Rajilić-Stojanović, Mirjana

Link to this page

Authority KeyName Variants
orcid::0000-0003-1624-1557
  • Rajilić-Stojanović, Mirjana (2)
  • Stojanović, Mirjana (1)
Projects

Author's Bibliography

Biocontrol and plant stimulating potential of novel strain Bacillus sp. PPM3 isolated from marine sediment

Radovanović, Neda; Milutinović, Milica; Mihajlovski, Katarina ; Jović, Jelena M.; Nastasijević, Branislav J.; Rajilić-Stojanović, Mirjana; Dimitrijević-Branković, Suzana I.

(2018)

TY  - JOUR
AU  - Radovanović, Neda
AU  - Milutinović, Milica
AU  - Mihajlovski, Katarina 
AU  - Jović, Jelena M.
AU  - Nastasijević, Branislav J.
AU  - Rajilić-Stojanović, Mirjana
AU  - Dimitrijević-Branković, Suzana I.
PY  - 2018
UR  - http://linkinghub.elsevier.com/retrieve/pii/S0882401017312664
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7679
AB  - In the current study, the biocontrol potential of a novel strain Bacillus sp. PPM3 isolated from marine sediment from the Red Sea in Hurghada, Egypt is recognized. This novel strain was selected out of 32 isolates based on its ability to suppress the growth of four plant pathogenic fungi: Aspergillus flavus, Fusarium graminearum, Mucor sp. and Alternaria sp. The new marine strain was identified and characterized by phenotypic and molecular approaches. The culture filtrate of Bacillus sp. PPM3 suppressed the growth and spore germination of all tested fungi in vitro with the highest value of inhibition reported for Mucor sp. (97.5%). The antifungal effect of the culture filtrate from the strain PPM3 was due to production of highly stable secondary metabolites resistant to extreme pH, temperature and enzymatic treatments. A PCR analysis confirmed the expression of genes involved in the synthesis of antifungal lipopeptides: iturin, bacillomycin D, mycosubtilin and surfactin. In a greenhouse experiment strain PPM3 effectively reduced disease incidence of F. graminearum in maize plants and displayed additional plant growth stimulating effect. The results show that novel marine strain PPM3 could have a potential in commercial application as biocontrol agent for treatment of various plant diseases caused by soil-borne and postharvest pathogenic fungi.
T2  - Microbial Pathogenesis
T1  - Biocontrol and plant stimulating potential of novel strain Bacillus sp. PPM3 isolated from marine sediment
VL  - 120
SP  - 71
EP  - 78
DO  - 10.1016/j.micpath.2018.04.056
ER  - 
@article{
author = "Radovanović, Neda and Milutinović, Milica and Mihajlovski, Katarina  and Jović, Jelena M. and Nastasijević, Branislav J. and Rajilić-Stojanović, Mirjana and Dimitrijević-Branković, Suzana I.",
year = "2018",
abstract = "In the current study, the biocontrol potential of a novel strain Bacillus sp. PPM3 isolated from marine sediment from the Red Sea in Hurghada, Egypt is recognized. This novel strain was selected out of 32 isolates based on its ability to suppress the growth of four plant pathogenic fungi: Aspergillus flavus, Fusarium graminearum, Mucor sp. and Alternaria sp. The new marine strain was identified and characterized by phenotypic and molecular approaches. The culture filtrate of Bacillus sp. PPM3 suppressed the growth and spore germination of all tested fungi in vitro with the highest value of inhibition reported for Mucor sp. (97.5%). The antifungal effect of the culture filtrate from the strain PPM3 was due to production of highly stable secondary metabolites resistant to extreme pH, temperature and enzymatic treatments. A PCR analysis confirmed the expression of genes involved in the synthesis of antifungal lipopeptides: iturin, bacillomycin D, mycosubtilin and surfactin. In a greenhouse experiment strain PPM3 effectively reduced disease incidence of F. graminearum in maize plants and displayed additional plant growth stimulating effect. The results show that novel marine strain PPM3 could have a potential in commercial application as biocontrol agent for treatment of various plant diseases caused by soil-borne and postharvest pathogenic fungi.",
journal = "Microbial Pathogenesis",
title = "Biocontrol and plant stimulating potential of novel strain Bacillus sp. PPM3 isolated from marine sediment",
volume = "120",
pages = "71-78",
doi = "10.1016/j.micpath.2018.04.056"
}
Radovanović, N., Milutinović, M., Mihajlovski, K., Jović, J. M., Nastasijević, B. J., Rajilić-Stojanović, M.,& Dimitrijević-Branković, S. I.. (2018). Biocontrol and plant stimulating potential of novel strain Bacillus sp. PPM3 isolated from marine sediment. in Microbial Pathogenesis, 120, 71-78.
https://doi.org/10.1016/j.micpath.2018.04.056
Radovanović N, Milutinović M, Mihajlovski K, Jović JM, Nastasijević BJ, Rajilić-Stojanović M, Dimitrijević-Branković SI. Biocontrol and plant stimulating potential of novel strain Bacillus sp. PPM3 isolated from marine sediment. in Microbial Pathogenesis. 2018;120:71-78.
doi:10.1016/j.micpath.2018.04.056 .
Radovanović, Neda, Milutinović, Milica, Mihajlovski, Katarina , Jović, Jelena M., Nastasijević, Branislav J., Rajilić-Stojanović, Mirjana, Dimitrijević-Branković, Suzana I., "Biocontrol and plant stimulating potential of novel strain Bacillus sp. PPM3 isolated from marine sediment" in Microbial Pathogenesis, 120 (2018):71-78,
https://doi.org/10.1016/j.micpath.2018.04.056 . .
16
9
14

