Antić, Bratislav

Link to this page

Authority KeyName Variants
orcid::0000-0002-5693-6401
  • Antić, Bratislav (83)
Projects
Magnetic and radionuclide labeled nanostructured materials for medical applications Strengthening of the MagBioVin Research and Innovation Team for Development of Novel Approaches for Tumour Therapy based on Nanostructured Materials
Application of advanced oxidation processes and nanostructured oxide materials for the removal of pollutants from the environment, development and optimisation of instrumental techniques for efficiency monitoring Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology
EUREKA project E! 13303 MED-BIO-TEST Eureka Project [E!9982]
Allergens, antibodies, enzymes and small physiologically important molecules: design, structure, function and relevance Ministry of Education, Science and Technological Development of the Republic of Serbia [E!9982]
Ministry of Education, Science and Technological Development of the Republic of Serbia through the Eureka Project (E!9982) Serbian Ministry of Science and Environmental Protection
APVV [0189-10] Bilateral Croatian-Chinese scientific project “Iron oxide nanostructures for environmental and energy applications”
bilateral Croatian-Chinese scientific project "Synthesis and characterization of iron oxide nanoparticles and nanofibers and their application in environmental catalysis" bilateral Croatian-Serbian scientific project " Nanostructured iron oxides for environmental applications"
Bilateral Croatian-Serbian scientific project “Nanostructured iron oxides for environmental applications” CEEPUS networkCIII-CZ-0212-12-1819-M-120151 (Education of Modern Analytical and Bioanalytical Methods).
Center of excellence of environmental health (ITMS No. 26240120033) COST ACTION-Multifunctional Nanoparticles for Magnetic Hyperthermia and Indirect Radiation Therapy (RADIOMAG) [TD 1402]
COST Action RADIOMAG [TD1402] COST action TD1402 (RADIOMAG)
Croatian Science Foundation [IP-2016-06-825] Croatian Science Foundation (IP-2016-06-8254)
DFG within the framework of the Priority Program Crystalline None quilibrium Phases [SPP 1415], VEGA [2/0097/13, 2/0097/14], APVV [14-0103, 0528-11], DAAD EEA FM and the NFM (Project SK0020)
Eureka project E! 13303 MED-BIO-TEST Grant Agency of the Slovak Republic [1/0489/16]
Grant Agency of the Slovak Republic VEGA [2/0128/16] H2020 (H2020/2014-2020) funding under Grant agreement 685817 – HISENTS
Microbial diversity study and characterization of beneficial environmental microorganisms Magmatism and geodynamics of the Balkan Peninsula from Mesozoic to present day: significance for the formation of metallic and non-metallic mineral deposits

Author's Bibliography

TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor

Ognjanović, Miloš; Stanković, Vesna; Knežević, Sara; Antić, Bratislav; Vranješ-Đurić, Sanja; Stanković, Dalibor M.

(2020)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Stanković, Vesna
AU  - Knežević, Sara
AU  - Antić, Bratislav
AU  - Vranješ-Đurić, Sanja
AU  - Stanković, Dalibor M.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9040
AB  - Herein, we proposed a novel approach and state-of-the-art technology for the improvement of the materials and enzyme immobilization at the electrode surface and construction of impedimetric glucose biosensor. We silanized titanium dioxide nanoparticles using (3-aminopropyl)triethoxysilane (APTES), for the preparation of cross-linked material nanoparticles, with carboxylic graphene. The silanization of titanium dioxide nanoparticles and an increase in electron shuttle was proven feasible when this composite was able to achieve about 30% higher current than non-silanized material. The proposed approach was used for the modification of the printed three-electrode system and the development of the impedimetric glucose biosensor. The material morphology and electrochemical characteristics were confirmed by spectroscopic and electrochemical methods. The present combination effectively modified the electrode surface and serve as a promising basis for the construction of Point-of-Care devices. Developed biosensor possesses wide operating linear range toward glucose detection from 50 µmol to 1000 µmol, with the limit of detection of 24 µmol. Finally, negligible interference effect and application in the real sample indicate that the proposed mechanism can be successfully applied to the assessment of glucose level in only one drop of real sample.
T2  - Microchemical Journal
T1  - TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor
VL  - 158
SP  - 105150
DO  - 10.1016/j.microc.2020.105150
ER  - 
@article{
author = "Ognjanović, Miloš and Stanković, Vesna and Knežević, Sara and Antić, Bratislav and Vranješ-Đurić, Sanja and Stanković, Dalibor M.",
year = "2020",
abstract = "Herein, we proposed a novel approach and state-of-the-art technology for the improvement of the materials and enzyme immobilization at the electrode surface and construction of impedimetric glucose biosensor. We silanized titanium dioxide nanoparticles using (3-aminopropyl)triethoxysilane (APTES), for the preparation of cross-linked material nanoparticles, with carboxylic graphene. The silanization of titanium dioxide nanoparticles and an increase in electron shuttle was proven feasible when this composite was able to achieve about 30% higher current than non-silanized material. The proposed approach was used for the modification of the printed three-electrode system and the development of the impedimetric glucose biosensor. The material morphology and electrochemical characteristics were confirmed by spectroscopic and electrochemical methods. The present combination effectively modified the electrode surface and serve as a promising basis for the construction of Point-of-Care devices. Developed biosensor possesses wide operating linear range toward glucose detection from 50 µmol to 1000 µmol, with the limit of detection of 24 µmol. Finally, negligible interference effect and application in the real sample indicate that the proposed mechanism can be successfully applied to the assessment of glucose level in only one drop of real sample.",
journal = "Microchemical Journal",
title = "TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor",
volume = "158",
pages = "105150",
doi = "10.1016/j.microc.2020.105150"
}
Ognjanović, M., Stanković, V., Knežević, S., Antić, B., Vranješ-Đurić, S.,& Stanković, D. M.. (2020). TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor. in Microchemical Journal, 158, 105150.
https://doi.org/10.1016/j.microc.2020.105150
Ognjanović M, Stanković V, Knežević S, Antić B, Vranješ-Đurić S, Stanković DM. TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor. in Microchemical Journal. 2020;158:105150.
doi:10.1016/j.microc.2020.105150 .
Ognjanović, Miloš, Stanković, Vesna, Knežević, Sara, Antić, Bratislav, Vranješ-Đurić, Sanja, Stanković, Dalibor M., "TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor" in Microchemical Journal, 158 (2020):105150,
https://doi.org/10.1016/j.microc.2020.105150 . .
4
2
4

Aminosilanized flower-structured superparamagnetic iron oxide nanoparticles coupled to 131I-labeled CC49 antibody for combined radionuclide and hyperthermia therapy of cancer

Stanković, Aljoša; Mihailović, Jasna; Mirković, Marija D.; Radović, Magdalena; Milanović, Zorana; Ognjanović, Miloš; Janković, Drina; Antić, Bratislav; Mijović, Milica; Vranješ-Đurić, Sanja; Prijović, Željko

(2020)

TY  - JOUR
AU  - Stanković, Aljoša
AU  - Mihailović, Jasna
AU  - Mirković, Marija D.
AU  - Radović, Magdalena
AU  - Milanović, Zorana
AU  - Ognjanović, Miloš
AU  - Janković, Drina
AU  - Antić, Bratislav
AU  - Mijović, Milica
AU  - Vranješ-Đurić, Sanja
AU  - Prijović, Željko
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9117
AB  - Combined radionuclide therapy with magnetic nanoparticles-mediated hyperthermia has been under research focus as a promising tumor therapy approach. The objective of this study was to investigate the potential of 131I-radiolabeled superparamagnetic iron oxide nanoparticles (SPIONs) prepared as the ~40 nm flower-shaped structures with excellent heating efficiency (specific absorption rate at H0 = 15.9 kA∙m−1 and resonant frequency of 252 kHz was 123.1 W∙g−1) for nano-brachytherapy of tumors. 131I-radiolabeled CC49 antibody attached to SPIONs via reactive groups of 3-aminopropyltriethoxysilane (APTES) provided specificity and long-lasting localized retention after their intratumoral application into LS174T human colon adenocarcinoma xenografts in NOD-SCID mice. The results demonstrate feasibility and effectiveness of magnetic hyperthermia (HT), radionuclide therapy (RT) and their combination (HT + RT) in treating cancer in xenograft models. Combined therapy approach induced a significant (p < 0.01) tumor growth suppression in comparison to untreated groups presented by the tumor volume inhibitory rate (TVIR): 54.38%, 68.77%, 73.00% for HT, RT and HT + RT, respectively in comparison to untreated group and 48.31%, 64,62% and 69,41%, respectively, for the SPIONs-only injected group. Histopathology analysis proved the necrosis and apoptosis in treated tumors without general toxicity. Obtained data support the idea that nano-brachytherapy combined with hyperthermia is a promising approach for effective cancer treatment.
T2  - International Journal of Pharmaceutics
T1  - Aminosilanized flower-structured superparamagnetic iron oxide nanoparticles coupled to 131I-labeled CC49 antibody for combined radionuclide and hyperthermia therapy of cancer
VL  - 587
SP  - 119628
DO  - 10.1016/j.ijpharm.2020.119628
ER  - 
@article{
author = "Stanković, Aljoša and Mihailović, Jasna and Mirković, Marija D. and Radović, Magdalena and Milanović, Zorana and Ognjanović, Miloš and Janković, Drina and Antić, Bratislav and Mijović, Milica and Vranješ-Đurić, Sanja and Prijović, Željko",
year = "2020",
abstract = "Combined radionuclide therapy with magnetic nanoparticles-mediated hyperthermia has been under research focus as a promising tumor therapy approach. The objective of this study was to investigate the potential of 131I-radiolabeled superparamagnetic iron oxide nanoparticles (SPIONs) prepared as the ~40 nm flower-shaped structures with excellent heating efficiency (specific absorption rate at H0 = 15.9 kA∙m−1 and resonant frequency of 252 kHz was 123.1 W∙g−1) for nano-brachytherapy of tumors. 131I-radiolabeled CC49 antibody attached to SPIONs via reactive groups of 3-aminopropyltriethoxysilane (APTES) provided specificity and long-lasting localized retention after their intratumoral application into LS174T human colon adenocarcinoma xenografts in NOD-SCID mice. The results demonstrate feasibility and effectiveness of magnetic hyperthermia (HT), radionuclide therapy (RT) and their combination (HT + RT) in treating cancer in xenograft models. Combined therapy approach induced a significant (p < 0.01) tumor growth suppression in comparison to untreated groups presented by the tumor volume inhibitory rate (TVIR): 54.38%, 68.77%, 73.00% for HT, RT and HT + RT, respectively in comparison to untreated group and 48.31%, 64,62% and 69,41%, respectively, for the SPIONs-only injected group. Histopathology analysis proved the necrosis and apoptosis in treated tumors without general toxicity. Obtained data support the idea that nano-brachytherapy combined with hyperthermia is a promising approach for effective cancer treatment.",
journal = "International Journal of Pharmaceutics",
title = "Aminosilanized flower-structured superparamagnetic iron oxide nanoparticles coupled to 131I-labeled CC49 antibody for combined radionuclide and hyperthermia therapy of cancer",
volume = "587",
pages = "119628",
doi = "10.1016/j.ijpharm.2020.119628"
}
Stanković, A., Mihailović, J., Mirković, M. D., Radović, M., Milanović, Z., Ognjanović, M., Janković, D., Antić, B., Mijović, M., Vranješ-Đurić, S.,& Prijović, Ž.. (2020). Aminosilanized flower-structured superparamagnetic iron oxide nanoparticles coupled to 131I-labeled CC49 antibody for combined radionuclide and hyperthermia therapy of cancer. in International Journal of Pharmaceutics, 587, 119628.
https://doi.org/10.1016/j.ijpharm.2020.119628
Stanković A, Mihailović J, Mirković MD, Radović M, Milanović Z, Ognjanović M, Janković D, Antić B, Mijović M, Vranješ-Đurić S, Prijović Ž. Aminosilanized flower-structured superparamagnetic iron oxide nanoparticles coupled to 131I-labeled CC49 antibody for combined radionuclide and hyperthermia therapy of cancer. in International Journal of Pharmaceutics. 2020;587:119628.
doi:10.1016/j.ijpharm.2020.119628 .
Stanković, Aljoša, Mihailović, Jasna, Mirković, Marija D., Radović, Magdalena, Milanović, Zorana, Ognjanović, Miloš, Janković, Drina, Antić, Bratislav, Mijović, Milica, Vranješ-Đurić, Sanja, Prijović, Željko, "Aminosilanized flower-structured superparamagnetic iron oxide nanoparticles coupled to 131I-labeled CC49 antibody for combined radionuclide and hyperthermia therapy of cancer" in International Journal of Pharmaceutics, 587 (2020):119628,
https://doi.org/10.1016/j.ijpharm.2020.119628 . .
6
5
5

Tailoring IONP shape and designing nanocomposite IONS@GN toward modification of SPCE to enhance electrochemical degradation of organic dye

Ognjanović, Miloš; Stanković, Dalibor M.; Fabian, Martin; Vranješ-Đurić, Sanja; Antić, Bratislav; Dojčinović, Biljana P.

(2020)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Stanković, Dalibor M.
AU  - Fabian, Martin
AU  - Vranješ-Đurić, Sanja
AU  - Antić, Bratislav
AU  - Dojčinović, Biljana P.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8810
AB  - Iron oxide nanoparticles (IONP) with different distinctive morphologies (spherical, cubic, flower-like and needles) were utilized for modification of screen-printed carbon electrodes (SPCE) to be used for synthetic organic dye degradation by an electrochemical approach. This platform was implemented for removal of the synthetic organic dye, Reactive Black 5 (RB5) in aqueous solution. Modified SPCE with spherically shaped IONP (IONS) had the highest dye removal efficiency. Thus, IONS were then used for surface decoration of the most common carbon-based materials (graphene, graphene oxide, carboxylated graphene, graphene nanoribbons, graphene nanoplatelets, single- and multi-wall carbon nanotubes), and the nanocomposites formed were deposited on the electrode surfaces. Using IONS/graphene composite (IONS@GN) for electrode modification resulted in the best effect. Removal of RB5 with this electrode was 51% better in comparison with bare SPCE, reducing the time required for complete dye degradation from 61 to 30 min Using IONS-modified SPCE, total RB5 removal occurred in 51 min, improving the performance by 16% over that of bare SPCE. The effects determined, i.e., the best IONP morphology and best type of carbon-based material for nanocomposite formation to enhance RB5 removal will provide guidelines for further modifications of SPCE with nanomaterials and nanocomposites, for application of this electrochemical approach in the degradation of organic pollutants. © 2020 The Author(s). Published by IOP Publishing Ltd.
T2  - Materials Research Express
T1  - Tailoring IONP shape and designing nanocomposite IONS@GN toward modification of SPCE to enhance electrochemical degradation of organic dye
VL  - 7
IS  - 1
SP  - 015509
DO  - 10.1088/2053-1591/ab6490
ER  - 
@article{
author = "Ognjanović, Miloš and Stanković, Dalibor M. and Fabian, Martin and Vranješ-Đurić, Sanja and Antić, Bratislav and Dojčinović, Biljana P.",
year = "2020",
abstract = "Iron oxide nanoparticles (IONP) with different distinctive morphologies (spherical, cubic, flower-like and needles) were utilized for modification of screen-printed carbon electrodes (SPCE) to be used for synthetic organic dye degradation by an electrochemical approach. This platform was implemented for removal of the synthetic organic dye, Reactive Black 5 (RB5) in aqueous solution. Modified SPCE with spherically shaped IONP (IONS) had the highest dye removal efficiency. Thus, IONS were then used for surface decoration of the most common carbon-based materials (graphene, graphene oxide, carboxylated graphene, graphene nanoribbons, graphene nanoplatelets, single- and multi-wall carbon nanotubes), and the nanocomposites formed were deposited on the electrode surfaces. Using IONS/graphene composite (IONS@GN) for electrode modification resulted in the best effect. Removal of RB5 with this electrode was 51% better in comparison with bare SPCE, reducing the time required for complete dye degradation from 61 to 30 min Using IONS-modified SPCE, total RB5 removal occurred in 51 min, improving the performance by 16% over that of bare SPCE. The effects determined, i.e., the best IONP morphology and best type of carbon-based material for nanocomposite formation to enhance RB5 removal will provide guidelines for further modifications of SPCE with nanomaterials and nanocomposites, for application of this electrochemical approach in the degradation of organic pollutants. © 2020 The Author(s). Published by IOP Publishing Ltd.",
journal = "Materials Research Express",
title = "Tailoring IONP shape and designing nanocomposite IONS@GN toward modification of SPCE to enhance electrochemical degradation of organic dye",
volume = "7",
number = "1",
pages = "015509",
doi = "10.1088/2053-1591/ab6490"
}
Ognjanović, M., Stanković, D. M., Fabian, M., Vranješ-Đurić, S., Antić, B.,& Dojčinović, B. P.. (2020). Tailoring IONP shape and designing nanocomposite IONS@GN toward modification of SPCE to enhance electrochemical degradation of organic dye. in Materials Research Express, 7(1), 015509.
https://doi.org/10.1088/2053-1591/ab6490
Ognjanović M, Stanković DM, Fabian M, Vranješ-Đurić S, Antić B, Dojčinović BP. Tailoring IONP shape and designing nanocomposite IONS@GN toward modification of SPCE to enhance electrochemical degradation of organic dye. in Materials Research Express. 2020;7(1):015509.
doi:10.1088/2053-1591/ab6490 .
Ognjanović, Miloš, Stanković, Dalibor M., Fabian, Martin, Vranješ-Đurić, Sanja, Antić, Bratislav, Dojčinović, Biljana P., "Tailoring IONP shape and designing nanocomposite IONS@GN toward modification of SPCE to enhance electrochemical degradation of organic dye" in Materials Research Express, 7, no. 1 (2020):015509,
https://doi.org/10.1088/2053-1591/ab6490 . .
1
1
1

A single drop histamine sensor based on AuNPs/MnO2 modified screen-printed electrode

Knežević, Sara; Ognjanović, Miloš; Nedić, Nemanja; Mariano, Jose F. M. L.; Milanović, Zorana; Petković, Branka B.; Antić, Bratislav; Vranješ-Đurić, Sanja; Stanković, Dalibor M.

