Mišović, Aleksandra

Link to this page

Authority KeyName Variants
orcid::0000-0003-4859-1412
  • Mišović, Aleksandra (5)

Author's Bibliography

Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria

Marković, Zoran M.; Mišović, Aleksandra; Zmejkoski, Danica; Zdravković, Nemanja M.; Kovač, Janez; Bajuk-Bogdanović, Danica; Milivojević, Dušan; Mojsin, Marija; Stevanović, Milena; Pavlović, Vladimir B.; Todorović-Marković, Biljana

(2023)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Mišović, Aleksandra
AU  - Zmejkoski, Danica
AU  - Zdravković, Nemanja M.
AU  - Kovač, Janez
AU  - Bajuk-Bogdanović, Danica
AU  - Milivojević, Dušan
AU  - Mojsin, Marija
AU  - Stevanović, Milena
AU  - Pavlović, Vladimir B.
AU  - Todorović-Marković, Biljana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11075
AB  - Nowadays, it is a great challenge to develop new medicines for treating various infectious diseases. The treatment of these diseases is of utmost interest to further prevent the development of multi-drug resistance in different pathogens. Carbon quantum dots, as a new member of the carbon nanomaterials family, can potentially be used as a highly promising visible-light-triggered antibacterial agent. In this work, the results of antibacterial and cytotoxic activities of gamma-ray-irradiated carbon quantum dots are presented. Carbon quantum dots (CQDs) were synthesized from citric acid by a pyrolysis procedure and irradiated by gamma rays at different doses (25, 50, 100 and 200 kGy). Structure, chemical composition and optical properties were investigated by atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, UV-Vis spectrometry and photoluminescence. Structural analysis showed that CQDs have a spherical-like shape and dose-dependent average diameters and heights. Antibacterial tests showed that all irradiated dots had antibacterial activity but CQDs irradiated with dose of 100 kGy had antibacterial activity against all seven pathogen-reference bacterial strains. Gamma-ray-modified CQDs did not show any cytotoxicity toward human fetal-originated MRC-5 cells. Moreover, fluorescence microscopy showed excellent cellular uptake of CQDs irradiated with doses of 25 and 200 kGy into MRC-5 cells.
T2  - Antibiotics
T1  - Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria
VL  - 12
IS  - 5
SP  - 919
DO  - 10.3390/antibiotics12050919
ER  - 
@article{
author = "Marković, Zoran M. and Mišović, Aleksandra and Zmejkoski, Danica and Zdravković, Nemanja M. and Kovač, Janez and Bajuk-Bogdanović, Danica and Milivojević, Dušan and Mojsin, Marija and Stevanović, Milena and Pavlović, Vladimir B. and Todorović-Marković, Biljana",
year = "2023",
abstract = "Nowadays, it is a great challenge to develop new medicines for treating various infectious diseases. The treatment of these diseases is of utmost interest to further prevent the development of multi-drug resistance in different pathogens. Carbon quantum dots, as a new member of the carbon nanomaterials family, can potentially be used as a highly promising visible-light-triggered antibacterial agent. In this work, the results of antibacterial and cytotoxic activities of gamma-ray-irradiated carbon quantum dots are presented. Carbon quantum dots (CQDs) were synthesized from citric acid by a pyrolysis procedure and irradiated by gamma rays at different doses (25, 50, 100 and 200 kGy). Structure, chemical composition and optical properties were investigated by atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, UV-Vis spectrometry and photoluminescence. Structural analysis showed that CQDs have a spherical-like shape and dose-dependent average diameters and heights. Antibacterial tests showed that all irradiated dots had antibacterial activity but CQDs irradiated with dose of 100 kGy had antibacterial activity against all seven pathogen-reference bacterial strains. Gamma-ray-modified CQDs did not show any cytotoxicity toward human fetal-originated MRC-5 cells. Moreover, fluorescence microscopy showed excellent cellular uptake of CQDs irradiated with doses of 25 and 200 kGy into MRC-5 cells.",
journal = "Antibiotics",
title = "Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria",
volume = "12",
number = "5",
pages = "919",
doi = "10.3390/antibiotics12050919"
}
Marković, Z. M., Mišović, A., Zmejkoski, D., Zdravković, N. M., Kovač, J., Bajuk-Bogdanović, D., Milivojević, D., Mojsin, M., Stevanović, M., Pavlović, V. B.,& Todorović-Marković, B.. (2023). Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria. in Antibiotics, 12(5), 919.
https://doi.org/10.3390/antibiotics12050919
Marković ZM, Mišović A, Zmejkoski D, Zdravković NM, Kovač J, Bajuk-Bogdanović D, Milivojević D, Mojsin M, Stevanović M, Pavlović VB, Todorović-Marković B. Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria. in Antibiotics. 2023;12(5):919.
doi:10.3390/antibiotics12050919 .
Marković, Zoran M., Mišović, Aleksandra, Zmejkoski, Danica, Zdravković, Nemanja M., Kovač, Janez, Bajuk-Bogdanović, Danica, Milivojević, Dušan, Mojsin, Marija, Stevanović, Milena, Pavlović, Vladimir B., Todorović-Marković, Biljana, "Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria" in Antibiotics, 12, no. 5 (2023):919,
https://doi.org/10.3390/antibiotics12050919 . .
4
1