Multiscale characterization of antimicrobial poly(vinyl butyral)/titania nanofibrous composites

Alzarrug, Faisal Ali; Stojanović, Dušica B.; Obradović, Vera; Kojović, Aleksandar; Nedeljković, Jovan; Rajilić-Stojanović, Mirjana; Uskoković, Petar S.

(2017)

TY  - JOUR
AU  - Alzarrug, Faisal Ali
AU  - Stojanović, Dušica B.
AU  - Obradović, Vera
AU  - Kojović, Aleksandar
AU  - Nedeljković, Jovan
AU  - Rajilić-Stojanović, Mirjana
AU  - Uskoković, Petar S.
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1598
AB  - Titania nanofillers were used to reinforce nanofibers in composite mats produced by electrospinning of poly(vinyl butyral) with two different concentrations of polymers. The titania nanoparticles and titania nanotubes were added into an acetic acid/ethanol solution in different contents of 3 and 1wt%, respectively. The effect of the processing system on the morphology of the produced fibers was analyzed. The antimicrobial poly(vinyl butyral) composite fibers with titanium dioxide nanoparticles and titanium dioxide nanotubes were produced by single and multineedle electrospinning systems. This study reports fabrication of composite nanofibrous mats with significant mechanical and antimicrobial properties at a high production speed, which is promising for commercial applications (health care, photocatalysis, protective clothing, etc.). The reported result revealed an outstanding correlation between values of elastic modulus derived from nanoindentation and dynamic mechanical techniques. Copyright (c) 2017 John Wiley and Sons, Ltd.
T2  - Polymers for Advanced Technologies
T1  - Multiscale characterization of antimicrobial poly(vinyl butyral)/titania nanofibrous composites
VL  - 28
IS  - 7
SP  - 909
EP  - 914
DO  - 10.1002/pat.3996
ER  - 
@article{
author = "Alzarrug, Faisal Ali and Stojanović, Dušica B. and Obradović, Vera and Kojović, Aleksandar and Nedeljković, Jovan and Rajilić-Stojanović, Mirjana and Uskoković, Petar S.",
year = "2017",
abstract = "Titania nanofillers were used to reinforce nanofibers in composite mats produced by electrospinning of poly(vinyl butyral) with two different concentrations of polymers. The titania nanoparticles and titania nanotubes were added into an acetic acid/ethanol solution in different contents of 3 and 1wt%, respectively. The effect of the processing system on the morphology of the produced fibers was analyzed. The antimicrobial poly(vinyl butyral) composite fibers with titanium dioxide nanoparticles and titanium dioxide nanotubes were produced by single and multineedle electrospinning systems. This study reports fabrication of composite nanofibrous mats with significant mechanical and antimicrobial properties at a high production speed, which is promising for commercial applications (health care, photocatalysis, protective clothing, etc.). The reported result revealed an outstanding correlation between values of elastic modulus derived from nanoindentation and dynamic mechanical techniques. Copyright (c) 2017 John Wiley and Sons, Ltd.",
journal = "Polymers for Advanced Technologies",
title = "Multiscale characterization of antimicrobial poly(vinyl butyral)/titania nanofibrous composites",
volume = "28",
number = "7",
pages = "909-914",
doi = "10.1002/pat.3996"
}
Alzarrug, F. A., Stojanović, D. B., Obradović, V., Kojović, A., Nedeljković, J., Rajilić-Stojanović, M.,& Uskoković, P. S.. (2017). Multiscale characterization of antimicrobial poly(vinyl butyral)/titania nanofibrous composites. in Polymers for Advanced Technologies, 28(7), 909-914.
https://doi.org/10.1002/pat.3996
Alzarrug FA, Stojanović DB, Obradović V, Kojović A, Nedeljković J, Rajilić-Stojanović M, Uskoković PS. Multiscale characterization of antimicrobial poly(vinyl butyral)/titania nanofibrous composites. in Polymers for Advanced Technologies. 2017;28(7):909-914.
doi:10.1002/pat.3996 .
Alzarrug, Faisal Ali, Stojanović, Dušica B., Obradović, Vera, Kojović, Aleksandar, Nedeljković, Jovan, Rajilić-Stojanović, Mirjana, Uskoković, Petar S., "Multiscale characterization of antimicrobial poly(vinyl butyral)/titania nanofibrous composites" in Polymers for Advanced Technologies, 28, no. 7 (2017):909-914,
https://doi.org/10.1002/pat.3996 . .
7
6
7

Stability of nano-scaled Ta/Ti multilayers upon argon ion irradiation

Milosavljević, Momir; Milinović, Velimir; Peruško, Davor; Grce, Ana; Stojanović, Mirjana; Pjević, Dejan J.; Mitrić, Miodrag; Kovač, Janez; Homewood, Kevin P.

