Smolina, Ekaterina

Link to this page

Authority KeyName Variants
439030ad-d935-4e2d-9745-175c1eae7d8d
  • Smolina, Ekaterina (2)
Projects

Author's Bibliography

Nonlinear signatures of Floquet band topology

Maluckov, Aleksandra; Smolina, Ekaterina; Leykam, Daniel; Gündoğdu, Sinan; Angelakis, Dimitris G.; Smirnova, Daria A.

(2022)

TY  - JOUR
AU  - Maluckov, Aleksandra
AU  - Smolina, Ekaterina
AU  - Leykam, Daniel
AU  - Gündoğdu, Sinan
AU  - Angelakis, Dimitris G.
AU  - Smirnova, Daria A.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10236
AB  - We study how the nonlinear propagation dynamics of bulk states may be used to distinguish topological phases of slowly driven Floquet lattices. First, we show how instabilities of nonlinear Bloch waves may be used to populate Floquet bands and measure their Chern number via the emergence of nontrivial polarization textures in a similar manner to static (undriven) lattices. Second, we show how the nonlinear dynamics of nonstationary superposition states may be used to identify dynamical symmetry inversion points in the intracycle dynamics, thereby allowing anomalous Floquet phases to be distinguished from the trivial phase. The approaches may be readily implemented using light propagation in nonlinear waveguide arrays.
T2  - Physical Review B
T1  - Nonlinear signatures of Floquet band topology
VL  - 105
IS  - 11
SP  - 115133
DO  - 10.1103/PhysRevB.105.115133
ER  - 
@article{
author = "Maluckov, Aleksandra and Smolina, Ekaterina and Leykam, Daniel and Gündoğdu, Sinan and Angelakis, Dimitris G. and Smirnova, Daria A.",
year = "2022",
abstract = "We study how the nonlinear propagation dynamics of bulk states may be used to distinguish topological phases of slowly driven Floquet lattices. First, we show how instabilities of nonlinear Bloch waves may be used to populate Floquet bands and measure their Chern number via the emergence of nontrivial polarization textures in a similar manner to static (undriven) lattices. Second, we show how the nonlinear dynamics of nonstationary superposition states may be used to identify dynamical symmetry inversion points in the intracycle dynamics, thereby allowing anomalous Floquet phases to be distinguished from the trivial phase. The approaches may be readily implemented using light propagation in nonlinear waveguide arrays.",
journal = "Physical Review B",
title = "Nonlinear signatures of Floquet band topology",
volume = "105",
number = "11",
pages = "115133",
doi = "10.1103/PhysRevB.105.115133"
}
Maluckov, A., Smolina, E., Leykam, D., Gündoğdu, S., Angelakis, D. G.,& Smirnova, D. A.. (2022). Nonlinear signatures of Floquet band topology. in Physical Review B, 105(11), 115133.
https://doi.org/10.1103/PhysRevB.105.115133
Maluckov A, Smolina E, Leykam D, Gündoğdu S, Angelakis DG, Smirnova DA. Nonlinear signatures of Floquet band topology. in Physical Review B. 2022;105(11):115133.
doi:10.1103/PhysRevB.105.115133 .
Maluckov, Aleksandra, Smolina, Ekaterina, Leykam, Daniel, Gündoğdu, Sinan, Angelakis, Dimitris G., Smirnova, Daria A., "Nonlinear signatures of Floquet band topology" in Physical Review B, 105, no. 11 (2022):115133,
https://doi.org/10.1103/PhysRevB.105.115133 . .
1

Probing Band Topology Using Modulational Instability

Leykam, Daniel; Smolina, Ekaterina; Maluckov, Aleksandra; Flach, Sergej; Smirnova, Daria A

(2021)

TY  - JOUR
AU  - Leykam, Daniel
AU  - Smolina, Ekaterina
AU  - Maluckov, Aleksandra
AU  - Flach, Sergej
AU  - Smirnova, Daria A
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9153
AB  - We analyze the modulational instability of nonlinear Bloch waves in topological photonic lattices. In the initial phase of the instability development captured by the linear stability analysis, long wavelength instabilities and bifurcations of the nonlinear Bloch waves are sensitive to topological band inversions. At longer timescales, nonlinear wave mixing induces spreading of energy through the entire band and spontaneous creation of wave polarization singularities determined by the band Chern number. Our analytical and numerical results establish modulational instability as a tool to probe bulk topological invariants and create topologically nontrivial wave fields. © 2021 American Physical Society.
T2  - Physical Review Letters
T1  - Probing Band Topology Using Modulational Instability
VL  - 126
IS  - 7
SP  - 073901
DO  - 10.1103/PhysRevLett.126.073901
ER  - 
@article{
author = "Leykam, Daniel and Smolina, Ekaterina and Maluckov, Aleksandra and Flach, Sergej and Smirnova, Daria A",
year = "2021",
abstract = "We analyze the modulational instability of nonlinear Bloch waves in topological photonic lattices. In the initial phase of the instability development captured by the linear stability analysis, long wavelength instabilities and bifurcations of the nonlinear Bloch waves are sensitive to topological band inversions. At longer timescales, nonlinear wave mixing induces spreading of energy through the entire band and spontaneous creation of wave polarization singularities determined by the band Chern number. Our analytical and numerical results establish modulational instability as a tool to probe bulk topological invariants and create topologically nontrivial wave fields. © 2021 American Physical Society.",
journal = "Physical Review Letters",
title = "Probing Band Topology Using Modulational Instability",
volume = "126",
number = "7",
pages = "073901",
doi = "10.1103/PhysRevLett.126.073901"
}
Leykam, D., Smolina, E., Maluckov, A., Flach, S.,& Smirnova, D. A.. (2021). Probing Band Topology Using Modulational Instability. in Physical Review Letters, 126(7), 073901.
https://doi.org/10.1103/PhysRevLett.126.073901
Leykam D, Smolina E, Maluckov A, Flach S, Smirnova DA. Probing Band Topology Using Modulational Instability. in Physical Review Letters. 2021;126(7):073901.
doi:10.1103/PhysRevLett.126.073901 .
Leykam, Daniel, Smolina, Ekaterina, Maluckov, Aleksandra, Flach, Sergej, Smirnova, Daria A, "Probing Band Topology Using Modulational Instability" in Physical Review Letters, 126, no. 7 (2021):073901,
https://doi.org/10.1103/PhysRevLett.126.073901 . .
50
5
3
5