-TSA-PEMFC). The thermodynamic, exergetic, and thermo-economic analyses of this hybrid system for power generation were conducted to comprehensively evaluate its performance. It was found that the novel biogas-fed hybrid system has a gross energy conversion efficiency of 68.63% and exergy efficiency of 65.36%, indicating high efficiency for this kind of hybrid power technology. The market sensitivity analysis showed that the hybrid system also has a low sensitivity to market price fluctuation. Under the current subsidy level for the distributed biogas power plant, the levelized cost of energy can be lowered to 0.02942 $/kWh for a 1 MW scale system. Accordingly, the payback period and annual return on investment can reach 1.4 year and about 20%, respectively. These results reveal that the proposed hybrid system is promising and economically feasible as a distributed power plant, especially for the small power scale (no more than 2 MW).
T2  - International Journal of Hydrogen Energy
T1  - Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation
VL  - 46
IS  - 19
SP  - 11183
EP  - 11198
DO  - 10.1016/j.ijhydene.2020.02.111
ER  - 
@article{
author = "Wu, Zhen and Yao, Jing and Zhu, Pengfei and Yang, Fusheng and Meng, Xiangyu and Kurko, Sandra V. and Zhang, Zaoxiao",
year = "2021",
abstract = "Advanced biogas power generation technology has been attracting attentions, which contributes to the waste disposal and the mitigation of greenhouse gas emissions. This work proposes and models a novel biogas-fed hybrid power generation system consisting of solid oxide fuel cell, water gas shift reaction, thermal swing adsorption and proton exchange membrane fuel cell (SOFC-WGS-TSA-PEMFC). The thermodynamic, exergetic, and thermo-economic analyses of this hybrid system for power generation were conducted to comprehensively evaluate its performance. It was found that the novel biogas-fed hybrid system has a gross energy conversion efficiency of 68.63% and exergy efficiency of 65.36%, indicating high efficiency for this kind of hybrid power technology. The market sensitivity analysis showed that the hybrid system also has a low sensitivity to market price fluctuation. Under the current subsidy level for the distributed biogas power plant, the levelized cost of energy can be lowered to 0.02942 $/kWh for a 1 MW scale system. Accordingly, the payback period and annual return on investment can reach 1.4 year and about 20%, respectively. These results reveal that the proposed hybrid system is promising and economically feasible as a distributed power plant, especially for the small power scale (no more than 2 MW).",
journal = "International Journal of Hydrogen Energy",
title = "Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation",
volume = "46",
number = "19",
pages = "11183-11198",
doi = "10.1016/j.ijhydene.2020.02.111"
}
Wu, Z., Yao, J., Zhu, P., Yang, F., Meng, X., Kurko, S. V.,& Zhang, Z.. (2021). Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation. in International Journal of Hydrogen Energy, 46(19), 11183-11198.
https://doi.org/10.1016/j.ijhydene.2020.02.111
Wu Z, Yao J, Zhu P, Yang F, Meng X, Kurko SV, Zhang Z. Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation. in International Journal of Hydrogen Energy. 2021;46(19):11183-11198.
doi:10.1016/j.ijhydene.2020.02.111 .
Wu, Zhen, Yao, Jing, Zhu, Pengfei, Yang, Fusheng, Meng, Xiangyu, Kurko, Sandra V., Zhang, Zaoxiao, "Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation" in International Journal of Hydrogen Energy, 46, no. 19 (2021):11183-11198,
https://doi.org/10.1016/j.ijhydene.2020.02.111 . .
19
5
21

Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization

Zhu, Pengfei; Wu, Zhen; Guo, Leilei; Yao, Jing; Dai, Min; Ren, Jianwei; Kurko, Sandra V.; Yan, Hongli; Yang, Fusheng; Zhang, Zaoxiao

(2021)

