Nikolić, Dobrica

Link to this page

Authority KeyName Variants
e9575647-174c-4122-a176-f14769baff57
  • Nikolić, Dobrica (1)
Projects

Author's Bibliography

Densification of boron carbide under high pressure

Matović, Branko; Urbanovich, Vladimir; Girman, Vladimir; Lisnichuk, Maksym; Nikolić, Dobrica; Erčić, Jelena; Cvijović-Alagić, Ivana

(2022)

TY  - JOUR
AU  - Matović, Branko
AU  - Urbanovich, Vladimir
AU  - Girman, Vladimir
AU  - Lisnichuk, Maksym
AU  - Nikolić, Dobrica
AU  - Erčić, Jelena
AU  - Cvijović-Alagić, Ivana
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10160
AB  - Additive-free boron carbide (B4C) powders were densified at 4 GPa using the high-pressure “anvil-type with hollows” apparatus in the temperature range of 1500–1900 °C. The boron carbide ceramics prepared by this method showed a hardness of 37 GPa, which is very close to the hardness of mono-crystal boron carbide. The study showed that the boron carbide grains are uniformly sized without observed grain growth in the sintered materials. Obtained results revealed that high-pressure sintering can be a very effective low-temperature densification method for the obtainment of additive-free B4C ceramics. Moreover, the process can be scaled-up for the production of large-size composites required in various cutting tools and other extreme condition applications.
T2  - Materials Letters
T1  - Densification of boron carbide under high pressure
VL  - 314
SP  - 131877
DO  - 10.1016/j.matlet.2022.131877
ER  - 
@article{
author = "Matović, Branko and Urbanovich, Vladimir and Girman, Vladimir and Lisnichuk, Maksym and Nikolić, Dobrica and Erčić, Jelena and Cvijović-Alagić, Ivana",
year = "2022",
abstract = "Additive-free boron carbide (B4C) powders were densified at 4 GPa using the high-pressure “anvil-type with hollows” apparatus in the temperature range of 1500–1900 °C. The boron carbide ceramics prepared by this method showed a hardness of 37 GPa, which is very close to the hardness of mono-crystal boron carbide. The study showed that the boron carbide grains are uniformly sized without observed grain growth in the sintered materials. Obtained results revealed that high-pressure sintering can be a very effective low-temperature densification method for the obtainment of additive-free B4C ceramics. Moreover, the process can be scaled-up for the production of large-size composites required in various cutting tools and other extreme condition applications.",
journal = "Materials Letters",
title = "Densification of boron carbide under high pressure",
volume = "314",
pages = "131877",
doi = "10.1016/j.matlet.2022.131877"
}
Matović, B., Urbanovich, V., Girman, V., Lisnichuk, M., Nikolić, D., Erčić, J.,& Cvijović-Alagić, I.. (2022). Densification of boron carbide under high pressure. in Materials Letters, 314, 131877.
https://doi.org/10.1016/j.matlet.2022.131877
Matović B, Urbanovich V, Girman V, Lisnichuk M, Nikolić D, Erčić J, Cvijović-Alagić I. Densification of boron carbide under high pressure. in Materials Letters. 2022;314:131877.
doi:10.1016/j.matlet.2022.131877 .
Matović, Branko, Urbanovich, Vladimir, Girman, Vladimir, Lisnichuk, Maksym, Nikolić, Dobrica, Erčić, Jelena, Cvijović-Alagić, Ivana, "Densification of boron carbide under high pressure" in Materials Letters, 314 (2022):131877,
https://doi.org/10.1016/j.matlet.2022.131877 . .
4
4