Guo, Leilei

Link to this page

Authority KeyName Variants
1a5b1263-9c03-4630-9e7c-3258cc64c83e
  • Guo, Leilei (3)

Author's Bibliography

Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell

Zhu, Pengfei; Wu, Zhen; Yao, Jing; Guo, Leilei; Yan, Hongli; Nyamsi, Serge Nyallang; Kurko, Sandra V.; Yang, Fusheng; Zhang, Zaoxiao

(2021)

TY  - JOUR
AU  - Zhu, Pengfei
AU  - Wu, Zhen
AU  - Yao, Jing
AU  - Guo, Leilei
AU  - Yan, Hongli
AU  - Nyamsi, Serge Nyallang
AU  - Kurko, Sandra V.
AU  - Yang, Fusheng
AU  - Zhang, Zaoxiao
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9931
AB  - In order to uncover the inner working mechanism and performance of solid oxide fuel cell (SOFC) with biomass gasification syngas as fuel, a two dimensional SOFC multi-physical field model is established. This study makes up for the deficiency that the previous studies of coupling biomass gasification unit and SOFC stack mostly stay at the system level. The results show that the SOFC fueled by the syngas produced from gasification of biomass with steam as the agent has the best performance. The peak power density could achieve approximately 10240 W m−2. With the improvement of operating temperature, the peak power density of SOFC will be increased. At the temperature of 1123 K, the peak power density could achieve about 15128 W m−2. The average reaction rate of water gas shift (WGS) reaction is −29.73 mol m−3 s−1 when the operating temperature is 1123 K. This indicates that the WGS reaction will proceed in reverse direction at high temperatures, thereby reducing the hydrogen concentration. In addition, increase in the anode flux and decrease in the cell length lead to the increase of SOFC current density. In general, this work could provide guidance for the optimization and practical application of SOFC using biomass syngas as fuel.
T2  - Journal of Power Sources
T1  - Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell
VL  - 512
SP  - 230470
DO  - 10.1016/j.jpowsour.2021.230470
ER  - 
@article{
author = "Zhu, Pengfei and Wu, Zhen and Yao, Jing and Guo, Leilei and Yan, Hongli and Nyamsi, Serge Nyallang and Kurko, Sandra V. and Yang, Fusheng and Zhang, Zaoxiao",
year = "2021",
abstract = "In order to uncover the inner working mechanism and performance of solid oxide fuel cell (SOFC) with biomass gasification syngas as fuel, a two dimensional SOFC multi-physical field model is established. This study makes up for the deficiency that the previous studies of coupling biomass gasification unit and SOFC stack mostly stay at the system level. The results show that the SOFC fueled by the syngas produced from gasification of biomass with steam as the agent has the best performance. The peak power density could achieve approximately 10240 W m−2. With the improvement of operating temperature, the peak power density of SOFC will be increased. At the temperature of 1123 K, the peak power density could achieve about 15128 W m−2. The average reaction rate of water gas shift (WGS) reaction is −29.73 mol m−3 s−1 when the operating temperature is 1123 K. This indicates that the WGS reaction will proceed in reverse direction at high temperatures, thereby reducing the hydrogen concentration. In addition, increase in the anode flux and decrease in the cell length lead to the increase of SOFC current density. In general, this work could provide guidance for the optimization and practical application of SOFC using biomass syngas as fuel.",
journal = "Journal of Power Sources",
title = "Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell",
volume = "512",
pages = "230470",
doi = "10.1016/j.jpowsour.2021.230470"
}
Zhu, P., Wu, Z., Yao, J., Guo, L., Yan, H., Nyamsi, S. N., Kurko, S. V., Yang, F.,& Zhang, Z.. (2021). Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell. in Journal of Power Sources, 512, 230470.
https://doi.org/10.1016/j.jpowsour.2021.230470
Zhu P, Wu Z, Yao J, Guo L, Yan H, Nyamsi SN, Kurko SV, Yang F, Zhang Z. Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell. in Journal of Power Sources. 2021;512:230470.
doi:10.1016/j.jpowsour.2021.230470 .
Zhu, Pengfei, Wu, Zhen, Yao, Jing, Guo, Leilei, Yan, Hongli, Nyamsi, Serge Nyallang, Kurko, Sandra V., Yang, Fusheng, Zhang, Zaoxiao, "Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell" in Journal of Power Sources, 512 (2021):230470,
https://doi.org/10.1016/j.jpowsour.2021.230470 . .
24
21

Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization

Zhu, Pengfei; Wu, Zhen; Guo, Leilei; Yao, Jing; Dai, Min; Ren, Jianwei; Kurko, Sandra V.; Yan, Hongli; Yang, Fusheng; Zhang, Zaoxiao