TY  - JOUR
AU  - Zhu, Pengfei
AU  - Wu, Zhen
AU  - Guo, Leilei
AU  - Yao, Jing
AU  - Dai, Min
AU  - Ren, Jianwei
AU  - Kurko, Sandra V.
AU  - Yan, Hongli
AU  - Yang, Fusheng
AU  - Zhang, Zaoxiao
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9818
AB  - In order to develop clean and efficient energy conversion technology, a novel combined cooling, heating and power (CCHP) system using biomass as fuel is proposed in this work. The proposed CCHP system consists of biomass gasification unit, solid oxide fuel cell (SOFC), engine power generation unit and absorption refrigeration unit. Thermodynamic model of the CCHP system is developed for the parametric and exergy analyses to evaluate the performance. The parametric analysis shows that increasing the steam to biomass ratio or the SOFC fuel utilization factor helps to improve the electrical efficiency, while the increase of air equivalent ratio has a negative effect. The exergy analysis shows that the two units of biomass gasification and engine power generation have the largest exergy destruction ratio, which is 46.9% and 16.8% under the biomass flux of 500 kg·h−1. This is because these two units involve in high-temperature thermochemical reaction process, resulting in relatively large exergy destruction. Besides, the tradeoff between maximum exergy efficiency, CCHP efficiency and minimum total annual cost is conducted by multi-objective optimization. Through optimization, the system could reach the high CCHP efficiency of 75% and net electrical efficiency of 52%, as well as the low total annual cost of 410 k$ simultaneously. This work could provide the basic design idea, and high-efficiency and low-cost operation strategy for the practical application of the proposed novel biomass-fueled CCHP poly-generation system.
T2  - Energy Conversion and Management
T1  - Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization
VL  - 240
SP  - 114245
DO  - 10.1016/j.enconman.2021.114245
ER  - 
@article{
author = "Zhu, Pengfei and Wu, Zhen and Guo, Leilei and Yao, Jing and Dai, Min and Ren, Jianwei and Kurko, Sandra V. and Yan, Hongli and Yang, Fusheng and Zhang, Zaoxiao",
year = "2021",
abstract = "In order to develop clean and efficient energy conversion technology, a novel combined cooling, heating and power (CCHP) system using biomass as fuel is proposed in this work. The proposed CCHP system consists of biomass gasification unit, solid oxide fuel cell (SOFC), engine power generation unit and absorption refrigeration unit. Thermodynamic model of the CCHP system is developed for the parametric and exergy analyses to evaluate the performance. The parametric analysis shows that increasing the steam to biomass ratio or the SOFC fuel utilization factor helps to improve the electrical efficiency, while the increase of air equivalent ratio has a negative effect. The exergy analysis shows that the two units of biomass gasification and engine power generation have the largest exergy destruction ratio, which is 46.9% and 16.8% under the biomass flux of 500 kg·h−1. This is because these two units involve in high-temperature thermochemical reaction process, resulting in relatively large exergy destruction. Besides, the tradeoff between maximum exergy efficiency, CCHP efficiency and minimum total annual cost is conducted by multi-objective optimization. Through optimization, the system could reach the high CCHP efficiency of 75% and net electrical efficiency of 52%, as well as the low total annual cost of 410 k$ simultaneously. This work could provide the basic design idea, and high-efficiency and low-cost operation strategy for the practical application of the proposed novel biomass-fueled CCHP poly-generation system.",
journal = "Energy Conversion and Management",
title = "Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization",
volume = "240",
pages = "114245",
doi = "10.1016/j.enconman.2021.114245"
}
Zhu, P., Wu, Z., Guo, L., Yao, J., Dai, M., Ren, J., Kurko, S. V., Yan, H., Yang, F.,& Zhang, Z.. (2021). Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization. in Energy Conversion and Management, 240, 114245.
https://doi.org/10.1016/j.enconman.2021.114245
Zhu P, Wu Z, Guo L, Yao J, Dai M, Ren J, Kurko SV, Yan H, Yang F, Zhang Z. Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization. in Energy Conversion and Management. 2021;240:114245.
doi:10.1016/j.enconman.2021.114245 .
Zhu, Pengfei, Wu, Zhen, Guo, Leilei, Yao, Jing, Dai, Min, Ren, Jianwei, Kurko, Sandra V., Yan, Hongli, Yang, Fusheng, Zhang, Zaoxiao, "Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization" in Energy Conversion and Management, 240 (2021):114245,
https://doi.org/10.1016/j.enconman.2021.114245 . .
1
52
8
45

Study of an autothermal-equilibrium metal hydride reactor by reaction heat recovery as hydrogen source for the application of fuel cell power system

Yao, Jing; Zhu, Pengfei; Qian, Chenhui; Hamidullah, Usamah; Kurko, Sandra V.; Yang, Fusheng; Zhang, Zaoxiao; Wu, Zhen

(2020)

