Bajuk-Bogdanović, Danica

Link to this page

Authority KeyName Variants
2d920706-25e2-4983-b7ee-c4c8ab58823c
  • Bajuk-Bogdanović, Danica (2)
Projects
No records found.

Author's Bibliography

Graphene oxide/12 tungstophosphoric acid nanocomposites – achieving favorable properties with ion beams for electrochemical supercapacitors

Mravik, Željko; Pejčić, Milica; Rmuš Mravik, Jelena; Belec, Blaž; Bajuk-Bogdanović, Danica; Jovanović, Sonja; Marković, Smilja; Gavrilov, Nemanja; Skuratov, Vladimir; Jovanović, Zoran

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Mravik, Željko
AU  - Pejčić, Milica
AU  - Rmuš Mravik, Jelena
AU  - Belec, Blaž
AU  - Bajuk-Bogdanović, Danica
AU  - Jovanović, Sonja
AU  - Marković, Smilja
AU  - Gavrilov, Nemanja
AU  - Skuratov, Vladimir
AU  - Jovanović, Zoran
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11637
AB  - In recent years graphene oxide (GO)/12-tungstophosphoric acid (WPA) nanocomposites have demonstrated promising potential for electrochemical supercapacitors. However, to enhance their performance, it is necessary to modify the surface chemistry of GO to minimize the influence of basal plane oxygen groups, which hinder the material's conductivity. Additionally, some degree of structural modification of WPA is desired. In this regard, ion beam irradiation presents a promising method to simultaneously optimize surface chemistry of GO and structurally modify WPA. To accomplish this, ion beam irradiation is employed for modification of individual components as well as their nanocomposites with varying mass ratios. Different ion species, fluences and energies were utilized depending on the sample type, ranging from 10 keV C to 710 MeV Bi. Spectroscopy methods were employed to gain insight into the type and degree of structural modification in WPA. A direct correlation is observed between the parameters of the ion beams and the resulting structural changes. As the disordering increases, the structure transitions from partially modified to increased bond breaking, ultimately leading to reconnected bronze-like structures. By increasing the fluence, a gradual modification of the structure and surface chemistry of GO was possible. The effects of irradiation on GO and WPA are particularly pronounced in irradiated composites, where higher capacitance is measured.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade
T1  - Graphene oxide/12 tungstophosphoric acid nanocomposites – achieving favorable properties with ion beams for electrochemical supercapacitors
SP  - 50
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11637
ER  - 
@conference{
author = "Mravik, Željko and Pejčić, Milica and Rmuš Mravik, Jelena and Belec, Blaž and Bajuk-Bogdanović, Danica and Jovanović, Sonja and Marković, Smilja and Gavrilov, Nemanja and Skuratov, Vladimir and Jovanović, Zoran",
year = "2023",
abstract = "In recent years graphene oxide (GO)/12-tungstophosphoric acid (WPA) nanocomposites have demonstrated promising potential for electrochemical supercapacitors. However, to enhance their performance, it is necessary to modify the surface chemistry of GO to minimize the influence of basal plane oxygen groups, which hinder the material's conductivity. Additionally, some degree of structural modification of WPA is desired. In this regard, ion beam irradiation presents a promising method to simultaneously optimize surface chemistry of GO and structurally modify WPA. To accomplish this, ion beam irradiation is employed for modification of individual components as well as their nanocomposites with varying mass ratios. Different ion species, fluences and energies were utilized depending on the sample type, ranging from 10 keV C to 710 MeV Bi. Spectroscopy methods were employed to gain insight into the type and degree of structural modification in WPA. A direct correlation is observed between the parameters of the ion beams and the resulting structural changes. As the disordering increases, the structure transitions from partially modified to increased bond breaking, ultimately leading to reconnected bronze-like structures. By increasing the fluence, a gradual modification of the structure and surface chemistry of GO was possible. The effects of irradiation on GO and WPA are particularly pronounced in irradiated composites, where higher capacitance is measured.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade",
title = "Graphene oxide/12 tungstophosphoric acid nanocomposites – achieving favorable properties with ion beams for electrochemical supercapacitors",
pages = "50",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11637"
}
Mravik, Ž., Pejčić, M., Rmuš Mravik, J., Belec, B., Bajuk-Bogdanović, D., Jovanović, S., Marković, S., Gavrilov, N., Skuratov, V.,& Jovanović, Z.. (2023). Graphene oxide/12 tungstophosphoric acid nanocomposites – achieving favorable properties with ion beams for electrochemical supercapacitors. in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade
Belgrade : Serbian Ceramic Society., 50.
https://hdl.handle.net/21.15107/rcub_vinar_11637
Mravik Ž, Pejčić M, Rmuš Mravik J, Belec B, Bajuk-Bogdanović D, Jovanović S, Marković S, Gavrilov N, Skuratov V, Jovanović Z. Graphene oxide/12 tungstophosphoric acid nanocomposites – achieving favorable properties with ion beams for electrochemical supercapacitors. in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade. 2023;:50.
https://hdl.handle.net/21.15107/rcub_vinar_11637 .
Mravik, Željko, Pejčić, Milica, Rmuš Mravik, Jelena, Belec, Blaž, Bajuk-Bogdanović, Danica, Jovanović, Sonja, Marković, Smilja, Gavrilov, Nemanja, Skuratov, Vladimir, Jovanović, Zoran, "Graphene oxide/12 tungstophosphoric acid nanocomposites – achieving favorable properties with ion beams for electrochemical supercapacitors" in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade (2023):50,
https://hdl.handle.net/21.15107/rcub_vinar_11637 .