(2021)

TY  - JOUR
AU  - Zhu, Pengfei
AU  - Wu, Zhen
AU  - Guo, Leilei
AU  - Yao, Jing
AU  - Dai, Min
AU  - Ren, Jianwei
AU  - Kurko, Sandra V.
AU  - Yan, Hongli
AU  - Yang, Fusheng
AU  - Zhang, Zaoxiao
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9818
AB  - In order to develop clean and efficient energy conversion technology, a novel combined cooling, heating and power (CCHP) system using biomass as fuel is proposed in this work. The proposed CCHP system consists of biomass gasification unit, solid oxide fuel cell (SOFC), engine power generation unit and absorption refrigeration unit. Thermodynamic model of the CCHP system is developed for the parametric and exergy analyses to evaluate the performance. The parametric analysis shows that increasing the steam to biomass ratio or the SOFC fuel utilization factor helps to improve the electrical efficiency, while the increase of air equivalent ratio has a negative effect. The exergy analysis shows that the two units of biomass gasification and engine power generation have the largest exergy destruction ratio, which is 46.9% and 16.8% under the biomass flux of 500 kg·h−1. This is because these two units involve in high-temperature thermochemical reaction process, resulting in relatively large exergy destruction. Besides, the tradeoff between maximum exergy efficiency, CCHP efficiency and minimum total annual cost is conducted by multi-objective optimization. Through optimization, the system could reach the high CCHP efficiency of 75% and net electrical efficiency of 52%, as well as the low total annual cost of 410 k$ simultaneously. This work could provide the basic design idea, and high-efficiency and low-cost operation strategy for the practical application of the proposed novel biomass-fueled CCHP poly-generation system.
T2  - Energy Conversion and Management
T1  - Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization
VL  - 240
SP  - 114245
DO  - 10.1016/j.enconman.2021.114245
ER  - 
@article{
author = "Zhu, Pengfei and Wu, Zhen and Guo, Leilei and Yao, Jing and Dai, Min and Ren, Jianwei and Kurko, Sandra V. and Yan, Hongli and Yang, Fusheng and Zhang, Zaoxiao",
year = "2021",
abstract = "In order to develop clean and efficient energy conversion technology, a novel combined cooling, heating and power (CCHP) system using biomass as fuel is proposed in this work. The proposed CCHP system consists of biomass gasification unit, solid oxide fuel cell (SOFC), engine power generation unit and absorption refrigeration unit. Thermodynamic model of the CCHP system is developed for the parametric and exergy analyses to evaluate the performance. The parametric analysis shows that increasing the steam to biomass ratio or the SOFC fuel utilization factor helps to improve the electrical efficiency, while the increase of air equivalent ratio has a negative effect. The exergy analysis shows that the two units of biomass gasification and engine power generation have the largest exergy destruction ratio, which is 46.9% and 16.8% under the biomass flux of 500 kg·h−1. This is because these two units involve in high-temperature thermochemical reaction process, resulting in relatively large exergy destruction. Besides, the tradeoff between maximum exergy efficiency, CCHP efficiency and minimum total annual cost is conducted by multi-objective optimization. Through optimization, the system could reach the high CCHP efficiency of 75% and net electrical efficiency of 52%, as well as the low total annual cost of 410 k$ simultaneously. This work could provide the basic design idea, and high-efficiency and low-cost operation strategy for the practical application of the proposed novel biomass-fueled CCHP poly-generation system.",
journal = "Energy Conversion and Management",
title = "Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization",
volume = "240",
pages = "114245",
doi = "10.1016/j.enconman.2021.114245"
}
Zhu, P., Wu, Z., Guo, L., Yao, J., Dai, M., Ren, J., Kurko, S. V., Yan, H., Yang, F.,& Zhang, Z.. (2021). Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization. in Energy Conversion and Management, 240, 114245.
https://doi.org/10.1016/j.enconman.2021.114245
Zhu P, Wu Z, Guo L, Yao J, Dai M, Ren J, Kurko SV, Yan H, Yang F, Zhang Z. Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization. in Energy Conversion and Management. 2021;240:114245.
doi:10.1016/j.enconman.2021.114245 .
Zhu, Pengfei, Wu, Zhen, Guo, Leilei, Yao, Jing, Dai, Min, Ren, Jianwei, Kurko, Sandra V., Yan, Hongli, Yang, Fusheng, Zhang, Zaoxiao, "Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization" in Energy Conversion and Management, 240 (2021):114245,
https://doi.org/10.1016/j.enconman.2021.114245 . .
1
52
8
45

A continuous hydrogen absorption/desorption model for metal hydride reactor coupled with PCM as heat management and its application in the fuel cell power system