(2020)

TY  - JOUR
AU  - Knežević, Sara
AU  - Ognjanović, Miloš
AU  - Nedić, Nemanja
AU  - Mariano, Jose F. M. L.
AU  - Milanović, Zorana
AU  - Petković, Branka B.
AU  - Antić, Bratislav
AU  - Vranješ-Đurić, Sanja
AU  - Stanković, Dalibor M.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8834
AB  - In order to ensure high food quality, one of the prime importance is the detection and quantification of histamine, well known marine food poison. In this work, we constructed novel electrochemical biosensor for the detection of histamine based on gold nanoparticles decorated on manganese dioxide (Au/MnO2) and used for modification of screen-printed carbon electrode (Au/MnO2@SPCE). The constructed sensor was then used for the estimation of histamine content in a single drop. Materials used in this study were synthesized and characterized using HR-TEM, XRPD and electrochemical methods. The amperometric detection method was optimized and, under selected operating parameters (supporting electrolyte pH 6, working potential of 1 V), the proposed sensor possesses linear working range from 0.3 µM to 5.1 µM, with a detection limit of 0.08 µM. The effect of selected interferences was investigated and it was found that the developed approach offers accurate, precise, selective, fast and reproducible quantification of histamine using only one drop of the sample. In the end, this work stands as a proof-of-concept of the modified electrodes and electrochemical detection as a promising and prospective approach for the applications in real-time monitoring of the food quality.
T2  - Microchemical Journal
T1  - A single drop histamine sensor based on AuNPs/MnO2 modified screen-printed electrode
VL  - 155
SP  - 104778
DO  - 10.1016/j.microc.2020.104778
ER  - 
@article{
author = "Knežević, Sara and Ognjanović, Miloš and Nedić, Nemanja and Mariano, Jose F. M. L. and Milanović, Zorana and Petković, Branka B. and Antić, Bratislav and Vranješ-Đurić, Sanja and Stanković, Dalibor M.",
year = "2020",
abstract = "In order to ensure high food quality, one of the prime importance is the detection and quantification of histamine, well known marine food poison. In this work, we constructed novel electrochemical biosensor for the detection of histamine based on gold nanoparticles decorated on manganese dioxide (Au/MnO2) and used for modification of screen-printed carbon electrode (Au/MnO2@SPCE). The constructed sensor was then used for the estimation of histamine content in a single drop. Materials used in this study were synthesized and characterized using HR-TEM, XRPD and electrochemical methods. The amperometric detection method was optimized and, under selected operating parameters (supporting electrolyte pH 6, working potential of 1 V), the proposed sensor possesses linear working range from 0.3 µM to 5.1 µM, with a detection limit of 0.08 µM. The effect of selected interferences was investigated and it was found that the developed approach offers accurate, precise, selective, fast and reproducible quantification of histamine using only one drop of the sample. In the end, this work stands as a proof-of-concept of the modified electrodes and electrochemical detection as a promising and prospective approach for the applications in real-time monitoring of the food quality.",
journal = "Microchemical Journal",
title = "A single drop histamine sensor based on AuNPs/MnO2 modified screen-printed electrode",
volume = "155",
pages = "104778",
doi = "10.1016/j.microc.2020.104778"
}
Knežević, S., Ognjanović, M., Nedić, N., Mariano, J. F. M. L., Milanović, Z., Petković, B. B., Antić, B., Vranješ-Đurić, S.,& Stanković, D. M.. (2020). A single drop histamine sensor based on AuNPs/MnO2 modified screen-printed electrode. in Microchemical Journal, 155, 104778.
https://doi.org/10.1016/j.microc.2020.104778
Knežević S, Ognjanović M, Nedić N, Mariano JFML, Milanović Z, Petković BB, Antić B, Vranješ-Đurić S, Stanković DM. A single drop histamine sensor based on AuNPs/MnO2 modified screen-printed electrode. in Microchemical Journal. 2020;155:104778.
doi:10.1016/j.microc.2020.104778 .
Knežević, Sara, Ognjanović, Miloš, Nedić, Nemanja, Mariano, Jose F. M. L., Milanović, Zorana, Petković, Branka B., Antić, Bratislav, Vranješ-Đurić, Sanja, Stanković, Dalibor M., "A single drop histamine sensor based on AuNPs/MnO2 modified screen-printed electrode" in Microchemical Journal, 155 (2020):104778,
https://doi.org/10.1016/j.microc.2020.104778 . .
1
7
5
6

Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor

Stanković, Vesna; Đurđić, Slađana; Ognjanović, Miloš; Antić, Bratislav; Kalcher, Kurt; Mutić, Jelena J.; Stanković, Dalibor M.

(2020)

TY  - JOUR
AU  - Stanković, Vesna
AU  - Đurđić, Slađana
AU  - Ognjanović, Miloš
AU  - Antić, Bratislav
AU  - Kalcher, Kurt
AU  - Mutić, Jelena J.
AU  - Stanković, Dalibor M.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8819
AB  - Diagnosis and treatment of some important diseased and metabolic disorders is based on successful detection of albumin. In this work, we aim to develop a simple immunosensor for the detection of human serum albumin in biological fluids. Anti-human albumin antibody was covalently attached to the activated surface of screen-printed carbon electrodes enriched with carboxyl graphene/gold nanoparticles composite. Microstructure (TEM, FE-SEM, XRD) and electrochemical (CV, EIS) characterization methods were used to investigate composite properties and to confirm the successful modification of the electrodes. Under the optimal conditions, linear working range and limit of detection were 2.5–500 μg/mL and 1.55 μg/mL, respectively. Additionally, the effect of some possibly interfering compounds was investigated and the immunosensor was used for real sample analysis. The results showed that the sensor exhibited accurate, precise and sensitive characteristics and can be promising replacement to the convention methods for albumin detection in clinical practice.
T2  - Journal of Electroanalytical Chemistry
T1  - Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor
VL  - 860
SP  - 113928
DO  - 10.1016/j.jelechem.2020.113928
ER  - 
@article{
author = "Stanković, Vesna and Đurđić, Slađana and Ognjanović, Miloš and Antić, Bratislav and Kalcher, Kurt and Mutić, Jelena J. and Stanković, Dalibor M.",
year = "2020",
abstract = "Diagnosis and treatment of some important diseased and metabolic disorders is based on successful detection of albumin. In this work, we aim to develop a simple immunosensor for the detection of human serum albumin in biological fluids. Anti-human albumin antibody was covalently attached to the activated surface of screen-printed carbon electrodes enriched with carboxyl graphene/gold nanoparticles composite. Microstructure (TEM, FE-SEM, XRD) and electrochemical (CV, EIS) characterization methods were used to investigate composite properties and to confirm the successful modification of the electrodes. Under the optimal conditions, linear working range and limit of detection were 2.5–500 μg/mL and 1.55 μg/mL, respectively. Additionally, the effect of some possibly interfering compounds was investigated and the immunosensor was used for real sample analysis. The results showed that the sensor exhibited accurate, precise and sensitive characteristics and can be promising replacement to the convention methods for albumin detection in clinical practice.",
journal = "Journal of Electroanalytical Chemistry",
title = "Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor",
volume = "860",
pages = "113928",
doi = "10.1016/j.jelechem.2020.113928"
}
Stanković, V., Đurđić, S., Ognjanović, M., Antić, B., Kalcher, K., Mutić, J. J.,& Stanković, D. M.. (2020). Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor. in Journal of Electroanalytical Chemistry, 860, 113928.
https://doi.org/10.1016/j.jelechem.2020.113928
Stanković V, Đurđić S, Ognjanović M, Antić B, Kalcher K, Mutić JJ, Stanković DM. Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor. in Journal of Electroanalytical Chemistry. 2020;860:113928.
doi:10.1016/j.jelechem.2020.113928 .
Stanković, Vesna, Đurđić, Slađana, Ognjanović, Miloš, Antić, Bratislav, Kalcher, Kurt, Mutić, Jelena J., Stanković, Dalibor M., "Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor" in Journal of Electroanalytical Chemistry, 860 (2020):113928,
https://doi.org/10.1016/j.jelechem.2020.113928 . .
10
9
10

Inkjet-Printed Carbon Nanotube Electrodes Modified with Dimercaptosuccinic Acid-Capped Fe3O4Nanoparticles on Reduced Graphene Oxide Nanosheets for Single-Drop Determination of Trifluoperazine

Ognjanović, Miloš; Stanković, Dalibor M.; Jović, Milica; Krstić, Milena P.; Lesch, Andreas; Girault, Hubert H.; Antić, Bratislav

(2020)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Stanković, Dalibor M.
AU  - Jović, Milica
AU  - Krstić, Milena P.
AU  - Lesch, Andreas
AU  - Girault, Hubert H.
AU  - Antić, Bratislav
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9082
AB  - Here, we report the design of a disposable single-drop voltammetric sensor for the quantitative determination of antipsychotic drug trifluoperazine (TFP). The sensor was built using inkjet-printed carbon nanotube (CNT) electrodes, which were modified with dimercaptosuccinic acid (DMSA)-coated magnetite nanoparticles uniformly dispersed over reduced graphene oxide nanosheets (DMSA/Fe3O4/RGO). The used modifying materials were characterized by electron microscopy techniques (transmission electron microscopy (TEM) and field emission-scanning electron microscopy (FE-SEM)), X-ray powder diffraction, ζ-potential measurements, dynamic light scattering (DLS), and electrochemical methods (cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS)). The developed sensor, best operated at pH 7 in the Britton-Robinson buffer solution (BRBS), shows linear electrocatalytic activity with TFP in the concentration range of 1-50 μM, a low detection limit of 0.54 μM, and excellent selectivity, repeatability, and reproducibility with an relative standard deviation (RSD) of 2.4%. A voltammetric approach using square wave voltammetry (SWV) is a sensitive technique under optimized conditions for the analytical determination of submicromolar amounts of TFP. Bare CNT and RGO- and DMSA/Fe3O4-modified CNT electrodes showed lower electrocatalytic activity than the DMSA/Fe3O4/RGO/CNT electrode. The development of this kind of TFP sensor based on nanoparticle-decorated graphene nanosheets can offer a tool for point-of-care applications as sensors in biomedicine.
T2  - ACS Applied Nano Materials
T1  - Inkjet-Printed Carbon Nanotube Electrodes Modified with Dimercaptosuccinic Acid-Capped Fe3O4Nanoparticles on Reduced Graphene Oxide Nanosheets for Single-Drop Determination of Trifluoperazine
VL  - 3
IS  - 5
SP  - 4654
EP  - 4662
DO  - 10.1021/acsanm.0c00661
ER  - 
@article{
author = "Ognjanović, Miloš and Stanković, Dalibor M. and Jović, Milica and Krstić, Milena P. and Lesch, Andreas and Girault, Hubert H. and Antić, Bratislav",
year = "2020",
abstract = "Here, we report the design of a disposable single-drop voltammetric sensor for the quantitative determination of antipsychotic drug trifluoperazine (TFP). The sensor was built using inkjet-printed carbon nanotube (CNT) electrodes, which were modified with dimercaptosuccinic acid (DMSA)-coated magnetite nanoparticles uniformly dispersed over reduced graphene oxide nanosheets (DMSA/Fe3O4/RGO). The used modifying materials were characterized by electron microscopy techniques (transmission electron microscopy (TEM) and field emission-scanning electron microscopy (FE-SEM)), X-ray powder diffraction, ζ-potential measurements, dynamic light scattering (DLS), and electrochemical methods (cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS)). The developed sensor, best operated at pH 7 in the Britton-Robinson buffer solution (BRBS), shows linear electrocatalytic activity with TFP in the concentration range of 1-50 μM, a low detection limit of 0.54 μM, and excellent selectivity, repeatability, and reproducibility with an relative standard deviation (RSD) of 2.4%. A voltammetric approach using square wave voltammetry (SWV) is a sensitive technique under optimized conditions for the analytical determination of submicromolar amounts of TFP. Bare CNT and RGO- and DMSA/Fe3O4-modified CNT electrodes showed lower electrocatalytic activity than the DMSA/Fe3O4/RGO/CNT electrode. The development of this kind of TFP sensor based on nanoparticle-decorated graphene nanosheets can offer a tool for point-of-care applications as sensors in biomedicine.",
journal = "ACS Applied Nano Materials",
title = "Inkjet-Printed Carbon Nanotube Electrodes Modified with Dimercaptosuccinic Acid-Capped Fe3O4Nanoparticles on Reduced Graphene Oxide Nanosheets for Single-Drop Determination of Trifluoperazine",
volume = "3",
number = "5",
pages = "4654-4662",
doi = "10.1021/acsanm.0c00661"
}
Ognjanović, M., Stanković, D. M., Jović, M., Krstić, M. P., Lesch, A., Girault, H. H.,& Antić, B.. (2020). Inkjet-Printed Carbon Nanotube Electrodes Modified with Dimercaptosuccinic Acid-Capped Fe3O4Nanoparticles on Reduced Graphene Oxide Nanosheets for Single-Drop Determination of Trifluoperazine. in ACS Applied Nano Materials, 3(5), 4654-4662.
https://doi.org/10.1021/acsanm.0c00661
Ognjanović M, Stanković DM, Jović M, Krstić MP, Lesch A, Girault HH, Antić B. Inkjet-Printed Carbon Nanotube Electrodes Modified with Dimercaptosuccinic Acid-Capped Fe3O4Nanoparticles on Reduced Graphene Oxide Nanosheets for Single-Drop Determination of Trifluoperazine. in ACS Applied Nano Materials. 2020;3(5):4654-4662.
doi:10.1021/acsanm.0c00661 .
Ognjanović, Miloš, Stanković, Dalibor M., Jović, Milica, Krstić, Milena P., Lesch, Andreas, Girault, Hubert H., Antić, Bratislav, "Inkjet-Printed Carbon Nanotube Electrodes Modified with Dimercaptosuccinic Acid-Capped Fe3O4Nanoparticles on Reduced Graphene Oxide Nanosheets for Single-Drop Determination of Trifluoperazine" in ACS Applied Nano Materials, 3, no. 5 (2020):4654-4662,
https://doi.org/10.1021/acsanm.0c00661 . .
9
8
8

Enhancing Analytical Performance of (Mg,Fe)3O4/Glassy Carbon Electrodes by Tailoring Chemical Composition of (Mg,Fe)3O4 Nanoparticles