Properties of free-standing graphene oxide/silver nanowires films and effects of chemical reduction and gamma irradiation

Mišović, Aleksandra; Bajuk-Bogdanović, Danica V.; Kepić, Dejan; Pavlović, Vladimir B.; Huskić, Miroslav; Hasheminejad, Navid; Vuye, Cedric; Zorić, Nemanja; Jovanović, Svetlana P.

(2022)

TY  - JOUR
AU  - Mišović, Aleksandra
AU  - Bajuk-Bogdanović, Danica V.
AU  - Kepić, Dejan
AU  - Pavlović, Vladimir B.
AU  - Huskić, Miroslav
AU  - Hasheminejad, Navid
AU  - Vuye, Cedric
AU  - Zorić, Nemanja
AU  - Jovanović, Svetlana P.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10078
AB  - The need for stable, chemical resistant and conductive materials is on the rise in recent times. Graphene shows promising electrical conductivity and chemical stability, but the production of a continual, conductive layer is limited and expensive. Silver nanowires (AgNWs) are both conducive and economically viable, but they are sensitive to water and oxygen. In this study, graphene oxide (GO) and AgNWs were synthesized and combined in different mass ratios (3:1, 2.5:1.5, and 1:1) to obtain chemically stable composites with improved electrical properties. Composites were reduced using ascorbic acid. With the increase of AgNWs to GO mass ratio, the surface of the free-standing composite film improved: the root mean square roughness was lowered from 376 nm for GO to 168 nm for the composite with the mass ratio of GO:AgNWs 1:1, while the sheet resistance was lowered from 146 × 106 Ω/□ to 4 Ω/□. For the first time, the effects of gamma irradiation on the structure of the composites were studied. Doses of 15, 25, and 35 kGy were applied.
T2  - Synthetic Metals
T1  - Properties of free-standing graphene oxide/silver nanowires films and effects of chemical reduction and gamma irradiation
VL  - 283
SP  - 116980
DO  - 10.1016/j.synthmet.2021.116980
ER  - 
@article{
author = "Mišović, Aleksandra and Bajuk-Bogdanović, Danica V. and Kepić, Dejan and Pavlović, Vladimir B. and Huskić, Miroslav and Hasheminejad, Navid and Vuye, Cedric and Zorić, Nemanja and Jovanović, Svetlana P.",
year = "2022",
abstract = "The need for stable, chemical resistant and conductive materials is on the rise in recent times. Graphene shows promising electrical conductivity and chemical stability, but the production of a continual, conductive layer is limited and expensive. Silver nanowires (AgNWs) are both conducive and economically viable, but they are sensitive to water and oxygen. In this study, graphene oxide (GO) and AgNWs were synthesized and combined in different mass ratios (3:1, 2.5:1.5, and 1:1) to obtain chemically stable composites with improved electrical properties. Composites were reduced using ascorbic acid. With the increase of AgNWs to GO mass ratio, the surface of the free-standing composite film improved: the root mean square roughness was lowered from 376 nm for GO to 168 nm for the composite with the mass ratio of GO:AgNWs 1:1, while the sheet resistance was lowered from 146 × 106 Ω/□ to 4 Ω/□. For the first time, the effects of gamma irradiation on the structure of the composites were studied. Doses of 15, 25, and 35 kGy were applied.",
journal = "Synthetic Metals",
title = "Properties of free-standing graphene oxide/silver nanowires films and effects of chemical reduction and gamma irradiation",
volume = "283",
pages = "116980",
doi = "10.1016/j.synthmet.2021.116980"
}
Mišović, A., Bajuk-Bogdanović, D. V., Kepić, D., Pavlović, V. B., Huskić, M., Hasheminejad, N., Vuye, C., Zorić, N.,& Jovanović, S. P.. (2022). Properties of free-standing graphene oxide/silver nanowires films and effects of chemical reduction and gamma irradiation. in Synthetic Metals, 283, 116980.
https://doi.org/10.1016/j.synthmet.2021.116980
Mišović A, Bajuk-Bogdanović DV, Kepić D, Pavlović VB, Huskić M, Hasheminejad N, Vuye C, Zorić N, Jovanović SP. Properties of free-standing graphene oxide/silver nanowires films and effects of chemical reduction and gamma irradiation. in Synthetic Metals. 2022;283:116980.
doi:10.1016/j.synthmet.2021.116980 .
Mišović, Aleksandra, Bajuk-Bogdanović, Danica V., Kepić, Dejan, Pavlović, Vladimir B., Huskić, Miroslav, Hasheminejad, Navid, Vuye, Cedric, Zorić, Nemanja, Jovanović, Svetlana P., "Properties of free-standing graphene oxide/silver nanowires films and effects of chemical reduction and gamma irradiation" in Synthetic Metals, 283 (2022):116980,
https://doi.org/10.1016/j.synthmet.2021.116980 . .
4
2