Yao, Jing; Zhu, Pengfei; Guo, Leilei; Duan, Lian; Zhang, Zaoxiao; Kurko, Sandra V.; Wu, Zhen

(2020)

TY  - JOUR
AU  - Yao, Jing
AU  - Zhu, Pengfei
AU  - Guo, Leilei
AU  - Duan, Lian
AU  - Zhang, Zaoxiao
AU  - Kurko, Sandra V.
AU  - Wu, Zhen
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9041
AB  - In this work, the model of metal hydride reactor coupled with phase change material (PCM) as heat management is modified to describe the heat and mass transfer behaviors of the continuous hydrogen absorption/desorption processes better. Through the experimental validation, the modified model is proven to be more accurate than the traditional model. Based on the proposed model, the performance of the metal hydride reactor is further optimized by the parametric analysis, property and configuration modification. The results show that the metal hydride reactor achieves a hydrogen storage efficiency of 47% at the phase change temperature of 42 °C, which is higher than at 35 and 49 °C. By adding expanded graphite into PCM, the hydrogen storage efficiency can increase up to about 72%, which is higher than the previously reported efficiency of 69%. This is because of the enhanced heat transfer between metal hydride and PCM. Accordingly, the hydrogen absorption time is significantly shortened to no more than 5 min. In addition, it is suggested to operate the reactor in the hydrogen desorption pressure of 2–8 bar and the temperature of 32–58 °C for the improved performance, when this kind of reactor is applied in the fuel cell power system as hydrogen source.
T2  - International Journal of Hydrogen Energy
T1  - A continuous hydrogen absorption/desorption model for metal hydride reactor coupled with PCM as heat management and its application in the fuel cell power system
VL  - 45
IS  - 52
SP  - 28087
EP  - 28099
DO  - 10.1016/j.ijhydene.2020.05.089
ER  - 
@article{
author = "Yao, Jing and Zhu, Pengfei and Guo, Leilei and Duan, Lian and Zhang, Zaoxiao and Kurko, Sandra V. and Wu, Zhen",
year = "2020",
abstract = "In this work, the model of metal hydride reactor coupled with phase change material (PCM) as heat management is modified to describe the heat and mass transfer behaviors of the continuous hydrogen absorption/desorption processes better. Through the experimental validation, the modified model is proven to be more accurate than the traditional model. Based on the proposed model, the performance of the metal hydride reactor is further optimized by the parametric analysis, property and configuration modification. The results show that the metal hydride reactor achieves a hydrogen storage efficiency of 47% at the phase change temperature of 42 °C, which is higher than at 35 and 49 °C. By adding expanded graphite into PCM, the hydrogen storage efficiency can increase up to about 72%, which is higher than the previously reported efficiency of 69%. This is because of the enhanced heat transfer between metal hydride and PCM. Accordingly, the hydrogen absorption time is significantly shortened to no more than 5 min. In addition, it is suggested to operate the reactor in the hydrogen desorption pressure of 2–8 bar and the temperature of 32–58 °C for the improved performance, when this kind of reactor is applied in the fuel cell power system as hydrogen source.",
journal = "International Journal of Hydrogen Energy",
title = "A continuous hydrogen absorption/desorption model for metal hydride reactor coupled with PCM as heat management and its application in the fuel cell power system",
volume = "45",
number = "52",
pages = "28087-28099",
doi = "10.1016/j.ijhydene.2020.05.089"
}
Yao, J., Zhu, P., Guo, L., Duan, L., Zhang, Z., Kurko, S. V.,& Wu, Z.. (2020). A continuous hydrogen absorption/desorption model for metal hydride reactor coupled with PCM as heat management and its application in the fuel cell power system. in International Journal of Hydrogen Energy, 45(52), 28087-28099.
https://doi.org/10.1016/j.ijhydene.2020.05.089
Yao J, Zhu P, Guo L, Duan L, Zhang Z, Kurko SV, Wu Z. A continuous hydrogen absorption/desorption model for metal hydride reactor coupled with PCM as heat management and its application in the fuel cell power system. in International Journal of Hydrogen Energy. 2020;45(52):28087-28099.
doi:10.1016/j.ijhydene.2020.05.089 .
Yao, Jing, Zhu, Pengfei, Guo, Leilei, Duan, Lian, Zhang, Zaoxiao, Kurko, Sandra V., Wu, Zhen, "A continuous hydrogen absorption/desorption model for metal hydride reactor coupled with PCM as heat management and its application in the fuel cell power system" in International Journal of Hydrogen Energy, 45, no. 52 (2020):28087-28099,
https://doi.org/10.1016/j.ijhydene.2020.05.089 . .
37
4
29