Ognjanović, Miloš; Spasojević, Irena; Stanković, Dalibor M.; Ming, Yue; Jančar, Boštjan; Dojčinović, Biljana P.; Spasojević, Vojislav; Antić, Bratislav

(2019)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Spasojević, Irena
AU  - Stanković, Dalibor M.
AU  - Ming, Yue
AU  - Jančar, Boštjan
AU  - Dojčinović, Biljana P.
AU  - Spasojević, Vojislav
AU  - Antić, Bratislav
PY  - 2019
UR  - https://www.ingentaconnect.com/content/10.1166/jnn.2019.16284
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8074
AB  - A series of MgxFe3-xO₄ (x ═ 0-1) nanoparticles was synthesized in order to prepare novel MgxFe3-xO₄/glassy carbon modified electrodes. Effects of magnesium content (x) on the analytical performance of the modified electrodes in the detection of gallic acid were evaluated. It was found that magnesium concentration and crystallite/particle size of the prepared nanoparticles play significant roles in the sensing properties of modified electrodes. The increase of magnesium concentration up to the value of x ═ 0.4 in MgxFe3-xO₄/glassy carbon paste was accompanied by an increase of the corresponding oxidation current of gallic acid. However, further growth of x value caused decline of the obtained oxidation current. An electroanalytical procedure was established, and the analytical performance of the proposed Mg0.4Fe2.6O₄/glassy carbon paste electrode was monitored using previously optimized experimental conditions. A working linear range from 1-39 µM gallic acid was obtained with detection limit of 0.29 µM. According to these results, the developed procedure can be applied for detection of low concentrations of gallic acid with satisfactory selectivity in the presence of some common naturally occurring compounds. Experimental results indicate that the developed procedure could be a novel approach in the detection of antioxidant, overcoming some known disadvantages such as passivation, and could be a promising replacement for sophisticated chromatographic methods.
T2  - Journal of Nanoscience and Nanotechnology
T1  - Enhancing Analytical Performance of (Mg,Fe)3O4/Glassy Carbon Electrodes by Tailoring Chemical Composition of (Mg,Fe)3O4 Nanoparticles
VL  - 19
IS  - 7
SP  - 4205
EP  - 4213
DO  - 10.1166/jnn.2019.16284
ER  - 
@article{
author = "Ognjanović, Miloš and Spasojević, Irena and Stanković, Dalibor M. and Ming, Yue and Jančar, Boštjan and Dojčinović, Biljana P. and Spasojević, Vojislav and Antić, Bratislav",
year = "2019",
abstract = "A series of MgxFe3-xO₄ (x ═ 0-1) nanoparticles was synthesized in order to prepare novel MgxFe3-xO₄/glassy carbon modified electrodes. Effects of magnesium content (x) on the analytical performance of the modified electrodes in the detection of gallic acid were evaluated. It was found that magnesium concentration and crystallite/particle size of the prepared nanoparticles play significant roles in the sensing properties of modified electrodes. The increase of magnesium concentration up to the value of x ═ 0.4 in MgxFe3-xO₄/glassy carbon paste was accompanied by an increase of the corresponding oxidation current of gallic acid. However, further growth of x value caused decline of the obtained oxidation current. An electroanalytical procedure was established, and the analytical performance of the proposed Mg0.4Fe2.6O₄/glassy carbon paste electrode was monitored using previously optimized experimental conditions. A working linear range from 1-39 µM gallic acid was obtained with detection limit of 0.29 µM. According to these results, the developed procedure can be applied for detection of low concentrations of gallic acid with satisfactory selectivity in the presence of some common naturally occurring compounds. Experimental results indicate that the developed procedure could be a novel approach in the detection of antioxidant, overcoming some known disadvantages such as passivation, and could be a promising replacement for sophisticated chromatographic methods.",
journal = "Journal of Nanoscience and Nanotechnology",
title = "Enhancing Analytical Performance of (Mg,Fe)3O4/Glassy Carbon Electrodes by Tailoring Chemical Composition of (Mg,Fe)3O4 Nanoparticles",
volume = "19",
number = "7",
pages = "4205-4213",
doi = "10.1166/jnn.2019.16284"
}
Ognjanović, M., Spasojević, I., Stanković, D. M., Ming, Y., Jančar, B., Dojčinović, B. P., Spasojević, V.,& Antić, B.. (2019). Enhancing Analytical Performance of (Mg,Fe)3O4/Glassy Carbon Electrodes by Tailoring Chemical Composition of (Mg,Fe)3O4 Nanoparticles. in Journal of Nanoscience and Nanotechnology, 19(7), 4205-4213.
https://doi.org/10.1166/jnn.2019.16284
Ognjanović M, Spasojević I, Stanković DM, Ming Y, Jančar B, Dojčinović BP, Spasojević V, Antić B. Enhancing Analytical Performance of (Mg,Fe)3O4/Glassy Carbon Electrodes by Tailoring Chemical Composition of (Mg,Fe)3O4 Nanoparticles. in Journal of Nanoscience and Nanotechnology. 2019;19(7):4205-4213.
doi:10.1166/jnn.2019.16284 .
Ognjanović, Miloš, Spasojević, Irena, Stanković, Dalibor M., Ming, Yue, Jančar, Boštjan, Dojčinović, Biljana P., Spasojević, Vojislav, Antić, Bratislav, "Enhancing Analytical Performance of (Mg,Fe)3O4/Glassy Carbon Electrodes by Tailoring Chemical Composition of (Mg,Fe)3O4 Nanoparticles" in Journal of Nanoscience and Nanotechnology, 19, no. 7 (2019):4205-4213,
https://doi.org/10.1166/jnn.2019.16284 . .

Hydroxyapatite/iron oxide nanocomposite prepared by high energy ball milling

Vučinić-Vasić, Milica; Antić, Bratislav; Bošković, Marko; Antić, Aleksandar; Blanuša, Jovan

(2019)

TY  - JOUR
AU  - Vučinić-Vasić, Milica
AU  - Antić, Bratislav
AU  - Bošković, Marko
AU  - Antić, Aleksandar
AU  - Blanuša, Jovan
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8461
AB  - Nanocomposites (HAp/iron oxide), made of hydroxyapatite (HAp) and ferrimagnetic iron oxide, were synthesized by high-energy ball milling a mixture consisting of iron oxide nanoparticles and the starting materials used for the HAp synthesis: calcium hydrogen phosphate anhydrous (CaHPO4), and calcium hydroxide (Ca(OH)2). Two HAp/iron oxide samples with the magnetic phase content of 12 and 30 wt.% were prepared and their microstructure, morphology and magnetic properties were analysed by X-ray diffraction and transmission electron microscopy. Furthermore, the measurement of particle size distribution was performed by laser scattering, and temperature/field dependence on magnetization was determined. X-ray diffraction data confirmed the formation of two-phased samples (HAp and spinel iron oxide) without the presence of any other parasite phase. The shape of particles was nearly spherical in both samples, ranging from only a few to several tens of nanometres in diameter. These particles formed agglomerates with the most common value of the number-based particle size distribution of 380 and 310 nm for the sample with 12 and 30 wt.% of iron oxide, respectively. Magnetization data showed that both HAp/iron oxide composites had superparamagnetic behaviour at room temperature. © 2019 University of Novi Sad, Faculty of Technology. All rights reserved.
T2  - Processing and Application of Ceramics
T1  - Hydroxyapatite/iron oxide nanocomposite prepared by high energy ball milling
VL  - 13
IS  - 2
SP  - 210
EP  - 217
DO  - 10.2298/PAC1902210V
ER  - 
@article{
author = "Vučinić-Vasić, Milica and Antić, Bratislav and Bošković, Marko and Antić, Aleksandar and Blanuša, Jovan",
year = "2019",
abstract = "Nanocomposites (HAp/iron oxide), made of hydroxyapatite (HAp) and ferrimagnetic iron oxide, were synthesized by high-energy ball milling a mixture consisting of iron oxide nanoparticles and the starting materials used for the HAp synthesis: calcium hydrogen phosphate anhydrous (CaHPO4), and calcium hydroxide (Ca(OH)2). Two HAp/iron oxide samples with the magnetic phase content of 12 and 30 wt.% were prepared and their microstructure, morphology and magnetic properties were analysed by X-ray diffraction and transmission electron microscopy. Furthermore, the measurement of particle size distribution was performed by laser scattering, and temperature/field dependence on magnetization was determined. X-ray diffraction data confirmed the formation of two-phased samples (HAp and spinel iron oxide) without the presence of any other parasite phase. The shape of particles was nearly spherical in both samples, ranging from only a few to several tens of nanometres in diameter. These particles formed agglomerates with the most common value of the number-based particle size distribution of 380 and 310 nm for the sample with 12 and 30 wt.% of iron oxide, respectively. Magnetization data showed that both HAp/iron oxide composites had superparamagnetic behaviour at room temperature. © 2019 University of Novi Sad, Faculty of Technology. All rights reserved.",
journal = "Processing and Application of Ceramics",
title = "Hydroxyapatite/iron oxide nanocomposite prepared by high energy ball milling",
volume = "13",
number = "2",
pages = "210-217",
doi = "10.2298/PAC1902210V"
}
Vučinić-Vasić, M., Antić, B., Bošković, M., Antić, A.,& Blanuša, J.. (2019). Hydroxyapatite/iron oxide nanocomposite prepared by high energy ball milling. in Processing and Application of Ceramics, 13(2), 210-217.
https://doi.org/10.2298/PAC1902210V
Vučinić-Vasić M, Antić B, Bošković M, Antić A, Blanuša J. Hydroxyapatite/iron oxide nanocomposite prepared by high energy ball milling. in Processing and Application of Ceramics. 2019;13(2):210-217.
doi:10.2298/PAC1902210V .
Vučinić-Vasić, Milica, Antić, Bratislav, Bošković, Marko, Antić, Aleksandar, Blanuša, Jovan, "Hydroxyapatite/iron oxide nanocomposite prepared by high energy ball milling" in Processing and Application of Ceramics, 13, no. 2 (2019):210-217,
https://doi.org/10.2298/PAC1902210V . .
2
2
2

Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species

Dojčinović, Biljana P.; Jančar, Boštjan; Bessais, Lotfi; Kremenović, Aleksandar S.; Jović-Jovičić, Nataša P.; Banković, Predrag T.; Stanković, Dalibor M.; Ognjanović, Miloš; Antić, Bratislav

(2019)

TY  - JOUR
AU  - Dojčinović, Biljana P.
AU  - Jančar, Boštjan
AU  - Bessais, Lotfi
AU  - Kremenović, Aleksandar S.
AU  - Jović-Jovičić, Nataša P.
AU  - Banković, Predrag T.
AU  - Stanković, Dalibor M.
AU  - Ognjanović, Miloš
AU  - Antić, Bratislav
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8612
AB  - Herein we report effects of partial substitution of Fe3+ by Y3+ in magnetite (Fe3O4) on morphology and inorganic arsenic species adsorption efficiency of the Fe3-xYxO4 nanoparticles formed. The series of Fe3-xYxO4 (x = 0.00, 0.042 and 0.084, labeled as Y00, Y05 and Y10, respectively) was synthesized using co-precipitation followed by microwave-hydrothermal treatment (MW) at 200 degrees C. With increase of yttrium content (x value), both the morphological inhomogeneity of the samples and the fraction of spinel nanorods as compared to spinel pseudospherical particles increased. By both transmission electron microscopy and x-ray powder diffraction analyses, it was determined that the direction of growth of the spinel nanorods is along the [110] crystallographic direction. The Fe3-xYxO4 affinities of adsorption toward the inorganic arsenic species, As(III) (arsenite, AsO33-) and As(V) (arsenate, AsO43-), were investigated. Increased Y3+ content related to changes in sample morphology was followed by a decrease of As(III) removal efficiency and vice versa for As(V). The increase in Y3+ content, in addition to increasing the adsorption capacity for As(V), significantly expanded the optimum pH range for the maximum removal and decreased the contact time for necessary 50% removal (t(1/2)) of As(V) (Y00: pH 2-3, t(1/2) = 3.12 min; Y05: pH 2-6, t(1/2) = 2.12 min and Y10: pH 2-10, t(1/2) = 1.12 min). The results point to incorporation of Y3+ in the crystal lattice of magnetite, inducing nanorod spinel structure formation with significant changes in sorption properties important for the removal of inorganic arsenic from waters.
T2  - Nanotechnology
T1  - Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species
VL  - 30
IS  - 47
SP  - 475702
DO  - 10.1088/1361-6528/ab3ca2
ER  - 
@article{
author = "Dojčinović, Biljana P. and Jančar, Boštjan and Bessais, Lotfi and Kremenović, Aleksandar S. and Jović-Jovičić, Nataša P. and Banković, Predrag T. and Stanković, Dalibor M. and Ognjanović, Miloš and Antić, Bratislav",
year = "2019",
abstract = "Herein we report effects of partial substitution of Fe3+ by Y3+ in magnetite (Fe3O4) on morphology and inorganic arsenic species adsorption efficiency of the Fe3-xYxO4 nanoparticles formed. The series of Fe3-xYxO4 (x = 0.00, 0.042 and 0.084, labeled as Y00, Y05 and Y10, respectively) was synthesized using co-precipitation followed by microwave-hydrothermal treatment (MW) at 200 degrees C. With increase of yttrium content (x value), both the morphological inhomogeneity of the samples and the fraction of spinel nanorods as compared to spinel pseudospherical particles increased. By both transmission electron microscopy and x-ray powder diffraction analyses, it was determined that the direction of growth of the spinel nanorods is along the [110] crystallographic direction. The Fe3-xYxO4 affinities of adsorption toward the inorganic arsenic species, As(III) (arsenite, AsO33-) and As(V) (arsenate, AsO43-), were investigated. Increased Y3+ content related to changes in sample morphology was followed by a decrease of As(III) removal efficiency and vice versa for As(V). The increase in Y3+ content, in addition to increasing the adsorption capacity for As(V), significantly expanded the optimum pH range for the maximum removal and decreased the contact time for necessary 50% removal (t(1/2)) of As(V) (Y00: pH 2-3, t(1/2) = 3.12 min; Y05: pH 2-6, t(1/2) = 2.12 min and Y10: pH 2-10, t(1/2) = 1.12 min). The results point to incorporation of Y3+ in the crystal lattice of magnetite, inducing nanorod spinel structure formation with significant changes in sorption properties important for the removal of inorganic arsenic from waters.",
journal = "Nanotechnology",
title = "Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species",
volume = "30",
number = "47",
pages = "475702",
doi = "10.1088/1361-6528/ab3ca2"
}
Dojčinović, B. P., Jančar, B., Bessais, L., Kremenović, A. S., Jović-Jovičić, N. P., Banković, P. T., Stanković, D. M., Ognjanović, M.,& Antić, B.. (2019). Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species. in Nanotechnology, 30(47), 475702.
https://doi.org/10.1088/1361-6528/ab3ca2
Dojčinović BP, Jančar B, Bessais L, Kremenović AS, Jović-Jovičić NP, Banković PT, Stanković DM, Ognjanović M, Antić B. Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species. in Nanotechnology. 2019;30(47):475702.
doi:10.1088/1361-6528/ab3ca2 .
Dojčinović, Biljana P., Jančar, Boštjan, Bessais, Lotfi, Kremenović, Aleksandar S., Jović-Jovičić, Nataša P., Banković, Predrag T., Stanković, Dalibor M., Ognjanović, Miloš, Antić, Bratislav, "Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species" in Nanotechnology, 30, no. 47 (2019):475702,
https://doi.org/10.1088/1361-6528/ab3ca2 . .
2
2
2

99mTc–bisphosphonate–coated magnetic nanoparticles as potential theranostic nanoagent

Mirković, Marija D.; Radović, Magdalena; Stanković, Dragana; Milanović, Zorana; Janković, Drina; Matović, Milovan D.; Jeremić, Marija; Antić, Bratislav; Vranješ-Đurić, Sanja

(2019)