Ion-beam irradiated graphene oxide, 12-tungstophosphoric acid and their nanocomposites for electrochemical supercapacitors

Mravik, Željko; Pejčić, Milica; Rmuš Mravik, Jelena; Belec, Blaž; Bajuk-Bogdanović, Danica; Jovanović, Sonja; Marković, Smilja; Gavrilov, Nemanja; Skuratov, Vladimir; Jovanović, Zoran

(Belgrade : Materials Research Society of Serbia, 2023)

TY  - CONF
AU  - Mravik, Željko
AU  - Pejčić, Milica
AU  - Rmuš Mravik, Jelena
AU  - Belec, Blaž
AU  - Bajuk-Bogdanović, Danica
AU  - Jovanović, Sonja
AU  - Marković, Smilja
AU  - Gavrilov, Nemanja
AU  - Skuratov, Vladimir
AU  - Jovanović, Zoran
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11651
AB  - Ion beam modification of materials is notable method for achieving their unique structural, electronic, and other physicochemical properties. In the case of graphene oxide (GO) such modification of structure and surface chemistry is known to yield properties interesting for electrochemical supercapacitors. The performance of GO supercapacitors can be additionally improved by incorporating components with attractive redox properties. In this work, the influence of ion beam irradiation on synergy of GO and 12-tungstophosphoric acid (WPA) in their nanocomposite was investigated. For that, both components and their composites with different mass ratios were irradiated using different ion species, fluences and energies (from 10 keV C to 710 MeV Bi). For the irradiated WPA, results showed clear correlation between ion beam parameters, degree of structural modification and electrochemical properties. With increasing structural modification, bond breaking is first induced giving higher catalytic activity toward HER. Further irradiation resulted in an increased interconnection of polytungstate species producing lower catalytic activity and lower lithiation capacity. Irradiated GO showed modified surface chemistry, with preferable reduction of alkoxy and epoxy groups, changes in morphology and electric properties due to increased number of defects with increasing fluence, synergic effect of ion beam irradiated GO and WPA resulted in higher capacitance of irradiated composites compared to GO presumably because of interaction of structurally modified WPA with defect sites on GO thus reducing electrolyte flow along ion tracks.
PB  - Belgrade : Materials Research Society of Serbia
C3  - YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro
T1  - Ion-beam irradiated graphene oxide, 12-tungstophosphoric acid and their nanocomposites for electrochemical supercapacitors
SP  - 36
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11651
ER  - 
@conference{
author = "Mravik, Željko and Pejčić, Milica and Rmuš Mravik, Jelena and Belec, Blaž and Bajuk-Bogdanović, Danica and Jovanović, Sonja and Marković, Smilja and Gavrilov, Nemanja and Skuratov, Vladimir and Jovanović, Zoran",
year = "2023",
abstract = "Ion beam modification of materials is notable method for achieving their unique structural, electronic, and other physicochemical properties. In the case of graphene oxide (GO) such modification of structure and surface chemistry is known to yield properties interesting for electrochemical supercapacitors. The performance of GO supercapacitors can be additionally improved by incorporating components with attractive redox properties. In this work, the influence of ion beam irradiation on synergy of GO and 12-tungstophosphoric acid (WPA) in their nanocomposite was investigated. For that, both components and their composites with different mass ratios were irradiated using different ion species, fluences and energies (from 10 keV C to 710 MeV Bi). For the irradiated WPA, results showed clear correlation between ion beam parameters, degree of structural modification and electrochemical properties. With increasing structural modification, bond breaking is first induced giving higher catalytic activity toward HER. Further irradiation resulted in an increased interconnection of polytungstate species producing lower catalytic activity and lower lithiation capacity. Irradiated GO showed modified surface chemistry, with preferable reduction of alkoxy and epoxy groups, changes in morphology and electric properties due to increased number of defects with increasing fluence, synergic effect of ion beam irradiated GO and WPA resulted in higher capacitance of irradiated composites compared to GO presumably because of interaction of structurally modified WPA with defect sites on GO thus reducing electrolyte flow along ion tracks.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro",
title = "Ion-beam irradiated graphene oxide, 12-tungstophosphoric acid and their nanocomposites for electrochemical supercapacitors",
pages = "36",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11651"
}
Mravik, Ž., Pejčić, M., Rmuš Mravik, J., Belec, B., Bajuk-Bogdanović, D., Jovanović, S., Marković, S., Gavrilov, N., Skuratov, V.,& Jovanović, Z.. (2023). Ion-beam irradiated graphene oxide, 12-tungstophosphoric acid and their nanocomposites for electrochemical supercapacitors. in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro
Belgrade : Materials Research Society of Serbia., 36.
https://hdl.handle.net/21.15107/rcub_vinar_11651
Mravik Ž, Pejčić M, Rmuš Mravik J, Belec B, Bajuk-Bogdanović D, Jovanović S, Marković S, Gavrilov N, Skuratov V, Jovanović Z. Ion-beam irradiated graphene oxide, 12-tungstophosphoric acid and their nanocomposites for electrochemical supercapacitors. in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro. 2023;:36.
https://hdl.handle.net/21.15107/rcub_vinar_11651 .
Mravik, Željko, Pejčić, Milica, Rmuš Mravik, Jelena, Belec, Blaž, Bajuk-Bogdanović, Danica, Jovanović, Sonja, Marković, Smilja, Gavrilov, Nemanja, Skuratov, Vladimir, Jovanović, Zoran, "Ion-beam irradiated graphene oxide, 12-tungstophosphoric acid and their nanocomposites for electrochemical supercapacitors" in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro (2023):36,
https://hdl.handle.net/21.15107/rcub_vinar_11651 .