TY  - JOUR
AU  - Yao, Jing
AU  - Zhu, Pengfei
AU  - Qian, Chenhui
AU  - Hamidullah, Usamah
AU  - Kurko, Sandra V.
AU  - Yang, Fusheng
AU  - Zhang, Zaoxiao
AU  - Wu, Zhen
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8952
AB  - This paper proposes a novel autothermal-equilibrium metal hydride reactor as the hydrogen source for the fuel cell power system, which employs phase change material (PCM) to recycle the hydrogen storage heat. A three-dimensional model of the metal hydride reactor coupled with a salt hydrate PCM for heat recovery is developed. Based on the model, the effects of key operating and design parameters on the reactor are investigated for performance optimization, including operating pressure, melting temperature, latent heat and thermal conductivity of PCM. Through the parametric analysis, it is found that increasing the operating pressure is beneficial to accelerate the absorption reaction. The average reaction fraction at 2400 s is increased by 24% with the pressure increasing from 6 to 10 bar. The moderate melting temperature and the thermal conductivity of the PCM that is comparable to that of metal hydride bed contribute to the improvement of hydrogen storage efficiency. Using this kind of hydrogen source reactor in a fuel cell power system, stable hydrogen storage efficiency of approximately 60% in the experiment is presented. In addition, no obvious performance deterioration of the power system occurs after ten cycles.
T2  - Energy Conversion and Management
T1  - Study of an autothermal-equilibrium metal hydride reactor by reaction heat recovery as hydrogen source for the application of fuel cell power system
VL  - 213
SP  - 112864
DO  - 10.1016/j.enconman.2020.112864
ER  - 
@article{
author = "Yao, Jing and Zhu, Pengfei and Qian, Chenhui and Hamidullah, Usamah and Kurko, Sandra V. and Yang, Fusheng and Zhang, Zaoxiao and Wu, Zhen",
year = "2020",
abstract = "This paper proposes a novel autothermal-equilibrium metal hydride reactor as the hydrogen source for the fuel cell power system, which employs phase change material (PCM) to recycle the hydrogen storage heat. A three-dimensional model of the metal hydride reactor coupled with a salt hydrate PCM for heat recovery is developed. Based on the model, the effects of key operating and design parameters on the reactor are investigated for performance optimization, including operating pressure, melting temperature, latent heat and thermal conductivity of PCM. Through the parametric analysis, it is found that increasing the operating pressure is beneficial to accelerate the absorption reaction. The average reaction fraction at 2400 s is increased by 24% with the pressure increasing from 6 to 10 bar. The moderate melting temperature and the thermal conductivity of the PCM that is comparable to that of metal hydride bed contribute to the improvement of hydrogen storage efficiency. Using this kind of hydrogen source reactor in a fuel cell power system, stable hydrogen storage efficiency of approximately 60% in the experiment is presented. In addition, no obvious performance deterioration of the power system occurs after ten cycles.",
journal = "Energy Conversion and Management",
title = "Study of an autothermal-equilibrium metal hydride reactor by reaction heat recovery as hydrogen source for the application of fuel cell power system",
volume = "213",
pages = "112864",
doi = "10.1016/j.enconman.2020.112864"
}
Yao, J., Zhu, P., Qian, C., Hamidullah, U., Kurko, S. V., Yang, F., Zhang, Z.,& Wu, Z.. (2020). Study of an autothermal-equilibrium metal hydride reactor by reaction heat recovery as hydrogen source for the application of fuel cell power system. in Energy Conversion and Management, 213, 112864.
https://doi.org/10.1016/j.enconman.2020.112864
Yao J, Zhu P, Qian C, Hamidullah U, Kurko SV, Yang F, Zhang Z, Wu Z. Study of an autothermal-equilibrium metal hydride reactor by reaction heat recovery as hydrogen source for the application of fuel cell power system. in Energy Conversion and Management. 2020;213:112864.
doi:10.1016/j.enconman.2020.112864 .
Yao, Jing, Zhu, Pengfei, Qian, Chenhui, Hamidullah, Usamah, Kurko, Sandra V., Yang, Fusheng, Zhang, Zaoxiao, Wu, Zhen, "Study of an autothermal-equilibrium metal hydride reactor by reaction heat recovery as hydrogen source for the application of fuel cell power system" in Energy Conversion and Management, 213 (2020):112864,
https://doi.org/10.1016/j.enconman.2020.112864 . .
27
9
23

A continuous hydrogen absorption/desorption model for metal hydride reactor coupled with PCM as heat management and its application in the fuel cell power system

Yao, Jing; Zhu, Pengfei; Guo, Leilei; Duan, Lian; Zhang, Zaoxiao; Kurko, Sandra V.; Wu, Zhen

(2020)