(2011)

TY  - JOUR
AU  - Milosavljević, Momir
AU  - Milinović, Velimir
AU  - Peruško, Davor
AU  - Grce, Ana
AU  - Stojanović, Mirjana
AU  - Pjević, Dejan J.
AU  - Mitrić, Miodrag
AU  - Kovač, Janez
AU  - Homewood, Kevin P.
PY  - 2011
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/4487
AB  - The effects of argon ion irradiation on structural changes in Ta/Ti multilayers deposited on Si wafers were investigated. The starting structures consisted of sputter deposited 10 alternate Ta (similar to 23 nm) and Ti (similar to 17 nm) layers of a total thickness similar to 200 nm. They were irradiated at room temperature with 200 key Ar(+), to the fluences from 5 x 10(15) to 2 x 10(16) ions/cm(2). The projected ion range was around mid-depth of the multilayered structure, and maximum displacements per atom similar to 130. It was found that, despite of the relatively heavy ion irradiation, individual nanocrystalline Ta and Ti layers remain unmixed, keeping the same level of interface planarity. The changes observed in the mostly affected region are increase in lateral dimensions of crystal grains in individual layers, and incorporation of bubbles and defects that cause some stretching of the crystal lattice. Absence of interlayer mixing is assigned to Ta-Ti immiscibility (reaction enthalpy Delta H(f) = +2 kJ/mol). It is estimated that up to similar to 5 at.% interface mixing induced directly by collision cascades could be compensated by dynamic demixing due to chemical driving forces in the temperature relaxation regime. The results can be interesting towards developing radiation tolerant materials based on multilayered structures. (C) 2011 Elsevier B.V. All rights reserved.
T2  - Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms
T1  - Stability of nano-scaled Ta/Ti multilayers upon argon ion irradiation
VL  - 269
IS  - 19
SP  - 2090
EP  - 2097
DO  - 10.1016/j.nimb.2011.06.017
ER  - 
@article{
author = "Milosavljević, Momir and Milinović, Velimir and Peruško, Davor and Grce, Ana and Stojanović, Mirjana and Pjević, Dejan J. and Mitrić, Miodrag and Kovač, Janez and Homewood, Kevin P.",
year = "2011",
abstract = "The effects of argon ion irradiation on structural changes in Ta/Ti multilayers deposited on Si wafers were investigated. The starting structures consisted of sputter deposited 10 alternate Ta (similar to 23 nm) and Ti (similar to 17 nm) layers of a total thickness similar to 200 nm. They were irradiated at room temperature with 200 key Ar(+), to the fluences from 5 x 10(15) to 2 x 10(16) ions/cm(2). The projected ion range was around mid-depth of the multilayered structure, and maximum displacements per atom similar to 130. It was found that, despite of the relatively heavy ion irradiation, individual nanocrystalline Ta and Ti layers remain unmixed, keeping the same level of interface planarity. The changes observed in the mostly affected region are increase in lateral dimensions of crystal grains in individual layers, and incorporation of bubbles and defects that cause some stretching of the crystal lattice. Absence of interlayer mixing is assigned to Ta-Ti immiscibility (reaction enthalpy Delta H(f) = +2 kJ/mol). It is estimated that up to similar to 5 at.% interface mixing induced directly by collision cascades could be compensated by dynamic demixing due to chemical driving forces in the temperature relaxation regime. The results can be interesting towards developing radiation tolerant materials based on multilayered structures. (C) 2011 Elsevier B.V. All rights reserved.",
journal = "Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms",
title = "Stability of nano-scaled Ta/Ti multilayers upon argon ion irradiation",
volume = "269",
number = "19",
pages = "2090-2097",
doi = "10.1016/j.nimb.2011.06.017"
}
Milosavljević, M., Milinović, V., Peruško, D., Grce, A., Stojanović, M., Pjević, D. J., Mitrić, M., Kovač, J.,& Homewood, K. P.. (2011). Stability of nano-scaled Ta/Ti multilayers upon argon ion irradiation. in Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms, 269(19), 2090-2097.
https://doi.org/10.1016/j.nimb.2011.06.017
Milosavljević M, Milinović V, Peruško D, Grce A, Stojanović M, Pjević DJ, Mitrić M, Kovač J, Homewood KP. Stability of nano-scaled Ta/Ti multilayers upon argon ion irradiation. in Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms. 2011;269(19):2090-2097.
doi:10.1016/j.nimb.2011.06.017 .
Milosavljević, Momir, Milinović, Velimir, Peruško, Davor, Grce, Ana, Stojanović, Mirjana, Pjević, Dejan J., Mitrić, Miodrag, Kovač, Janez, Homewood, Kevin P., "Stability of nano-scaled Ta/Ti multilayers upon argon ion irradiation" in Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms, 269, no. 19 (2011):2090-2097,
https://doi.org/10.1016/j.nimb.2011.06.017 . .
14
12
15