Facile synthesis of L-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent

Milenković, Mila; Mišović, Aleksandra; Jovanović, Dragana J.; Popović-Bijelić, Ana D.; Ciasca, Gabriele; Romanò, Sabrina; Bonasera, Aurelio; Mojsin, Marija; Pejić, Jelena; Stevanović, Milena J.; Jovanović, Svetlana P.

(2021)

TY  - JOUR
AU  - Milenković, Mila
AU  - Mišović, Aleksandra
AU  - Jovanović, Dragana J.
AU  - Popović-Bijelić, Ana D.
AU  - Ciasca, Gabriele
AU  - Romanò, Sabrina
AU  - Bonasera, Aurelio
AU  - Mojsin, Marija
AU  - Pejić, Jelena
AU  - Stevanović, Milena J.
AU  - Jovanović, Svetlana P.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9873
AB  - Nowadays, a larger number of aggressive and corrosive chemical reagents as well as toxic solvents are used to achieve structural modification and cleaning of the final products. These lead to the production of residual, waste chemicals, which are often reactive, cancerogenic, and toxic to the environment. This study shows a new approach to the modification of graphene quantum dots (GQDs) using gamma irradiation where the usage of reagents was avoided. We achieved the incorporation of S and N atoms in the GQD structure by selecting an aqueous solution of L-cysteine as an irradiation medium. GQDs were exposed to gamma-irradiation at doses of 25, 50 and 200 kGy. After irradiation, the optical, structural, and morphological properties, as well as the possibility of their use as an agent in bioimaging and photodynamic therapy, were studied. We measured an enhanced quantum yield of photoluminescence with the highest dose of 25 kGy (21.60%). Both S- and N-functional groups were detected in all gamma-irradiated GQDs: amino, amide, thiol, and thione. Spin trap electron paramagnetic resonance showed that GQDs irradiated with 25 kGy can generate singlet oxygen upon illumination. Bioimaging on HeLa cells showed the best visibility for cells treated with GQDs irradiated with 25 kGy, while cytotoxicity was not detected after treatment of HeLa cells with gamma-irradiated GQDs.
T2  - Nanomaterials
T1  - Facile synthesis of L-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent
VL  - 11
IS  - 8
SP  - 1879
DO  - 10.3390/nano11081879
ER  - 
@article{
author = "Milenković, Mila and Mišović, Aleksandra and Jovanović, Dragana J. and Popović-Bijelić, Ana D. and Ciasca, Gabriele and Romanò, Sabrina and Bonasera, Aurelio and Mojsin, Marija and Pejić, Jelena and Stevanović, Milena J. and Jovanović, Svetlana P.",
year = "2021",
abstract = "Nowadays, a larger number of aggressive and corrosive chemical reagents as well as toxic solvents are used to achieve structural modification and cleaning of the final products. These lead to the production of residual, waste chemicals, which are often reactive, cancerogenic, and toxic to the environment. This study shows a new approach to the modification of graphene quantum dots (GQDs) using gamma irradiation where the usage of reagents was avoided. We achieved the incorporation of S and N atoms in the GQD structure by selecting an aqueous solution of L-cysteine as an irradiation medium. GQDs were exposed to gamma-irradiation at doses of 25, 50 and 200 kGy. After irradiation, the optical, structural, and morphological properties, as well as the possibility of their use as an agent in bioimaging and photodynamic therapy, were studied. We measured an enhanced quantum yield of photoluminescence with the highest dose of 25 kGy (21.60%). Both S- and N-functional groups were detected in all gamma-irradiated GQDs: amino, amide, thiol, and thione. Spin trap electron paramagnetic resonance showed that GQDs irradiated with 25 kGy can generate singlet oxygen upon illumination. Bioimaging on HeLa cells showed the best visibility for cells treated with GQDs irradiated with 25 kGy, while cytotoxicity was not detected after treatment of HeLa cells with gamma-irradiated GQDs.",
journal = "Nanomaterials",
title = "Facile synthesis of L-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent",
volume = "11",
number = "8",
pages = "1879",
doi = "10.3390/nano11081879"
}
Milenković, M., Mišović, A., Jovanović, D. J., Popović-Bijelić, A. D., Ciasca, G., Romanò, S., Bonasera, A., Mojsin, M., Pejić, J., Stevanović, M. J.,& Jovanović, S. P.. (2021). Facile synthesis of L-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent. in Nanomaterials, 11(8), 1879.
https://doi.org/10.3390/nano11081879
Milenković M, Mišović A, Jovanović DJ, Popović-Bijelić AD, Ciasca G, Romanò S, Bonasera A, Mojsin M, Pejić J, Stevanović MJ, Jovanović SP. Facile synthesis of L-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent. in Nanomaterials. 2021;11(8):1879.
doi:10.3390/nano11081879 .
Milenković, Mila, Mišović, Aleksandra, Jovanović, Dragana J., Popović-Bijelić, Ana D., Ciasca, Gabriele, Romanò, Sabrina, Bonasera, Aurelio, Mojsin, Marija, Pejić, Jelena, Stevanović, Milena J., Jovanović, Svetlana P., "Facile synthesis of L-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent" in Nanomaterials, 11, no. 8 (2021):1879,
https://doi.org/10.3390/nano11081879 . .
5
13
2
10