TY  - JOUR
AU  - Mirković, Marija D.
AU  - Radović, Magdalena
AU  - Stanković, Dragana
AU  - Milanović, Zorana
AU  - Janković, Drina
AU  - Matović, Milovan D.
AU  - Jeremić, Marija
AU  - Antić, Bratislav
AU  - Vranješ-Đurić, Sanja
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8156
AB  - Novel theranostic nanoplatform is expected to integrate imaging for guiding and monitoring of the tumor therapy with great therapeutic efficacy and fewer side effects. Here we describe the preparation of a multifunctional 99mTc–bisphosphonate–coated magnetic nanoparticles (MNPs) based on Fe3O4 and coated with two hydrophilic bisphosphonate ligands, i.e., methylene diphosphonate (MDP) and 1–hydroxyethane-1,1- diphosphonate (HEDP). The presence of the bisphosphonates on the MNPs surface, enabled their biocompatibility, colloidal stability and successful binding of the radionuclide. The morphology, size, structure, surface charge and magnetic properties of obtained bisphosphonate–coated Fe3O4 MNPs were characterized by transmission electron microscopy, X–ray powder diffraction, dynamic light scattering, laser Doppler electrophoresis, Fourier transform infrared spectroscopy and vibrating sample magnetometer. The specific power absorption values for Fe3O4–MDP and Fe3O4–HEDP were 113 W/g and 141 W/g, respectively, indicated their heating ability under applied magnetic field. Coated MNPs were radiolabeled with 99mTc using stannous chloride as the reducing agent in a reproducible high yield (95% for Fe3O4–MDP and 97% for Fe3O4–HEDP MNPs) and were remained stable in saline and human serum for 24 h. Ex vivo biodistribution studies presented significant liver and spleen uptake in healthy Wistar rats after intravenous administration at all examined time points due to the colloidal nature of both 99mTc–MNPs. Results of scintigraphy studies are in accordance with ex vivo biodistribution studies, demonstrating high in vivo stability of radiolabeled MNPs and therefore results of both methods were proved as accurate information on the biodistribution profile of investigated MNPs. Overall, in vitro and in vivo stability as well as heating ability, indicate that biocompatible radiolabeled bisphosphonate magnetic nanoparticles exhibit promising potential as a theranostic nanoagent. © 2019 Elsevier B.V.
T2  - Materials Science and Engineering: C
T1  - 99mTc–bisphosphonate–coated magnetic nanoparticles as potential theranostic nanoagent
VL  - 102
SP  - 124
EP  - 133
DO  - 10.1016/j.msec.2019.04.034
ER  - 
@article{
author = "Mirković, Marija D. and Radović, Magdalena and Stanković, Dragana and Milanović, Zorana and Janković, Drina and Matović, Milovan D. and Jeremić, Marija and Antić, Bratislav and Vranješ-Đurić, Sanja",
year = "2019",
abstract = "Novel theranostic nanoplatform is expected to integrate imaging for guiding and monitoring of the tumor therapy with great therapeutic efficacy and fewer side effects. Here we describe the preparation of a multifunctional 99mTc–bisphosphonate–coated magnetic nanoparticles (MNPs) based on Fe3O4 and coated with two hydrophilic bisphosphonate ligands, i.e., methylene diphosphonate (MDP) and 1–hydroxyethane-1,1- diphosphonate (HEDP). The presence of the bisphosphonates on the MNPs surface, enabled their biocompatibility, colloidal stability and successful binding of the radionuclide. The morphology, size, structure, surface charge and magnetic properties of obtained bisphosphonate–coated Fe3O4 MNPs were characterized by transmission electron microscopy, X–ray powder diffraction, dynamic light scattering, laser Doppler electrophoresis, Fourier transform infrared spectroscopy and vibrating sample magnetometer. The specific power absorption values for Fe3O4–MDP and Fe3O4–HEDP were 113 W/g and 141 W/g, respectively, indicated their heating ability under applied magnetic field. Coated MNPs were radiolabeled with 99mTc using stannous chloride as the reducing agent in a reproducible high yield (95% for Fe3O4–MDP and 97% for Fe3O4–HEDP MNPs) and were remained stable in saline and human serum for 24 h. Ex vivo biodistribution studies presented significant liver and spleen uptake in healthy Wistar rats after intravenous administration at all examined time points due to the colloidal nature of both 99mTc–MNPs. Results of scintigraphy studies are in accordance with ex vivo biodistribution studies, demonstrating high in vivo stability of radiolabeled MNPs and therefore results of both methods were proved as accurate information on the biodistribution profile of investigated MNPs. Overall, in vitro and in vivo stability as well as heating ability, indicate that biocompatible radiolabeled bisphosphonate magnetic nanoparticles exhibit promising potential as a theranostic nanoagent. © 2019 Elsevier B.V.",
journal = "Materials Science and Engineering: C",
title = "99mTc–bisphosphonate–coated magnetic nanoparticles as potential theranostic nanoagent",
volume = "102",
pages = "124-133",
doi = "10.1016/j.msec.2019.04.034"
}
Mirković, M. D., Radović, M., Stanković, D., Milanović, Z., Janković, D., Matović, M. D., Jeremić, M., Antić, B.,& Vranješ-Đurić, S.. (2019). 99mTc–bisphosphonate–coated magnetic nanoparticles as potential theranostic nanoagent. in Materials Science and Engineering: C, 102, 124-133.
https://doi.org/10.1016/j.msec.2019.04.034
Mirković MD, Radović M, Stanković D, Milanović Z, Janković D, Matović MD, Jeremić M, Antić B, Vranješ-Đurić S. 99mTc–bisphosphonate–coated magnetic nanoparticles as potential theranostic nanoagent. in Materials Science and Engineering: C. 2019;102:124-133.
doi:10.1016/j.msec.2019.04.034 .
Mirković, Marija D., Radović, Magdalena, Stanković, Dragana, Milanović, Zorana, Janković, Drina, Matović, Milovan D., Jeremić, Marija, Antić, Bratislav, Vranješ-Đurić, Sanja, "99mTc–bisphosphonate–coated magnetic nanoparticles as potential theranostic nanoagent" in Materials Science and Engineering: C, 102 (2019):124-133,
https://doi.org/10.1016/j.msec.2019.04.034 . .
13
13
12

Bifunctional (Zn,Fe)3O4 nanoparticles: Tuning their efficiency for potential application in reagentless glucose biosensors and magnetic hyperthermia

Ognjanović, Miloš; Stanković, Dalibor M.; Ming, Yue; Zhang, Hongguo; Jančar, Boštjan; Dojčinović, Biljana P.; Prijović, Željko; Antić, Bratislav

(2019)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Stanković, Dalibor M.
AU  - Ming, Yue
AU  - Zhang, Hongguo
AU  - Jančar, Boštjan
AU  - Dojčinović, Biljana P.
AU  - Prijović, Željko
AU  - Antić, Bratislav
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0925838818340684
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7942
AB  - In a new approach based on a two-step procedure, co-precipitation method followed by hydrothermal treatment in a microwave field, Zn-substituted Fe3O4 nanoparticles (ZnxFe3-xO4) were synthesized. Results of XRD, FT–IR and TEM analysis clearly demonstrate that nanoparticles were single phase, crystallizing in the spinel structure type (S.G. Fd3¯m) with crystallite size in the range of 2–20 nm, which strongly depends on Zn concentration. The produced nanoparticles were used for fabrication of modified carbon paste electrodes as a novel system for electrochemical non-enzymatic glucose detection. It was found that the increase of zinc concentration up to the value of x = 0.56 (Zn0.56Fe2.44O4) of as-prepared nanoparticles was followed with an increase of a performance of the modified carbon paste electrode toward glucose detection. Linear working range from 0.1 to 2 mM was obtained with detection limit of 0.03 mM, and with fast response time (<3 s). Proposed sensor was successfully applied for the determination of glucose level in real samples with satisfactory recovery. The synthesized zinc-ferrite samples were also tested as potential heating agents in magnetic hyperthermia. The heating ability (SAR value) increases with x value, reaching maximum for x = 0.37. This is correlated with changes of particle size and magnetic characteristics which strongly depend on Zn concentration. © 2018 Elsevier B.V.
T2  - Journal of Alloys and Compounds
T1  - Bifunctional (Zn,Fe)3O4 nanoparticles: Tuning their efficiency for potential application in reagentless glucose biosensors and magnetic hyperthermia
VL  - 777
SP  - 454
EP  - 462
DO  - 10.1016/j.jallcom.2018.10.369
ER  - 
@article{
author = "Ognjanović, Miloš and Stanković, Dalibor M. and Ming, Yue and Zhang, Hongguo and Jančar, Boštjan and Dojčinović, Biljana P. and Prijović, Željko and Antić, Bratislav",
year = "2019",
abstract = "In a new approach based on a two-step procedure, co-precipitation method followed by hydrothermal treatment in a microwave field, Zn-substituted Fe3O4 nanoparticles (ZnxFe3-xO4) were synthesized. Results of XRD, FT–IR and TEM analysis clearly demonstrate that nanoparticles were single phase, crystallizing in the spinel structure type (S.G. Fd3¯m) with crystallite size in the range of 2–20 nm, which strongly depends on Zn concentration. The produced nanoparticles were used for fabrication of modified carbon paste electrodes as a novel system for electrochemical non-enzymatic glucose detection. It was found that the increase of zinc concentration up to the value of x = 0.56 (Zn0.56Fe2.44O4) of as-prepared nanoparticles was followed with an increase of a performance of the modified carbon paste electrode toward glucose detection. Linear working range from 0.1 to 2 mM was obtained with detection limit of 0.03 mM, and with fast response time (<3 s). Proposed sensor was successfully applied for the determination of glucose level in real samples with satisfactory recovery. The synthesized zinc-ferrite samples were also tested as potential heating agents in magnetic hyperthermia. The heating ability (SAR value) increases with x value, reaching maximum for x = 0.37. This is correlated with changes of particle size and magnetic characteristics which strongly depend on Zn concentration. © 2018 Elsevier B.V.",
journal = "Journal of Alloys and Compounds",
title = "Bifunctional (Zn,Fe)3O4 nanoparticles: Tuning their efficiency for potential application in reagentless glucose biosensors and magnetic hyperthermia",
volume = "777",
pages = "454-462",
doi = "10.1016/j.jallcom.2018.10.369"
}
Ognjanović, M., Stanković, D. M., Ming, Y., Zhang, H., Jančar, B., Dojčinović, B. P., Prijović, Ž.,& Antić, B.. (2019). Bifunctional (Zn,Fe)3O4 nanoparticles: Tuning their efficiency for potential application in reagentless glucose biosensors and magnetic hyperthermia. in Journal of Alloys and Compounds, 777, 454-462.
https://doi.org/10.1016/j.jallcom.2018.10.369
Ognjanović M, Stanković DM, Ming Y, Zhang H, Jančar B, Dojčinović BP, Prijović Ž, Antić B. Bifunctional (Zn,Fe)3O4 nanoparticles: Tuning their efficiency for potential application in reagentless glucose biosensors and magnetic hyperthermia. in Journal of Alloys and Compounds. 2019;777:454-462.
doi:10.1016/j.jallcom.2018.10.369 .
Ognjanović, Miloš, Stanković, Dalibor M., Ming, Yue, Zhang, Hongguo, Jančar, Boštjan, Dojčinović, Biljana P., Prijović, Željko, Antić, Bratislav, "Bifunctional (Zn,Fe)3O4 nanoparticles: Tuning their efficiency for potential application in reagentless glucose biosensors and magnetic hyperthermia" in Journal of Alloys and Compounds, 777 (2019):454-462,
https://doi.org/10.1016/j.jallcom.2018.10.369 . .
12
9
11

99m Tc-, 90 Y-, and 177 Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis

Ognjanović, Miloš; Radović, Magdalena; Mirković, Marija D.; Prijović, Željko; Puerto Morales, Maria del; Čeh, Miran; Vranješ-Đurić, Sanja; Antić, Bratislav

(2019)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Radović, Magdalena
AU  - Mirković, Marija D.
AU  - Prijović, Željko
AU  - Puerto Morales, Maria del
AU  - Čeh, Miran
AU  - Vranješ-Đurić, Sanja
AU  - Antić, Bratislav
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8622
AB  - Development of a complex based on iron oxide nanoparticles (IONPs) for diagnosis and dual magnetic hyperthermia/radionuclide cancer therapy accomplishing high yields of radiolabeling and great magnetic heat induction is still a challenge. We report here the synthesis of citric acid, poly(acrylic acid) (PAA) and poly(ethylene glycol) coated IONPs and their labeling with three radionuclides, namely, technetium (99mTc), yttrium (90Y), and lutetium (177Lu), aiming at potential use in cancer diagnosis and therapy. Polyol-synthesized IONPs are a flowerlike structure with 13.5 nm spherically shaped cores and 24.8 nm diameter. PAA-coated nanoparticles (PAA@IONP) showed the best characteristics such as easy radiolabeling with very high yields (&gt;97.5%) with all three radionuclides, and excellent in vitro stabilities with less than 10% of radionuclides detaching after 24 h. Heating ability of PAA@IONP in an alternating external magnetic field showed intrinsic loss power value of 7.3 nH m2/kg, which is one of higher reported values. Additionally, PAA@IONP itself presented no significant cytotoxicity to the CT-26 cancer cells, reaching IC50 at 60 μg/mL. However, under the external magnetic field, they show hyperthermia-mediated cells killing, which correlated with the magnetic field strength and time of exposure. Since PAA@IONP are easy to prepare, biocompatible, and with excellent magnetic heat induction, these nanoparticles radiolabeled with high-energy beta emitters 90Y and 177Lu have valuable potential as agent for dual magnetic hyperthermia/radionuclide therapy, while radiolabeled with 99mTc could be used in diagnostic imaging. Copyright © 2019 American Chemical Society.
T2  - ACS Applied Materials & Interfaces
T1  - 99m Tc-, 90 Y-, and 177 Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis
VL  - 11
IS  - 44
SP  - 41109
EP  - 41117
DO  - 10.1021/acsami.9b16428
ER  - 
@article{
author = "Ognjanović, Miloš and Radović, Magdalena and Mirković, Marija D. and Prijović, Željko and Puerto Morales, Maria del and Čeh, Miran and Vranješ-Đurić, Sanja and Antić, Bratislav",
year = "2019",
abstract = "Development of a complex based on iron oxide nanoparticles (IONPs) for diagnosis and dual magnetic hyperthermia/radionuclide cancer therapy accomplishing high yields of radiolabeling and great magnetic heat induction is still a challenge. We report here the synthesis of citric acid, poly(acrylic acid) (PAA) and poly(ethylene glycol) coated IONPs and their labeling with three radionuclides, namely, technetium (99mTc), yttrium (90Y), and lutetium (177Lu), aiming at potential use in cancer diagnosis and therapy. Polyol-synthesized IONPs are a flowerlike structure with 13.5 nm spherically shaped cores and 24.8 nm diameter. PAA-coated nanoparticles (PAA@IONP) showed the best characteristics such as easy radiolabeling with very high yields (&gt;97.5%) with all three radionuclides, and excellent in vitro stabilities with less than 10% of radionuclides detaching after 24 h. Heating ability of PAA@IONP in an alternating external magnetic field showed intrinsic loss power value of 7.3 nH m2/kg, which is one of higher reported values. Additionally, PAA@IONP itself presented no significant cytotoxicity to the CT-26 cancer cells, reaching IC50 at 60 μg/mL. However, under the external magnetic field, they show hyperthermia-mediated cells killing, which correlated with the magnetic field strength and time of exposure. Since PAA@IONP are easy to prepare, biocompatible, and with excellent magnetic heat induction, these nanoparticles radiolabeled with high-energy beta emitters 90Y and 177Lu have valuable potential as agent for dual magnetic hyperthermia/radionuclide therapy, while radiolabeled with 99mTc could be used in diagnostic imaging. Copyright © 2019 American Chemical Society.",
journal = "ACS Applied Materials & Interfaces",
title = "99m Tc-, 90 Y-, and 177 Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis",
volume = "11",
number = "44",
pages = "41109-41117",
doi = "10.1021/acsami.9b16428"
}
Ognjanović, M., Radović, M., Mirković, M. D., Prijović, Ž., Puerto Morales, M. d., Čeh, M., Vranješ-Đurić, S.,& Antić, B.. (2019). 99m Tc-, 90 Y-, and 177 Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis. in ACS Applied Materials & Interfaces, 11(44), 41109-41117.
https://doi.org/10.1021/acsami.9b16428
Ognjanović M, Radović M, Mirković MD, Prijović Ž, Puerto Morales MD, Čeh M, Vranješ-Đurić S, Antić B. 99m Tc-, 90 Y-, and 177 Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis. in ACS Applied Materials & Interfaces. 2019;11(44):41109-41117.
doi:10.1021/acsami.9b16428 .
Ognjanović, Miloš, Radović, Magdalena, Mirković, Marija D., Prijović, Željko, Puerto Morales, Maria del, Čeh, Miran, Vranješ-Đurić, Sanja, Antić, Bratislav, "99m Tc-, 90 Y-, and 177 Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis" in ACS Applied Materials & Interfaces, 11, no. 44 (2019):41109-41117,
https://doi.org/10.1021/acsami.9b16428 . .
19
16
16