TY  - JOUR
AU  - Yao, Jing
AU  - Zhu, Pengfei
AU  - Guo, Leilei
AU  - Duan, Lian
AU  - Zhang, Zaoxiao
AU  - Kurko, Sandra V.
AU  - Wu, Zhen
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9041
AB  - In this work, the model of metal hydride reactor coupled with phase change material (PCM) as heat management is modified to describe the heat and mass transfer behaviors of the continuous hydrogen absorption/desorption processes better. Through the experimental validation, the modified model is proven to be more accurate than the traditional model. Based on the proposed model, the performance of the metal hydride reactor is further optimized by the parametric analysis, property and configuration modification. The results show that the metal hydride reactor achieves a hydrogen storage efficiency of 47% at the phase change temperature of 42 °C, which is higher than at 35 and 49 °C. By adding expanded graphite into PCM, the hydrogen storage efficiency can increase up to about 72%, which is higher than the previously reported efficiency of 69%. This is because of the enhanced heat transfer between metal hydride and PCM. Accordingly, the hydrogen absorption time is significantly shortened to no more than 5 min. In addition, it is suggested to operate the reactor in the hydrogen desorption pressure of 2–8 bar and the temperature of 32–58 °C for the improved performance, when this kind of reactor is applied in the fuel cell power system as hydrogen source.
T2  - International Journal of Hydrogen Energy
T1  - A continuous hydrogen absorption/desorption model for metal hydride reactor coupled with PCM as heat management and its application in the fuel cell power system
VL  - 45
IS  - 52
SP  - 28087
EP  - 28099
DO  - 10.1016/j.ijhydene.2020.05.089
ER  - 
@article{
author = "Yao, Jing and Zhu, Pengfei and Guo, Leilei and Duan, Lian and Zhang, Zaoxiao and Kurko, Sandra V. and Wu, Zhen",
year = "2020",
abstract = "In this work, the model of metal hydride reactor coupled with phase change material (PCM) as heat management is modified to describe the heat and mass transfer behaviors of the continuous hydrogen absorption/desorption processes better. Through the experimental validation, the modified model is proven to be more accurate than the traditional model. Based on the proposed model, the performance of the metal hydride reactor is further optimized by the parametric analysis, property and configuration modification. The results show that the metal hydride reactor achieves a hydrogen storage efficiency of 47% at the phase change temperature of 42 °C, which is higher than at 35 and 49 °C. By adding expanded graphite into PCM, the hydrogen storage efficiency can increase up to about 72%, which is higher than the previously reported efficiency of 69%. This is because of the enhanced heat transfer between metal hydride and PCM. Accordingly, the hydrogen absorption time is significantly shortened to no more than 5 min. In addition, it is suggested to operate the reactor in the hydrogen desorption pressure of 2–8 bar and the temperature of 32–58 °C for the improved performance, when this kind of reactor is applied in the fuel cell power system as hydrogen source.",
journal = "International Journal of Hydrogen Energy",
title = "A continuous hydrogen absorption/desorption model for metal hydride reactor coupled with PCM as heat management and its application in the fuel cell power system",
volume = "45",
number = "52",
pages = "28087-28099",
doi = "10.1016/j.ijhydene.2020.05.089"
}
Yao, J., Zhu, P., Guo, L., Duan, L., Zhang, Z., Kurko, S. V.,& Wu, Z.. (2020). A continuous hydrogen absorption/desorption model for metal hydride reactor coupled with PCM as heat management and its application in the fuel cell power system. in International Journal of Hydrogen Energy, 45(52), 28087-28099.
https://doi.org/10.1016/j.ijhydene.2020.05.089
Yao J, Zhu P, Guo L, Duan L, Zhang Z, Kurko SV, Wu Z. A continuous hydrogen absorption/desorption model for metal hydride reactor coupled with PCM as heat management and its application in the fuel cell power system. in International Journal of Hydrogen Energy. 2020;45(52):28087-28099.
doi:10.1016/j.ijhydene.2020.05.089 .
Yao, Jing, Zhu, Pengfei, Guo, Leilei, Duan, Lian, Zhang, Zaoxiao, Kurko, Sandra V., Wu, Zhen, "A continuous hydrogen absorption/desorption model for metal hydride reactor coupled with PCM as heat management and its application in the fuel cell power system" in International Journal of Hydrogen Energy, 45, no. 52 (2020):28087-28099,
https://doi.org/10.1016/j.ijhydene.2020.05.089 . .
37
4
29