Gamma Irradiation as a Tool for Modification of Graphene Oxide-Silver Nanowires Composites

Mišović, Aleksandra; Bonasera, Aurelio; Budimir, Milica; Jovanović, Svetlana

(Szeged : University of Szeged, 2021)

TY  - CONF
AU  - Mišović, Aleksandra
AU  - Bonasera, Aurelio
AU  - Budimir, Milica
AU  - Jovanović, Svetlana
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11425
AB  - Graphene oxide (GO) was produced using the Hummers' method while silver nanowires (AgNWs) were obtained by polyol synthesis. Composite was produced by simple mixing of GO and AgNWs dispersions. The composite was produced in a form of free/standing films by vacuum filtration and exposed to gamma irradiation in an oxygen-free atmosphere. After irradiation, without any additional cleaning, the structure, morphology and electrical properties were investigated. Gamma irradiation was shown to be an efficient tool to induce a chemical reduction of GO, and it was able to improve the electrical conductivity of produced composites. Due to avoiding the usage of reagents and solvents, this method belongs to green chemical approaches.
PB  - Szeged : University of Szeged
C3  - 27th International Symposium on Analytical and Environmental Problems : Proceedings; November 22-23, 2021; Szeged, Hungary
T1  - Gamma Irradiation as a Tool for Modification of Graphene Oxide-Silver Nanowires Composites
SP  - 223
EP  - 227
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11425
ER  - 
@conference{
author = "Mišović, Aleksandra and Bonasera, Aurelio and Budimir, Milica and Jovanović, Svetlana",
year = "2021",
abstract = "Graphene oxide (GO) was produced using the Hummers' method while silver nanowires (AgNWs) were obtained by polyol synthesis. Composite was produced by simple mixing of GO and AgNWs dispersions. The composite was produced in a form of free/standing films by vacuum filtration and exposed to gamma irradiation in an oxygen-free atmosphere. After irradiation, without any additional cleaning, the structure, morphology and electrical properties were investigated. Gamma irradiation was shown to be an efficient tool to induce a chemical reduction of GO, and it was able to improve the electrical conductivity of produced composites. Due to avoiding the usage of reagents and solvents, this method belongs to green chemical approaches.",
publisher = "Szeged : University of Szeged",
journal = "27th International Symposium on Analytical and Environmental Problems : Proceedings; November 22-23, 2021; Szeged, Hungary",
title = "Gamma Irradiation as a Tool for Modification of Graphene Oxide-Silver Nanowires Composites",
pages = "223-227",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11425"
}
Mišović, A., Bonasera, A., Budimir, M.,& Jovanović, S.. (2021). Gamma Irradiation as a Tool for Modification of Graphene Oxide-Silver Nanowires Composites. in 27th International Symposium on Analytical and Environmental Problems : Proceedings; November 22-23, 2021; Szeged, Hungary
Szeged : University of Szeged., 223-227.
https://hdl.handle.net/21.15107/rcub_vinar_11425
Mišović A, Bonasera A, Budimir M, Jovanović S. Gamma Irradiation as a Tool for Modification of Graphene Oxide-Silver Nanowires Composites. in 27th International Symposium on Analytical and Environmental Problems : Proceedings; November 22-23, 2021; Szeged, Hungary. 2021;:223-227.
https://hdl.handle.net/21.15107/rcub_vinar_11425 .
Mišović, Aleksandra, Bonasera, Aurelio, Budimir, Milica, Jovanović, Svetlana, "Gamma Irradiation as a Tool for Modification of Graphene Oxide-Silver Nanowires Composites" in 27th International Symposium on Analytical and Environmental Problems : Proceedings; November 22-23, 2021; Szeged, Hungary (2021):223-227,
https://hdl.handle.net/21.15107/rcub_vinar_11425 .