Point-of-care amperometric determination of L-dopa using an inkjet-printed carbon nanotube electrode modified with dandelion-like MnO2 microspheres

Stanković, Dalibor M.; Jović, Milica; Ognjanović, Miloš; Lesch, Andreas; Fabian, Martin; Girault, Hubert H.; Antić, Bratislav

(2019)

TY  - JOUR
AU  - Stanković, Dalibor M.
AU  - Jović, Milica
AU  - Ognjanović, Miloš
AU  - Lesch, Andreas
AU  - Fabian, Martin
AU  - Girault, Hubert H.
AU  - Antić, Bratislav
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8394
AB  - An electrochemical sensor is described for the determination of L-dopa (levodopa; 3,4-dihydroxyphenylalanine). An inkjet-printed carbon nanotube (IJPCNT) electrode was modified with manganese dioxide microspheres by drop-casting. They coating was characterized by field emission scanning electron microscopy, Fourier-transform infrared spectroscopy and X-ray powder diffraction. The sensor, best operated at a working voltage of 0.3 V, has a linear response in the 0.1 to 10 μM L-dopa concentration range, a 54 nM detection limit, excellent reproducibility, repeatability and selectivity. The amperometric approach was applied to the determination of L-dopa in spiked biological fluids and displayed satisfactory accuracy and precision. [Figure not available: see fulltext.]. © 2019, Springer-Verlag GmbH Austria, part of Springer Nature.
T2  - Microchimica Acta
T1  - Point-of-care amperometric determination of L-dopa using an inkjet-printed carbon nanotube electrode modified with dandelion-like MnO2 microspheres
VL  - 186
IS  - 8
SP  - 532
DO  - 10.1007/s00604-019-3644-x
ER  - 
@article{
author = "Stanković, Dalibor M. and Jović, Milica and Ognjanović, Miloš and Lesch, Andreas and Fabian, Martin and Girault, Hubert H. and Antić, Bratislav",
year = "2019",
abstract = "An electrochemical sensor is described for the determination of L-dopa (levodopa; 3,4-dihydroxyphenylalanine). An inkjet-printed carbon nanotube (IJPCNT) electrode was modified with manganese dioxide microspheres by drop-casting. They coating was characterized by field emission scanning electron microscopy, Fourier-transform infrared spectroscopy and X-ray powder diffraction. The sensor, best operated at a working voltage of 0.3 V, has a linear response in the 0.1 to 10 μM L-dopa concentration range, a 54 nM detection limit, excellent reproducibility, repeatability and selectivity. The amperometric approach was applied to the determination of L-dopa in spiked biological fluids and displayed satisfactory accuracy and precision. [Figure not available: see fulltext.]. © 2019, Springer-Verlag GmbH Austria, part of Springer Nature.",
journal = "Microchimica Acta",
title = "Point-of-care amperometric determination of L-dopa using an inkjet-printed carbon nanotube electrode modified with dandelion-like MnO2 microspheres",
volume = "186",
number = "8",
pages = "532",
doi = "10.1007/s00604-019-3644-x"
}
Stanković, D. M., Jović, M., Ognjanović, M., Lesch, A., Fabian, M., Girault, H. H.,& Antić, B.. (2019). Point-of-care amperometric determination of L-dopa using an inkjet-printed carbon nanotube electrode modified with dandelion-like MnO2 microspheres. in Microchimica Acta, 186(8), 532.
https://doi.org/10.1007/s00604-019-3644-x
Stanković DM, Jović M, Ognjanović M, Lesch A, Fabian M, Girault HH, Antić B. Point-of-care amperometric determination of L-dopa using an inkjet-printed carbon nanotube electrode modified with dandelion-like MnO2 microspheres. in Microchimica Acta. 2019;186(8):532.
doi:10.1007/s00604-019-3644-x .
Stanković, Dalibor M., Jović, Milica, Ognjanović, Miloš, Lesch, Andreas, Fabian, Martin, Girault, Hubert H., Antić, Bratislav, "Point-of-care amperometric determination of L-dopa using an inkjet-printed carbon nanotube electrode modified with dandelion-like MnO2 microspheres" in Microchimica Acta, 186, no. 8 (2019):532,
https://doi.org/10.1007/s00604-019-3644-x . .
15
13
13

Disposable Biosensor Based on Amidase/CeO2/GNR Modified Inkjet‐printed CNT Electrodes‐droplet Based Paracetamol Detection in Biological Fluids for “Point‐of‐care” Applications

Stanković, Dalibor M.; Ognjanović, Miloš; Jović, Milica; Cuplić, Valentina; Lesch, Andreas; Girault, Hubert H.; Gavrović-Jankulović, Marija; Antić, Bratislav

(2019)

TY  - JOUR
AU  - Stanković, Dalibor M.
AU  - Ognjanović, Miloš
AU  - Jović, Milica
AU  - Cuplić, Valentina
AU  - Lesch, Andreas
AU  - Girault, Hubert H.
AU  - Gavrović-Jankulović, Marija
AU  - Antić, Bratislav
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8342
AB  - A disposable acetaminophen biosensor based on inkjet-printed CNT electrodes (IJPCNT) modified with amidase/cerium dioxide@graphene nanoribbons composite was developed (ACeO2@GNR/IJPCNT). The enzyme amidase A was used for the first time as a recognition element. Inkjet-printed CNT electrodes served as a basis for the construction of a biosensor that enables droplet detection using 5 μL sample volume. The biosensor showed high selectivity, sensitivity, a low detection limit of 0.18 μM and a wide working linear range from 1 to 100 μM. The proposed approach allows fast and reliable detection of acetaminophen in biological fluids with negligible matrix effect and remarkable reproducibility. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
T2  - Electroanalysis
T1  - Disposable Biosensor Based on Amidase/CeO2/GNR Modified Inkjet‐printed CNT Electrodes‐droplet Based Paracetamol Detection in Biological Fluids for “Point‐of‐care” Applications
VL  - 31
IS  - 8
SP  - 1517
EP  - 1525
DO  - 10.1002/elan.201900129
ER  - 
@article{
author = "Stanković, Dalibor M. and Ognjanović, Miloš and Jović, Milica and Cuplić, Valentina and Lesch, Andreas and Girault, Hubert H. and Gavrović-Jankulović, Marija and Antić, Bratislav",
year = "2019",
abstract = "A disposable acetaminophen biosensor based on inkjet-printed CNT electrodes (IJPCNT) modified with amidase/cerium dioxide@graphene nanoribbons composite was developed (ACeO2@GNR/IJPCNT). The enzyme amidase A was used for the first time as a recognition element. Inkjet-printed CNT electrodes served as a basis for the construction of a biosensor that enables droplet detection using 5 μL sample volume. The biosensor showed high selectivity, sensitivity, a low detection limit of 0.18 μM and a wide working linear range from 1 to 100 μM. The proposed approach allows fast and reliable detection of acetaminophen in biological fluids with negligible matrix effect and remarkable reproducibility. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim",
journal = "Electroanalysis",
title = "Disposable Biosensor Based on Amidase/CeO2/GNR Modified Inkjet‐printed CNT Electrodes‐droplet Based Paracetamol Detection in Biological Fluids for “Point‐of‐care” Applications",
volume = "31",
number = "8",
pages = "1517-1525",
doi = "10.1002/elan.201900129"
}
Stanković, D. M., Ognjanović, M., Jović, M., Cuplić, V., Lesch, A., Girault, H. H., Gavrović-Jankulović, M.,& Antić, B.. (2019). Disposable Biosensor Based on Amidase/CeO2/GNR Modified Inkjet‐printed CNT Electrodes‐droplet Based Paracetamol Detection in Biological Fluids for “Point‐of‐care” Applications. in Electroanalysis, 31(8), 1517-1525.
https://doi.org/10.1002/elan.201900129
Stanković DM, Ognjanović M, Jović M, Cuplić V, Lesch A, Girault HH, Gavrović-Jankulović M, Antić B. Disposable Biosensor Based on Amidase/CeO2/GNR Modified Inkjet‐printed CNT Electrodes‐droplet Based Paracetamol Detection in Biological Fluids for “Point‐of‐care” Applications. in Electroanalysis. 2019;31(8):1517-1525.
doi:10.1002/elan.201900129 .
Stanković, Dalibor M., Ognjanović, Miloš, Jović, Milica, Cuplić, Valentina, Lesch, Andreas, Girault, Hubert H., Gavrović-Jankulović, Marija, Antić, Bratislav, "Disposable Biosensor Based on Amidase/CeO2/GNR Modified Inkjet‐printed CNT Electrodes‐droplet Based Paracetamol Detection in Biological Fluids for “Point‐of‐care” Applications" in Electroanalysis, 31, no. 8 (2019):1517-1525,
https://doi.org/10.1002/elan.201900129 . .
6
5
6

Effect of magnetic nanoparticles coating on cell proliferation and uptake

Zavišova, Vlasta; Koneracka, Martina; Gabelova, Alena; Svitkova, Barbora; Ursinyova, Monika; Kubovčikova, Martina; Antal, Iryna; Khmara, Iryna; Jurikova, Alena; Molčan, Matuš; Ognjanović, Miloš; Antić, Bratislav; Kopčansky, Peter

(2019)

TY  - JOUR
AU  - Zavišova, Vlasta
AU  - Koneracka, Martina
AU  - Gabelova, Alena
AU  - Svitkova, Barbora
AU  - Ursinyova, Monika
AU  - Kubovčikova, Martina
AU  - Antal, Iryna
AU  - Khmara, Iryna
AU  - Jurikova, Alena
AU  - Molčan, Matuš
AU  - Ognjanović, Miloš
AU  - Antić, Bratislav
AU  - Kopčansky, Peter
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0304885318320183
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7906
AB  - Magnetic iron oxide nanoparticles (MNPs) are one of the most promising types of nanoparticles for biomedical applications, primarily in the context of nanomedicine-based diagnostics and therapy. They are used as contrast agents in magnetic resonance imaging and magnetite cell labelling. Furthermore, they are promising heating mediator in magnetic hyperthermia-based therapy, and can serve as nanocarriers in targeted gene and drug delivery as well. In biomedical applications, coating plays an important role in nanoparticle dispersion stability and biocompatibility. However, the impact of nanoparticle surface chemistry on cell uptake and proliferation has not been sufficiently investigated. The objective of this study is to prepare magnetic nanoparticles with inner magnetite core and hydrophilic outer shell of surfactant, protein and polymers that are commonly used in biomedical research. MNPs were characterized in-depth by various physicochemical methods. Magnetic hyperthermia, applied to find out the influence of MNPs coating on heating characteristics of the samples, did not show any correlation between layer thickness and specific adsorption rate. To evaluate the impact of surface chemistry on cell proliferation and internalization, the human lung adenocarcinoma epithelial (A549) cells were utilized. Substantial differences were determined in the amount of internalized MNPs and cell viability in dependence on surface coating. Our results indicate that the surface chemistry not only protects particles from agglomeration but also affect the interaction between cell and MNPs. © 2018 Elsevier B.V.
T2  - Journal of Magnetism and Magnetic Materials
T1  - Effect of magnetic nanoparticles coating on cell proliferation and uptake
VL  - 472
SP  - 66
EP  - 73
DO  - 10.1016/j.jmmm.2018.09.116
ER  - 
@article{
author = "Zavišova, Vlasta and Koneracka, Martina and Gabelova, Alena and Svitkova, Barbora and Ursinyova, Monika and Kubovčikova, Martina and Antal, Iryna and Khmara, Iryna and Jurikova, Alena and Molčan, Matuš and Ognjanović, Miloš and Antić, Bratislav and Kopčansky, Peter",
year = "2019",
abstract = "Magnetic iron oxide nanoparticles (MNPs) are one of the most promising types of nanoparticles for biomedical applications, primarily in the context of nanomedicine-based diagnostics and therapy. They are used as contrast agents in magnetic resonance imaging and magnetite cell labelling. Furthermore, they are promising heating mediator in magnetic hyperthermia-based therapy, and can serve as nanocarriers in targeted gene and drug delivery as well. In biomedical applications, coating plays an important role in nanoparticle dispersion stability and biocompatibility. However, the impact of nanoparticle surface chemistry on cell uptake and proliferation has not been sufficiently investigated. The objective of this study is to prepare magnetic nanoparticles with inner magnetite core and hydrophilic outer shell of surfactant, protein and polymers that are commonly used in biomedical research. MNPs were characterized in-depth by various physicochemical methods. Magnetic hyperthermia, applied to find out the influence of MNPs coating on heating characteristics of the samples, did not show any correlation between layer thickness and specific adsorption rate. To evaluate the impact of surface chemistry on cell proliferation and internalization, the human lung adenocarcinoma epithelial (A549) cells were utilized. Substantial differences were determined in the amount of internalized MNPs and cell viability in dependence on surface coating. Our results indicate that the surface chemistry not only protects particles from agglomeration but also affect the interaction between cell and MNPs. © 2018 Elsevier B.V.",
journal = "Journal of Magnetism and Magnetic Materials",
title = "Effect of magnetic nanoparticles coating on cell proliferation and uptake",
volume = "472",
pages = "66-73",
doi = "10.1016/j.jmmm.2018.09.116"
}
Zavišova, V., Koneracka, M., Gabelova, A., Svitkova, B., Ursinyova, M., Kubovčikova, M., Antal, I., Khmara, I., Jurikova, A., Molčan, M., Ognjanović, M., Antić, B.,& Kopčansky, P.. (2019). Effect of magnetic nanoparticles coating on cell proliferation and uptake. in Journal of Magnetism and Magnetic Materials, 472, 66-73.
https://doi.org/10.1016/j.jmmm.2018.09.116
Zavišova V, Koneracka M, Gabelova A, Svitkova B, Ursinyova M, Kubovčikova M, Antal I, Khmara I, Jurikova A, Molčan M, Ognjanović M, Antić B, Kopčansky P. Effect of magnetic nanoparticles coating on cell proliferation and uptake. in Journal of Magnetism and Magnetic Materials. 2019;472:66-73.
doi:10.1016/j.jmmm.2018.09.116 .
Zavišova, Vlasta, Koneracka, Martina, Gabelova, Alena, Svitkova, Barbora, Ursinyova, Monika, Kubovčikova, Martina, Antal, Iryna, Khmara, Iryna, Jurikova, Alena, Molčan, Matuš, Ognjanović, Miloš, Antić, Bratislav, Kopčansky, Peter, "Effect of magnetic nanoparticles coating on cell proliferation and uptake" in Journal of Magnetism and Magnetic Materials, 472 (2019):66-73,
https://doi.org/10.1016/j.jmmm.2018.09.116 . .
22
19
20

Y-90-labeled of phosphates-coated magnetic nanoparticles as a potential tumor treatment radiopharmaceuticals

Janković, Drina; Radović, Magdalena; Mirković, M; Vukadinović, Aleksandar; Perić, Marko R.; Petrović, D; Antić, Bratislav; Vranješ-Đurić, Sanja

(2018)

TY  - CONF
AU  - Janković, Drina
AU  - Radović, Magdalena
AU  - Mirković, M
AU  - Vukadinović, Aleksandar
AU  - Perić, Marko R.
AU  - Petrović, D
AU  - Antić, Bratislav
AU  - Vranješ-Đurić, Sanja
PY  - 2018
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8067
C3  - European Journal of Nuclear Medicine and Molecular Imaging
T1  - Y-90-labeled of phosphates-coated magnetic nanoparticles as a potential tumor treatment radiopharmaceuticals
VL  - 45
IS  - Supp. 1
SP  - S649
ER  - 
@conference{
author = "Janković, Drina and Radović, Magdalena and Mirković, M and Vukadinović, Aleksandar and Perić, Marko R. and Petrović, D and Antić, Bratislav and Vranješ-Đurić, Sanja",
year = "2018",
journal = "European Journal of Nuclear Medicine and Molecular Imaging",
title = "Y-90-labeled of phosphates-coated magnetic nanoparticles as a potential tumor treatment radiopharmaceuticals",
volume = "45",
number = "Supp. 1",
pages = "S649"
}
Janković, D., Radović, M., Mirković, M., Vukadinović, A., Perić, M. R., Petrović, D., Antić, B.,& Vranješ-Đurić, S.. (2018). Y-90-labeled of phosphates-coated magnetic nanoparticles as a potential tumor treatment radiopharmaceuticals. in European Journal of Nuclear Medicine and Molecular Imaging, 45(Supp. 1), S649.
Janković D, Radović M, Mirković M, Vukadinović A, Perić MR, Petrović D, Antić B, Vranješ-Đurić S. Y-90-labeled of phosphates-coated magnetic nanoparticles as a potential tumor treatment radiopharmaceuticals. in European Journal of Nuclear Medicine and Molecular Imaging. 2018;45(Supp. 1):S649..
Janković, Drina, Radović, Magdalena, Mirković, M, Vukadinović, Aleksandar, Perić, Marko R., Petrović, D, Antić, Bratislav, Vranješ-Đurić, Sanja, "Y-90-labeled of phosphates-coated magnetic nanoparticles as a potential tumor treatment radiopharmaceuticals" in European Journal of Nuclear Medicine and Molecular Imaging, 45, no. Supp. 1 (2018):S649.
1

A Voltammetric Sensor Based on MgFe2O4 Decorated on Reduced Graphene Oxide-modified Electrode for Sensitive and Simultaneous Determination of Catechol and Hydroquinone

Ognjanović, Miloš; Stanković, Dalibor M.; Fabian, Martin; Vukadinović, Aleksandar; Prijović, Željko; Dojčinović, Biljana P.; Antić, Bratislav

(2018)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Stanković, Dalibor M.
AU  - Fabian, Martin
AU  - Vukadinović, Aleksandar
AU  - Prijović, Željko
AU  - Dojčinović, Biljana P.
AU  - Antić, Bratislav
PY  - 2018
UR  - http://doi.wiley.com/10.1002/elan.201800357
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7961
AB  - In this work facile one step synthesis of magnesium ferrite (MgFe2O4) nanoparticles decorated on reduced graphene oxide (MgFe@RGO) using a microwave assisted hydrothermal procedure is reported. The synthesized material was characterized with help of several techniques and applied for the modification of glassy carbon electrode. Such prepared electrode was utilized for successive simultaneous detection of structurally similar compounds, 1,2- and 1,4-dihydroxibenzenes (catechol (CC) and hydroquinone (HQ)), using differential pulse voltammetry technique. It was found that oxidation current increases linearly with the concentrations of both investigated compounds. Detection limits for both species are ≤0.31 μM. The best analytical response in the presence of both CC and HQ, taking into account peak shape and peak current, was obtained at pH 5.6 utilizing acetate buffer solution. The often-presented species in the surface waters as well as gallic acid and caffeine do not interfere with determination of CC and HQ, while ascorbic acid shows high interference. The method is successfully applied for detection of catechol and hydroquinone in real samples analyses. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
T2  - Electroanalysis
T1  - A Voltammetric Sensor Based on MgFe2O4 Decorated on Reduced Graphene Oxide-modified Electrode for Sensitive and Simultaneous Determination of Catechol and Hydroquinone
VL  - 30
IS  - 11
SP  - 2620
EP  - 2627
DO  - 10.1002/elan.201800357
ER  - 
@article{
author = "Ognjanović, Miloš and Stanković, Dalibor M. and Fabian, Martin and Vukadinović, Aleksandar and Prijović, Željko and Dojčinović, Biljana P. and Antić, Bratislav",
year = "2018",
abstract = "In this work facile one step synthesis of magnesium ferrite (MgFe2O4) nanoparticles decorated on reduced graphene oxide (MgFe@RGO) using a microwave assisted hydrothermal procedure is reported. The synthesized material was characterized with help of several techniques and applied for the modification of glassy carbon electrode. Such prepared electrode was utilized for successive simultaneous detection of structurally similar compounds, 1,2- and 1,4-dihydroxibenzenes (catechol (CC) and hydroquinone (HQ)), using differential pulse voltammetry technique. It was found that oxidation current increases linearly with the concentrations of both investigated compounds. Detection limits for both species are ≤0.31 μM. The best analytical response in the presence of both CC and HQ, taking into account peak shape and peak current, was obtained at pH 5.6 utilizing acetate buffer solution. The often-presented species in the surface waters as well as gallic acid and caffeine do not interfere with determination of CC and HQ, while ascorbic acid shows high interference. The method is successfully applied for detection of catechol and hydroquinone in real samples analyses. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim",
journal = "Electroanalysis",
title = "A Voltammetric Sensor Based on MgFe2O4 Decorated on Reduced Graphene Oxide-modified Electrode for Sensitive and Simultaneous Determination of Catechol and Hydroquinone",
volume = "30",
number = "11",
pages = "2620-2627",
doi = "10.1002/elan.201800357"
}
Ognjanović, M., Stanković, D. M., Fabian, M., Vukadinović, A., Prijović, Ž., Dojčinović, B. P.,& Antić, B.. (2018). A Voltammetric Sensor Based on MgFe2O4 Decorated on Reduced Graphene Oxide-modified Electrode for Sensitive and Simultaneous Determination of Catechol and Hydroquinone. in Electroanalysis, 30(11), 2620-2627.
https://doi.org/10.1002/elan.201800357
Ognjanović M, Stanković DM, Fabian M, Vukadinović A, Prijović Ž, Dojčinović BP, Antić B. A Voltammetric Sensor Based on MgFe2O4 Decorated on Reduced Graphene Oxide-modified Electrode for Sensitive and Simultaneous Determination of Catechol and Hydroquinone. in Electroanalysis. 2018;30(11):2620-2627.
doi:10.1002/elan.201800357 .
Ognjanović, Miloš, Stanković, Dalibor M., Fabian, Martin, Vukadinović, Aleksandar, Prijović, Željko, Dojčinović, Biljana P., Antić, Bratislav, "A Voltammetric Sensor Based on MgFe2O4 Decorated on Reduced Graphene Oxide-modified Electrode for Sensitive and Simultaneous Determination of Catechol and Hydroquinone" in Electroanalysis, 30, no. 11 (2018):2620-2627,
https://doi.org/10.1002/elan.201800357 . .
12
12
13

Microwave assisted hydrothermal synthesis of (Fe,Co) 3 O 4 nanoparticles in the presence of surfactants and effects of Co/Fe ratio on microstructure and magnetism

Ognjanović, Miloš; Dojčinović, Biljana P.; Fabian, Martin; Stanković, Dalibor M.; Mariano, Jose F. M. L.; Antić, Bratislav

(2018)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Dojčinović, Biljana P.
AU  - Fabian, Martin
AU  - Stanković, Dalibor M.
AU  - Mariano, Jose F. M. L.
AU  - Antić, Bratislav
PY  - 2018
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0272884218311192
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7681
AB  - Microstructure and magnetic properties of nanoparticles can be tailored by optimising the synthesis procedure and changing chemical composition. In this study, a two-step procedure, i.e., coprecipitation in the presence of PEG 300 followed by microwave assisted (MW) hydrothermal synthesis, was introduced to obtain CoxFe3-xO4(x = 0, 0.1 and 0.2) nanoparticles. It was found that with the increase of Co content, particle/crystallite size increased, with significant change of coercivity (Hc). The mixed samples of CoxFe3-xO4(x = 0.1 and 0.2) were magnetically harder in comparison with Fe3O4. Тhe Hcof Fe3O4was 91 Oe, while for Co0.10Fe2.90O4and Co0.20Fe2.80O4, Hcwas 256 Oe and 1070 Oe, respectively. Saturation magnetisation (Ms) of mixed samples also increased up to 6% compared to Fe3O4. A special effort was devoted to study the effects of introducing different surfactants (PEG 300, PEG 4000 or SDS) during the synthesis procedure in order to improve morphological and microstructural properties of CoFe2O4nanoparticles. The influence of surfactants on physical/chemical properties of nanoparticles is discussed.
T2  - Ceramics International
T1  - Microwave assisted hydrothermal synthesis of (Fe,Co) 3 O 4 nanoparticles in the presence of surfactants and effects of Co/Fe ratio on microstructure and magnetism
VL  - 44
IS  - 12
SP  - 13967
EP  - 13972
DO  - 10.1016/j.ceramint.2018.04.246
ER  - 
@article{
author = "Ognjanović, Miloš and Dojčinović, Biljana P. and Fabian, Martin and Stanković, Dalibor M. and Mariano, Jose F. M. L. and Antić, Bratislav",
year = "2018",
abstract = "Microstructure and magnetic properties of nanoparticles can be tailored by optimising the synthesis procedure and changing chemical composition. In this study, a two-step procedure, i.e., coprecipitation in the presence of PEG 300 followed by microwave assisted (MW) hydrothermal synthesis, was introduced to obtain CoxFe3-xO4(x = 0, 0.1 and 0.2) nanoparticles. It was found that with the increase of Co content, particle/crystallite size increased, with significant change of coercivity (Hc). The mixed samples of CoxFe3-xO4(x = 0.1 and 0.2) were magnetically harder in comparison with Fe3O4. Тhe Hcof Fe3O4was 91 Oe, while for Co0.10Fe2.90O4and Co0.20Fe2.80O4, Hcwas 256 Oe and 1070 Oe, respectively. Saturation magnetisation (Ms) of mixed samples also increased up to 6% compared to Fe3O4. A special effort was devoted to study the effects of introducing different surfactants (PEG 300, PEG 4000 or SDS) during the synthesis procedure in order to improve morphological and microstructural properties of CoFe2O4nanoparticles. The influence of surfactants on physical/chemical properties of nanoparticles is discussed.",
journal = "Ceramics International",
title = "Microwave assisted hydrothermal synthesis of (Fe,Co) 3 O 4 nanoparticles in the presence of surfactants and effects of Co/Fe ratio on microstructure and magnetism",
volume = "44",
number = "12",
pages = "13967-13972",
doi = "10.1016/j.ceramint.2018.04.246"
}
Ognjanović, M., Dojčinović, B. P., Fabian, M., Stanković, D. M., Mariano, J. F. M. L.,& Antić, B.. (2018). Microwave assisted hydrothermal synthesis of (Fe,Co) 3 O 4 nanoparticles in the presence of surfactants and effects of Co/Fe ratio on microstructure and magnetism. in Ceramics International, 44(12), 13967-13972.
https://doi.org/10.1016/j.ceramint.2018.04.246
Ognjanović M, Dojčinović BP, Fabian M, Stanković DM, Mariano JFML, Antić B. Microwave assisted hydrothermal synthesis of (Fe,Co) 3 O 4 nanoparticles in the presence of surfactants and effects of Co/Fe ratio on microstructure and magnetism. in Ceramics International. 2018;44(12):13967-13972.
doi:10.1016/j.ceramint.2018.04.246 .
Ognjanović, Miloš, Dojčinović, Biljana P., Fabian, Martin, Stanković, Dalibor M., Mariano, Jose F. M. L., Antić, Bratislav, "Microwave assisted hydrothermal synthesis of (Fe,Co) 3 O 4 nanoparticles in the presence of surfactants and effects of Co/Fe ratio on microstructure and magnetism" in Ceramics International, 44, no. 12 (2018):13967-13972,
https://doi.org/10.1016/j.ceramint.2018.04.246 . .
8
8
8

RuO2/graphene nanoribbon composite supported on screen printed electrode with enhanced electrocatalytic performances toward ethanol and NADH biosensing

Vukojević, Vesna; Đurđić, Slađana; Ognjanović, Miloš; Antić, Bratislav; Kalcher, Kurt; Mutić, Jelena J.; Stanković, Dalibor M.

(2018)

TY  - JOUR
AU  - Vukojević, Vesna
AU  - Đurđić, Slađana
AU  - Ognjanović, Miloš
AU  - Antić, Bratislav
AU  - Kalcher, Kurt
AU  - Mutić, Jelena J.
AU  - Stanković, Dalibor M.
PY  - 2018
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0956566318304688
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7766
AB  - In this work, we aimed to propose a newly synthesized composite material with enhanced electrocatalytic properties as a novel screen-printed sensor for the quantification of NADH. Additionally, the surface was modified with alcohol dehydrogenase for the preparation of an amperometric biosensor for analysis of ethanol. Synthesized material was characterized using several microstructural (FE-SEM, HR-TEM, XRD) and electrochemical (CV, EIS) techniques. The electrochemical response of the tested analytes was investigated as a function of important parameters. Under optimal conditions, the working linear range and limit of detection for ethanol sensing was 1–1800 µM and 0.19 µM, respectively. For NADH, the linear range was from 1 to 1300 µM with limit of detection of 0.52 µM. Moreover, effects of some possible interfering compounds were investigated and the developed procedure was applied to commercial alcoholic beverages. The results obtained showed satisfactory precision and accuracy of the developed method and confirm the proposed approach could be a possible replacement for the currently used techniques for ethanol and NADH quantification.
T2  - Biosensors and Bioelectronics
T1  - RuO2/graphene nanoribbon composite supported on screen printed electrode with enhanced electrocatalytic performances toward ethanol and NADH biosensing
VL  - 117
SP  - 392
EP  - 397
DO  - 10.1016/j.bios.2018.06.038
ER  - 
@article{
author = "Vukojević, Vesna and Đurđić, Slađana and Ognjanović, Miloš and Antić, Bratislav and Kalcher, Kurt and Mutić, Jelena J. and Stanković, Dalibor M.",
year = "2018",
abstract = "In this work, we aimed to propose a newly synthesized composite material with enhanced electrocatalytic properties as a novel screen-printed sensor for the quantification of NADH. Additionally, the surface was modified with alcohol dehydrogenase for the preparation of an amperometric biosensor for analysis of ethanol. Synthesized material was characterized using several microstructural (FE-SEM, HR-TEM, XRD) and electrochemical (CV, EIS) techniques. The electrochemical response of the tested analytes was investigated as a function of important parameters. Under optimal conditions, the working linear range and limit of detection for ethanol sensing was 1–1800 µM and 0.19 µM, respectively. For NADH, the linear range was from 1 to 1300 µM with limit of detection of 0.52 µM. Moreover, effects of some possible interfering compounds were investigated and the developed procedure was applied to commercial alcoholic beverages. The results obtained showed satisfactory precision and accuracy of the developed method and confirm the proposed approach could be a possible replacement for the currently used techniques for ethanol and NADH quantification.",
journal = "Biosensors and Bioelectronics",
title = "RuO2/graphene nanoribbon composite supported on screen printed electrode with enhanced electrocatalytic performances toward ethanol and NADH biosensing",
volume = "117",
pages = "392-397",
doi = "10.1016/j.bios.2018.06.038"
}
Vukojević, V., Đurđić, S., Ognjanović, M., Antić, B., Kalcher, K., Mutić, J. J.,& Stanković, D. M.. (2018). RuO2/graphene nanoribbon composite supported on screen printed electrode with enhanced electrocatalytic performances toward ethanol and NADH biosensing. in Biosensors and Bioelectronics, 117, 392-397.
https://doi.org/10.1016/j.bios.2018.06.038
Vukojević V, Đurđić S, Ognjanović M, Antić B, Kalcher K, Mutić JJ, Stanković DM. RuO2/graphene nanoribbon composite supported on screen printed electrode with enhanced electrocatalytic performances toward ethanol and NADH biosensing. in Biosensors and Bioelectronics. 2018;117:392-397.
doi:10.1016/j.bios.2018.06.038 .
Vukojević, Vesna, Đurđić, Slađana, Ognjanović, Miloš, Antić, Bratislav, Kalcher, Kurt, Mutić, Jelena J., Stanković, Dalibor M., "RuO2/graphene nanoribbon composite supported on screen printed electrode with enhanced electrocatalytic performances toward ethanol and NADH biosensing" in Biosensors and Bioelectronics, 117 (2018):392-397,
https://doi.org/10.1016/j.bios.2018.06.038 . .
1
20
17
20