Environmentally Friendly Method for S, N Functionalization of Graphene Quantum Dots

Milenković, Mila; Mišović, Aleksandra; Jovanović, Svetlana

(Szeged : University of Szeged, 2021)

TY  - CONF
AU  - Milenković, Mila
AU  - Mišović, Aleksandra
AU  - Jovanović, Svetlana
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11424
AB  - Graphene quantum dots (GQDs) show exceptional optical and physical properties. To enable their wider application and improve their optical properties, it is usually necessary to modify them with different functional groups and heteroatoms. Toxic reagents that are potentially harmful to human health and the environment are often used for these procedures. One of the methods that have been successfully used is gamma radiation. In this study, gamma irradiation was employed to achieve structural modification of GQDs without the usage of reactive, toxic chemicals. In this way, an eco-friendly and simple procedure for the incorporation of S and N atoms into the GQDs structure is developed.
PB  - Szeged : University of Szeged
C3  - 27th International Symposium on Analytical and Environmental Problems : Proceedings; November 22-23, 2021; Szeged, Hungary
T1  - Environmentally Friendly Method for S, N Functionalization of Graphene Quantum Dots
SP  - 214
EP  - 217
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11424
ER  - 
@conference{
author = "Milenković, Mila and Mišović, Aleksandra and Jovanović, Svetlana",
year = "2021",
abstract = "Graphene quantum dots (GQDs) show exceptional optical and physical properties. To enable their wider application and improve their optical properties, it is usually necessary to modify them with different functional groups and heteroatoms. Toxic reagents that are potentially harmful to human health and the environment are often used for these procedures. One of the methods that have been successfully used is gamma radiation. In this study, gamma irradiation was employed to achieve structural modification of GQDs without the usage of reactive, toxic chemicals. In this way, an eco-friendly and simple procedure for the incorporation of S and N atoms into the GQDs structure is developed.",
publisher = "Szeged : University of Szeged",
journal = "27th International Symposium on Analytical and Environmental Problems : Proceedings; November 22-23, 2021; Szeged, Hungary",
title = "Environmentally Friendly Method for S, N Functionalization of Graphene Quantum Dots",
pages = "214-217",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11424"
}
Milenković, M., Mišović, A.,& Jovanović, S.. (2021). Environmentally Friendly Method for S, N Functionalization of Graphene Quantum Dots. in 27th International Symposium on Analytical and Environmental Problems : Proceedings; November 22-23, 2021; Szeged, Hungary
Szeged : University of Szeged., 214-217.
https://hdl.handle.net/21.15107/rcub_vinar_11424
Milenković M, Mišović A, Jovanović S. Environmentally Friendly Method for S, N Functionalization of Graphene Quantum Dots. in 27th International Symposium on Analytical and Environmental Problems : Proceedings; November 22-23, 2021; Szeged, Hungary. 2021;:214-217.
https://hdl.handle.net/21.15107/rcub_vinar_11424 .
Milenković, Mila, Mišović, Aleksandra, Jovanović, Svetlana, "Environmentally Friendly Method for S, N Functionalization of Graphene Quantum Dots" in 27th International Symposium on Analytical and Environmental Problems : Proceedings; November 22-23, 2021; Szeged, Hungary (2021):214-217,
https://hdl.handle.net/21.15107/rcub_vinar_11424 .