Synthesis and Properties of Ni-doped Goethite and Ni-doped Hematite Nanorods

Krehula, Stjepko; Ristić, Mira; Mitar, Ivana; Wu, Chuchu; Li, Xuning; Jiang, Luhua; Wang, Junhu H.; Sun, Gongquan; Zhang, Tao; Perović, Marija M.; Bošković, Marko; Antić, Bratislav; Musić, Svetozar

(2018)

TY  - JOUR
AU  - Krehula, Stjepko
AU  - Ristić, Mira
AU  - Mitar, Ivana
AU  - Wu, Chuchu
AU  - Li, Xuning
AU  - Jiang, Luhua
AU  - Wang, Junhu H.
AU  - Sun, Gongquan
AU  - Zhang, Tao
AU  - Perović, Marija M.
AU  - Bošković, Marko
AU  - Antić, Bratislav
AU  - Musić, Svetozar
PY  - 2018
UR  - https://hrcak.srce.hr/file/309798
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8100
AB  - Ni-doped goethite (α-FeOOH) nanorods were synthesized from mixed Fe(III)-Ni(II) nitrate solutions with various Ni/(Ni+Fe) ratios (0, 5, 10, 20, 33 and 50 mol % Ni) by hydrothermal precipitation in a highly alkaline medium using the strong organic alkali, tetramethylammonium hydroxide (TMAH). Ni-doped hematite (α-Fe2O3) nanorods were obtained by calcination of Ni-doped goethite nanorods at 400 °C. The Ni 2+ -for-Fe 3+ substitution in goethite and hematite was confirmed by determination of the unit cell expansion (due to the difference in the ionic radii of Fe 3+ and Ni 2+ ) using XRPD and determination of the reduction of a hyperfine magnetic field (due to the difference in magnetic moments of Fe 3+ and Ni 2+ ) using Mössbauer spectroscopy. Single-phase goethite nanorods were found in samples containing 0 or 5 mol % Ni. A higher Ni content in the precipitation system (10 mol % or more) resulted in a higher Ni 2+ -for-Fe 3+ substitution in goethite, and larger Ni-doped goethite nanorods, though with the presence of low crystalline Ni-containing ferrihydrite and Ni ferrite (NiFe2O4) as additional phases. Significant changes in FT-IR and UV-Vis-NIR spectra of prepared samples were observed with increasing Ni content. Electrochemical measurements of samples showed a strong increase in oxygen evolution reaction (OER) electrocatalytic activity with increasing Ni content. © 2018 Croatian Chemical Society. All Rights Reserved.
T2  - Croatica Chemica Acta
T1  - Synthesis and Properties of Ni-doped Goethite and Ni-doped Hematite Nanorods
VL  - 91
IS  - 3
SP  - 389
EP  - 401
DO  - 10.5562/cca3402
ER  - 
@article{
author = "Krehula, Stjepko and Ristić, Mira and Mitar, Ivana and Wu, Chuchu and Li, Xuning and Jiang, Luhua and Wang, Junhu H. and Sun, Gongquan and Zhang, Tao and Perović, Marija M. and Bošković, Marko and Antić, Bratislav and Musić, Svetozar",
year = "2018",
abstract = "Ni-doped goethite (α-FeOOH) nanorods were synthesized from mixed Fe(III)-Ni(II) nitrate solutions with various Ni/(Ni+Fe) ratios (0, 5, 10, 20, 33 and 50 mol % Ni) by hydrothermal precipitation in a highly alkaline medium using the strong organic alkali, tetramethylammonium hydroxide (TMAH). Ni-doped hematite (α-Fe2O3) nanorods were obtained by calcination of Ni-doped goethite nanorods at 400 °C. The Ni 2+ -for-Fe 3+ substitution in goethite and hematite was confirmed by determination of the unit cell expansion (due to the difference in the ionic radii of Fe 3+ and Ni 2+ ) using XRPD and determination of the reduction of a hyperfine magnetic field (due to the difference in magnetic moments of Fe 3+ and Ni 2+ ) using Mössbauer spectroscopy. Single-phase goethite nanorods were found in samples containing 0 or 5 mol % Ni. A higher Ni content in the precipitation system (10 mol % or more) resulted in a higher Ni 2+ -for-Fe 3+ substitution in goethite, and larger Ni-doped goethite nanorods, though with the presence of low crystalline Ni-containing ferrihydrite and Ni ferrite (NiFe2O4) as additional phases. Significant changes in FT-IR and UV-Vis-NIR spectra of prepared samples were observed with increasing Ni content. Electrochemical measurements of samples showed a strong increase in oxygen evolution reaction (OER) electrocatalytic activity with increasing Ni content. © 2018 Croatian Chemical Society. All Rights Reserved.",
journal = "Croatica Chemica Acta",
title = "Synthesis and Properties of Ni-doped Goethite and Ni-doped Hematite Nanorods",
volume = "91",
number = "3",
pages = "389-401",
doi = "10.5562/cca3402"
}
Krehula, S., Ristić, M., Mitar, I., Wu, C., Li, X., Jiang, L., Wang, J. H., Sun, G., Zhang, T., Perović, M. M., Bošković, M., Antić, B.,& Musić, S.. (2018). Synthesis and Properties of Ni-doped Goethite and Ni-doped Hematite Nanorods. in Croatica Chemica Acta, 91(3), 389-401.
https://doi.org/10.5562/cca3402
Krehula S, Ristić M, Mitar I, Wu C, Li X, Jiang L, Wang JH, Sun G, Zhang T, Perović MM, Bošković M, Antić B, Musić S. Synthesis and Properties of Ni-doped Goethite and Ni-doped Hematite Nanorods. in Croatica Chemica Acta. 2018;91(3):389-401.
doi:10.5562/cca3402 .
Krehula, Stjepko, Ristić, Mira, Mitar, Ivana, Wu, Chuchu, Li, Xuning, Jiang, Luhua, Wang, Junhu H., Sun, Gongquan, Zhang, Tao, Perović, Marija M., Bošković, Marko, Antić, Bratislav, Musić, Svetozar, "Synthesis and Properties of Ni-doped Goethite and Ni-doped Hematite Nanorods" in Croatica Chemica Acta, 91, no. 3 (2018):389-401,
https://doi.org/10.5562/cca3402 . .
7
5
5

Influence of Fe(III) doping on the crystal structure and properties of hydrothermally prepared β-Ni(OH) 2 nanostructures

Krehula, Stjepko; Ristić, Mira; Wu, Chuchu; Li, Xuning; Jiang, Luhua; Wang, Junhu H.; Sun, Gongquan; Zhang, Tao; Perović, Marija M.; Bošković, Marko; Antić, Bratislav; Kratofil Krehula, Ljerka; Kobzi, Balazs; Kubuki, Shiro; Musić, Svetozar

(2018)

TY  - JOUR
AU  - Krehula, Stjepko
AU  - Ristić, Mira
AU  - Wu, Chuchu
AU  - Li, Xuning
AU  - Jiang, Luhua
AU  - Wang, Junhu H.
AU  - Sun, Gongquan
AU  - Zhang, Tao
AU  - Perović, Marija M.
AU  - Bošković, Marko
AU  - Antić, Bratislav
AU  - Kratofil Krehula, Ljerka
AU  - Kobzi, Balazs
AU  - Kubuki, Shiro
AU  - Musić, Svetozar
PY  - 2018
UR  - http://linkinghub.elsevier.com/retrieve/pii/S0925838818313197
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7744
AB  - This paper systematically examines the influence of the level of Fe(III) doping on the crystal structure and other properties of Ni(OH)(2). Reference beta-Ni(OH)(2) and Fe-doped Ni(OH)(2) samples were synthesized by hydrothermal precipitation of mixed Ni(II) and Fe(III) nitrate aqueous solutions in a highly alkaline medium. The samples were investigated using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (FE-SEM and TEM), energy dispersive X-ray spectroscopy (EDS), Mossbauer spectroscopy, magnetic measurements, Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy, thermogravimetric analysis (TGA) and electrochemical measurements. Incorporation of Fe in beta-Ni(OH)(2) by cation substitution was confirmed from the shifts in position of XRPD lines due to the difference in the ionic radius of Fe3+ and Ni-2. The Fe-3-for-Ni2+ substitution in beta-Ni(OH)(2) caused formation of an interstratifled structure with beta-Ni(OH)(2) and alpha-Ni(OH)(2) structural units interconnected within the same structural layers and crystallites. Mossbauer spectra revealed the presence of Fe3+ ions in highly distorted octahedral sites, presumably at the boundary between the alpha-Ni(OH)(2) and beta-Ni(OH)(2) structural units within the same structural layer. Electrochemical measurements showed significant increase in oxygen evolution reaction (OER) catalytic activity of Fe-doped Ni(OH)(2) compared to pure phase. (C) 2018 Elsevier B.V. All rights reserved.
T2  - Journal of Alloys and Compounds
T1  - Influence of Fe(III) doping on the crystal structure and properties of hydrothermally prepared β-Ni(OH) 2 nanostructures
VL  - 750
SP  - 687
EP  - 695
DO  - 10.1016/j.jallcom.2018.04.032
ER  - 
@article{
author = "Krehula, Stjepko and Ristić, Mira and Wu, Chuchu and Li, Xuning and Jiang, Luhua and Wang, Junhu H. and Sun, Gongquan and Zhang, Tao and Perović, Marija M. and Bošković, Marko and Antić, Bratislav and Kratofil Krehula, Ljerka and Kobzi, Balazs and Kubuki, Shiro and Musić, Svetozar",
year = "2018",
abstract = "This paper systematically examines the influence of the level of Fe(III) doping on the crystal structure and other properties of Ni(OH)(2). Reference beta-Ni(OH)(2) and Fe-doped Ni(OH)(2) samples were synthesized by hydrothermal precipitation of mixed Ni(II) and Fe(III) nitrate aqueous solutions in a highly alkaline medium. The samples were investigated using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (FE-SEM and TEM), energy dispersive X-ray spectroscopy (EDS), Mossbauer spectroscopy, magnetic measurements, Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy, thermogravimetric analysis (TGA) and electrochemical measurements. Incorporation of Fe in beta-Ni(OH)(2) by cation substitution was confirmed from the shifts in position of XRPD lines due to the difference in the ionic radius of Fe3+ and Ni-2. The Fe-3-for-Ni2+ substitution in beta-Ni(OH)(2) caused formation of an interstratifled structure with beta-Ni(OH)(2) and alpha-Ni(OH)(2) structural units interconnected within the same structural layers and crystallites. Mossbauer spectra revealed the presence of Fe3+ ions in highly distorted octahedral sites, presumably at the boundary between the alpha-Ni(OH)(2) and beta-Ni(OH)(2) structural units within the same structural layer. Electrochemical measurements showed significant increase in oxygen evolution reaction (OER) catalytic activity of Fe-doped Ni(OH)(2) compared to pure phase. (C) 2018 Elsevier B.V. All rights reserved.",
journal = "Journal of Alloys and Compounds",
title = "Influence of Fe(III) doping on the crystal structure and properties of hydrothermally prepared β-Ni(OH) 2 nanostructures",
volume = "750",
pages = "687-695",
doi = "10.1016/j.jallcom.2018.04.032"
}
Krehula, S., Ristić, M., Wu, C., Li, X., Jiang, L., Wang, J. H., Sun, G., Zhang, T., Perović, M. M., Bošković, M., Antić, B., Kratofil Krehula, L., Kobzi, B., Kubuki, S.,& Musić, S.. (2018). Influence of Fe(III) doping on the crystal structure and properties of hydrothermally prepared β-Ni(OH) 2 nanostructures. in Journal of Alloys and Compounds, 750, 687-695.
https://doi.org/10.1016/j.jallcom.2018.04.032
Krehula S, Ristić M, Wu C, Li X, Jiang L, Wang JH, Sun G, Zhang T, Perović MM, Bošković M, Antić B, Kratofil Krehula L, Kobzi B, Kubuki S, Musić S. Influence of Fe(III) doping on the crystal structure and properties of hydrothermally prepared β-Ni(OH) 2 nanostructures. in Journal of Alloys and Compounds. 2018;750:687-695.
doi:10.1016/j.jallcom.2018.04.032 .
Krehula, Stjepko, Ristić, Mira, Wu, Chuchu, Li, Xuning, Jiang, Luhua, Wang, Junhu H., Sun, Gongquan, Zhang, Tao, Perović, Marija M., Bošković, Marko, Antić, Bratislav, Kratofil Krehula, Ljerka, Kobzi, Balazs, Kubuki, Shiro, Musić, Svetozar, "Influence of Fe(III) doping on the crystal structure and properties of hydrothermally prepared β-Ni(OH) 2 nanostructures" in Journal of Alloys and Compounds, 750 (2018):687-695,
https://doi.org/10.1016/j.jallcom.2018.04.032 . .
16
15
16

Complementary approaches for the evaluation of biocompatibility of Y-90-labeled superparamagnetic citric acid (Fe,Er)(3)O-4 coated nanoparticles

Antić, Bratislav; Bošković, Marko; Nikodinović-Runić, Jasmina; Ming, Yue; Zhang, Hongguo; Božin, Emil S.; Janković, Drina; Spasojević, Vojislav; Vranješ-Đurić, Sanja

(2017)

TY  - JOUR
AU  - Antić, Bratislav
AU  - Bošković, Marko
AU  - Nikodinović-Runić, Jasmina
AU  - Ming, Yue
AU  - Zhang, Hongguo
AU  - Božin, Emil S.
AU  - Janković, Drina
AU  - Spasojević, Vojislav
AU  - Vranješ-Đurić, Sanja
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1551
AB  - Magnetic nanoparticles (MNPs) are of immense interest for diagnostic and therapeutic applications in medicine. Design and development of new iron oxide-based MNPs for such applications is of rather limited breadth without reliable and sensitive methods to determine their levels in body tissues. Commonly used methods, such as ICP, are quite problematic, due to the inability to decipher the origin of the detected iron, i.e. whether it originates from the MNPs or endogenous from tissues and bodily fluids. One of the approaches to overcome this problem and to increase reliability of tracing MNPs is to partially substitute iron ions in the MNPs with Er. Here, we report on the development of citric add coated (Fe,Er)(3)O-4 nanopartides and characterization of their physico-chemical and biological properties by utilization of various complementary approaches. The synthesized MNPs had a narrow (6-7 nm) size distribution, as consistently seen in atomic pair distribution function, transmission electron microscopy, and DC magnetization measurements. The particles were found to be superparamagnetic, with a pronounced maximum in measured zero-field cooled magnetization at around 90 K. Reduction in saturation magnetization due to incorporation of 1.7% Er3+ into the Fe3O4 matrix was clearly observed. From the biological standpoint, citric acid coated (Fe,Er)(3)O-4 NPs were found to induce low toxicity both in human cell fibroblasts and in zebrafish (Danio rerio) embryos. Biodistribution pattern of the MNPs after intravenous administration in healthy Wistar rats was followed by the radiotracer method, revealing that Y-90-labeled MNPs were predominantly found in liver (7533% ID), followed by lungs (16.70% ID) and spleen (2.83% ID). Quantitative agreement with these observations was obtained by ICP-MS elemental analysis using Er as the detected tracer. Based on the favorable physical, chemical and biological characteristics, citric add coated (Fe,Er)(3)O-4 MNPs could be further considered for the potential application as a diagnostic and/or therapeutic agent. This work also demonstrates that combined application of these techniques is a promising tool for studies of pharmacokinetics of the new MNPs in complex biological systems. (C) 2017 Elsevier B.V. All rights reserved.
T2  - Materials Science and Engineering. C: Materials for Biological Applications
T1  - Complementary approaches for the evaluation of biocompatibility of Y-90-labeled superparamagnetic citric acid (Fe,Er)(3)O-4 coated nanoparticles
VL  - 75
SP  - 157
EP  - 164
DO  - 10.1016/j.msec.2017.02.023
ER  - 
@article{
author = "Antić, Bratislav and Bošković, Marko and Nikodinović-Runić, Jasmina and Ming, Yue and Zhang, Hongguo and Božin, Emil S. and Janković, Drina and Spasojević, Vojislav and Vranješ-Đurić, Sanja",
year = "2017",
abstract = "Magnetic nanoparticles (MNPs) are of immense interest for diagnostic and therapeutic applications in medicine. Design and development of new iron oxide-based MNPs for such applications is of rather limited breadth without reliable and sensitive methods to determine their levels in body tissues. Commonly used methods, such as ICP, are quite problematic, due to the inability to decipher the origin of the detected iron, i.e. whether it originates from the MNPs or endogenous from tissues and bodily fluids. One of the approaches to overcome this problem and to increase reliability of tracing MNPs is to partially substitute iron ions in the MNPs with Er. Here, we report on the development of citric add coated (Fe,Er)(3)O-4 nanopartides and characterization of their physico-chemical and biological properties by utilization of various complementary approaches. The synthesized MNPs had a narrow (6-7 nm) size distribution, as consistently seen in atomic pair distribution function, transmission electron microscopy, and DC magnetization measurements. The particles were found to be superparamagnetic, with a pronounced maximum in measured zero-field cooled magnetization at around 90 K. Reduction in saturation magnetization due to incorporation of 1.7% Er3+ into the Fe3O4 matrix was clearly observed. From the biological standpoint, citric acid coated (Fe,Er)(3)O-4 NPs were found to induce low toxicity both in human cell fibroblasts and in zebrafish (Danio rerio) embryos. Biodistribution pattern of the MNPs after intravenous administration in healthy Wistar rats was followed by the radiotracer method, revealing that Y-90-labeled MNPs were predominantly found in liver (7533% ID), followed by lungs (16.70% ID) and spleen (2.83% ID). Quantitative agreement with these observations was obtained by ICP-MS elemental analysis using Er as the detected tracer. Based on the favorable physical, chemical and biological characteristics, citric add coated (Fe,Er)(3)O-4 MNPs could be further considered for the potential application as a diagnostic and/or therapeutic agent. This work also demonstrates that combined application of these techniques is a promising tool for studies of pharmacokinetics of the new MNPs in complex biological systems. (C) 2017 Elsevier B.V. All rights reserved.",
journal = "Materials Science and Engineering. C: Materials for Biological Applications",
title = "Complementary approaches for the evaluation of biocompatibility of Y-90-labeled superparamagnetic citric acid (Fe,Er)(3)O-4 coated nanoparticles",
volume = "75",
pages = "157-164",
doi = "10.1016/j.msec.2017.02.023"
}
Antić, B., Bošković, M., Nikodinović-Runić, J., Ming, Y., Zhang, H., Božin, E. S., Janković, D., Spasojević, V.,& Vranješ-Đurić, S.. (2017). Complementary approaches for the evaluation of biocompatibility of Y-90-labeled superparamagnetic citric acid (Fe,Er)(3)O-4 coated nanoparticles. in Materials Science and Engineering. C: Materials for Biological Applications, 75, 157-164.
https://doi.org/10.1016/j.msec.2017.02.023
Antić B, Bošković M, Nikodinović-Runić J, Ming Y, Zhang H, Božin ES, Janković D, Spasojević V, Vranješ-Đurić S. Complementary approaches for the evaluation of biocompatibility of Y-90-labeled superparamagnetic citric acid (Fe,Er)(3)O-4 coated nanoparticles. in Materials Science and Engineering. C: Materials for Biological Applications. 2017;75:157-164.
doi:10.1016/j.msec.2017.02.023 .
Antić, Bratislav, Bošković, Marko, Nikodinović-Runić, Jasmina, Ming, Yue, Zhang, Hongguo, Božin, Emil S., Janković, Drina, Spasojević, Vojislav, Vranješ-Đurić, Sanja, "Complementary approaches for the evaluation of biocompatibility of Y-90-labeled superparamagnetic citric acid (Fe,Er)(3)O-4 coated nanoparticles" in Materials Science and Engineering. C: Materials for Biological Applications, 75 (2017):157-164,
https://doi.org/10.1016/j.msec.2017.02.023 . .
4
4
3

ZnFe2O4 antiferromagnetic structure redetermination

Kremenović, Aleksandar S.; Antić, Bratislav; Vulic, Predrag; Blanuša, Jovan; Tomic, Aleksandra

(2017)

TY  - JOUR
AU  - Kremenović, Aleksandar S.
AU  - Antić, Bratislav
AU  - Vulic, Predrag
AU  - Blanuša, Jovan
AU  - Tomic, Aleksandra
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1469
AB  - Magnetic structure of ZnFe2O4 normal spinel is re- examined. Antiferromagnetic structure non-collinear model is established within C(a)2 space group having four different crystallographic/magnetic sites for 32 Fe3+ spins within magnetic unit cell.
T2  - Journal of Magnetism and Magnetic Materials
T1  - ZnFe2O4 antiferromagnetic structure redetermination
VL  - 426
SP  - 264
EP  - 266
DO  - 10.1016/j.jmmm.2016.11.071
ER  - 
@article{
author = "Kremenović, Aleksandar S. and Antić, Bratislav and Vulic, Predrag and Blanuša, Jovan and Tomic, Aleksandra",
year = "2017",
abstract = "Magnetic structure of ZnFe2O4 normal spinel is re- examined. Antiferromagnetic structure non-collinear model is established within C(a)2 space group having four different crystallographic/magnetic sites for 32 Fe3+ spins within magnetic unit cell.",
journal = "Journal of Magnetism and Magnetic Materials",
title = "ZnFe2O4 antiferromagnetic structure redetermination",
volume = "426",
pages = "264-266",
doi = "10.1016/j.jmmm.2016.11.071"
}
Kremenović, A. S., Antić, B., Vulic, P., Blanuša, J.,& Tomic, A.. (2017). ZnFe2O4 antiferromagnetic structure redetermination. in Journal of Magnetism and Magnetic Materials, 426, 264-266.
https://doi.org/10.1016/j.jmmm.2016.11.071
Kremenović AS, Antić B, Vulic P, Blanuša J, Tomic A. ZnFe2O4 antiferromagnetic structure redetermination. in Journal of Magnetism and Magnetic Materials. 2017;426:264-266.
doi:10.1016/j.jmmm.2016.11.071 .
Kremenović, Aleksandar S., Antić, Bratislav, Vulic, Predrag, Blanuša, Jovan, Tomic, Aleksandra, "ZnFe2O4 antiferromagnetic structure redetermination" in Journal of Magnetism and Magnetic Materials, 426 (2017):264-266,
https://doi.org/10.1016/j.jmmm.2016.11.071 . .
9
10
10

Design and preparation of Y-90-labeled imidodiphosphate- and inositol hexaphosphate-coated magnetic nanoparticles for possible medical applications

Radović, Magdalena; Mirković, Marija D.; Perić, Marko R.; Janković, Drina; Vukadinović, Aleksandar; Stanković, Dragana; Bošković, Marko; Antić, Bratislav; Marković, Mirjana; Vranješ-Đurić, Sanja

(2017)

TY  - JOUR
AU  - Radović, Magdalena
AU  - Mirković, Marija D.
AU  - Perić, Marko R.
AU  - Janković, Drina
AU  - Vukadinović, Aleksandar
AU  - Stanković, Dragana
AU  - Bošković, Marko
AU  - Antić, Bratislav
AU  - Marković, Mirjana
AU  - Vranješ-Đurić, Sanja
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1830
AB  - Radiolabeled magnetic nanoparticles (MNPs) coated with hydrophilic phosphate ligands, i.e., imidodiphosphate (IDP) and inositol hexaphosphate (IHP), were developed as multifunctional agents to localize both radioactivity and magnetic energy at a tumor site. The coating of MNPs with phosphates made them biocompatible, increased their colloidal stability and allowed binding of the radionuclide Y-90 to the available functional groups on the surface of the MNPs. IDP and IHP have not hitherto been used for the coating of MNPs and the results of this study of the functionalized MNPs showed that the phosphate groups influenced the modification of the surface of MNPs. Characterization of the MNPs was performed using X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, dynamic light scattering and laser Doppler electrophoresis. The specific power absorption values obtained for MNPs (46.95-80.76 W g(-1)) in different physiological media indicated their possible application in hyperthermia treatment. Both types of coated MNPs were Y-90-labeled in a reproducible high yield ( GT 98%). In vitro studies of Y-90-MNPs in saline and human serum showed their high stability after 72 h. The biodistribution pattern of the MNPs after intravenous administration to healthy Wistar rats was followed by the radiotracer method, revealing that Y-90-Fe3O4-IDP and Y-90-Fe3O4-IHP MNPs were predominantly found in the liver (85.21% ID and 86.22% ID), followed by the spleen (9.23% ID and 8.82% ID) and the lungs (1.53% ID and 1.53% ID). The results of this comprehensive study showed that radiolabeled biocompatible phosphate magnetic complexes hold great promise for therapeutic uses combining magnetic hyperthermia and radiotherapy.
T2  - Journal of Materials Chemistry. B
T1  - Design and preparation of Y-90-labeled imidodiphosphate- and inositol hexaphosphate-coated magnetic nanoparticles for possible medical applications
VL  - 5
IS  - 44
SP  - 8738
EP  - 8747
DO  - 10.1039/c7tb02075a
ER  - 
@article{
author = "Radović, Magdalena and Mirković, Marija D. and Perić, Marko R. and Janković, Drina and Vukadinović, Aleksandar and Stanković, Dragana and Bošković, Marko and Antić, Bratislav and Marković, Mirjana and Vranješ-Đurić, Sanja",
year = "2017",
abstract = "Radiolabeled magnetic nanoparticles (MNPs) coated with hydrophilic phosphate ligands, i.e., imidodiphosphate (IDP) and inositol hexaphosphate (IHP), were developed as multifunctional agents to localize both radioactivity and magnetic energy at a tumor site. The coating of MNPs with phosphates made them biocompatible, increased their colloidal stability and allowed binding of the radionuclide Y-90 to the available functional groups on the surface of the MNPs. IDP and IHP have not hitherto been used for the coating of MNPs and the results of this study of the functionalized MNPs showed that the phosphate groups influenced the modification of the surface of MNPs. Characterization of the MNPs was performed using X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, dynamic light scattering and laser Doppler electrophoresis. The specific power absorption values obtained for MNPs (46.95-80.76 W g(-1)) in different physiological media indicated their possible application in hyperthermia treatment. Both types of coated MNPs were Y-90-labeled in a reproducible high yield ( GT 98%). In vitro studies of Y-90-MNPs in saline and human serum showed their high stability after 72 h. The biodistribution pattern of the MNPs after intravenous administration to healthy Wistar rats was followed by the radiotracer method, revealing that Y-90-Fe3O4-IDP and Y-90-Fe3O4-IHP MNPs were predominantly found in the liver (85.21% ID and 86.22% ID), followed by the spleen (9.23% ID and 8.82% ID) and the lungs (1.53% ID and 1.53% ID). The results of this comprehensive study showed that radiolabeled biocompatible phosphate magnetic complexes hold great promise for therapeutic uses combining magnetic hyperthermia and radiotherapy.",
journal = "Journal of Materials Chemistry. B",
title = "Design and preparation of Y-90-labeled imidodiphosphate- and inositol hexaphosphate-coated magnetic nanoparticles for possible medical applications",
volume = "5",
number = "44",
pages = "8738-8747",
doi = "10.1039/c7tb02075a"
}
Radović, M., Mirković, M. D., Perić, M. R., Janković, D., Vukadinović, A., Stanković, D., Bošković, M., Antić, B., Marković, M.,& Vranješ-Đurić, S.. (2017). Design and preparation of Y-90-labeled imidodiphosphate- and inositol hexaphosphate-coated magnetic nanoparticles for possible medical applications. in Journal of Materials Chemistry. B, 5(44), 8738-8747.
https://doi.org/10.1039/c7tb02075a
Radović M, Mirković MD, Perić MR, Janković D, Vukadinović A, Stanković D, Bošković M, Antić B, Marković M, Vranješ-Đurić S. Design and preparation of Y-90-labeled imidodiphosphate- and inositol hexaphosphate-coated magnetic nanoparticles for possible medical applications. in Journal of Materials Chemistry. B. 2017;5(44):8738-8747.
doi:10.1039/c7tb02075a .
Radović, Magdalena, Mirković, Marija D., Perić, Marko R., Janković, Drina, Vukadinović, Aleksandar, Stanković, Dragana, Bošković, Marko, Antić, Bratislav, Marković, Mirjana, Vranješ-Đurić, Sanja, "Design and preparation of Y-90-labeled imidodiphosphate- and inositol hexaphosphate-coated magnetic nanoparticles for possible medical applications" in Journal of Materials Chemistry. B, 5, no. 44 (2017):8738-8747,
https://doi.org/10.1039/c7tb02075a . .
1
7
7
7

Design of titanium nitride- and wolfram carbide-doped RGO/GC electrodes for determination of gallic acid

Stanković, Dalibor M.; Ognjanović, Miloš; Fabian, Martin; Švorc, Lubomir; Mariano, Jose F. M. L.; Antić, Bratislav

(2017)

TY  - JOUR
AU  - Stanković, Dalibor M.
AU  - Ognjanović, Miloš
AU  - Fabian, Martin
AU  - Švorc, Lubomir
AU  - Mariano, Jose F. M. L.
AU  - Antić, Bratislav
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1853
AB  - In the present paper, the electrochemical behavior and the properties of two modified glassy carbon (GC) electrodes used for quantification of gallic acid in sweet wines were compared. A comparative study was conducted between titanium nitride- or wolfram carbide-doped reduced graphene oxide, labeled as TNrGO and WCrGO, respectively, modified GC electrodes, which are promising composite nanomaterials for electroanalytical applications. For the first time, WCrGO was synthesized and its electroanalytical properties compared with those of TNrGO. Results showed that the proposed materials exhibited enhanced characteristics, e.g., low limits of detection (1.1 mu M and 3.1 mu M for TNrGO and WCrGO, respectively), wide linear ranges (for TNrGO 4.5-76 mu M and for WCrGO 10-100 mu M), low adsorption, and low background current, which make them promising candidates for electrochemical sensing applications.
T2  - Analytical Biochemistry
T1  - Design of titanium nitride- and wolfram carbide-doped RGO/GC electrodes for determination of gallic acid
VL  - 539
SP  - 104
EP  - 112
DO  - 10.1016/j.ab.2017.10.018
ER  - 
@article{
author = "Stanković, Dalibor M. and Ognjanović, Miloš and Fabian, Martin and Švorc, Lubomir and Mariano, Jose F. M. L. and Antić, Bratislav",
year = "2017",
abstract = "In the present paper, the electrochemical behavior and the properties of two modified glassy carbon (GC) electrodes used for quantification of gallic acid in sweet wines were compared. A comparative study was conducted between titanium nitride- or wolfram carbide-doped reduced graphene oxide, labeled as TNrGO and WCrGO, respectively, modified GC electrodes, which are promising composite nanomaterials for electroanalytical applications. For the first time, WCrGO was synthesized and its electroanalytical properties compared with those of TNrGO. Results showed that the proposed materials exhibited enhanced characteristics, e.g., low limits of detection (1.1 mu M and 3.1 mu M for TNrGO and WCrGO, respectively), wide linear ranges (for TNrGO 4.5-76 mu M and for WCrGO 10-100 mu M), low adsorption, and low background current, which make them promising candidates for electrochemical sensing applications.",
journal = "Analytical Biochemistry",
title = "Design of titanium nitride- and wolfram carbide-doped RGO/GC electrodes for determination of gallic acid",
volume = "539",
pages = "104-112",
doi = "10.1016/j.ab.2017.10.018"
}
Stanković, D. M., Ognjanović, M., Fabian, M., Švorc, L., Mariano, J. F. M. L.,& Antić, B.. (2017). Design of titanium nitride- and wolfram carbide-doped RGO/GC electrodes for determination of gallic acid. in Analytical Biochemistry, 539, 104-112.
https://doi.org/10.1016/j.ab.2017.10.018
Stanković DM, Ognjanović M, Fabian M, Švorc L, Mariano JFML, Antić B. Design of titanium nitride- and wolfram carbide-doped RGO/GC electrodes for determination of gallic acid. in Analytical Biochemistry. 2017;539:104-112.
doi:10.1016/j.ab.2017.10.018 .
Stanković, Dalibor M., Ognjanović, Miloš, Fabian, Martin, Švorc, Lubomir, Mariano, Jose F. M. L., Antić, Bratislav, "Design of titanium nitride- and wolfram carbide-doped RGO/GC electrodes for determination of gallic acid" in Analytical Biochemistry, 539 (2017):104-112,
https://doi.org/10.1016/j.ab.2017.10.018 . .
26
25
24