Obradović, Vera

Link to this page

Authority KeyName Variants
498251a6-d1fb-48ba-b463-a50f9c021024
  • Obradović, Vera (2)
Projects

Author's Bibliography

High-performance laminate material based on polyurethane and epoxide reinforced by silica particles from rice husk used for intelligent pedestrian crossings

Tomić, Nataša Z.; Marinković, Aleksandar D.; Balanč, Bojana; Obradović, Vera; Pavlović, Vladimir B.; Manojlović, Vaso; Vuksanović, Marija M.

(2021)

TY  - JOUR
AU  - Tomić, Nataša Z.
AU  - Marinković, Aleksandar D.
AU  - Balanč, Bojana
AU  - Obradović, Vera
AU  - Pavlović, Vladimir B.
AU  - Manojlović, Vaso
AU  - Vuksanović, Marija M.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9517
AB  - Intelligent pedestrian crossings were made with the aim to increase pedestrian safety at poorly lit locations. New technologies include the design of polymer materials that have high performance by optimizing properties such as compression, tensile and impact strengths, wear resistance, hardness and transparency. The desired properties are set up to face the demands of a heavy daily traffic load and enable the functionality. Laminate material consists of the epoxy composite reinforced with silica (SiO2) derived from rice husk waste and a protective thermoplastic polyurethane layer. The top layer of the laminate material is a transparent thermoplastic polyurethane (TPU) serving as a protective layer with high wear resistance and good adhesion with epoxy composite. Silica obtained from rice husk waste was used in reinforcing of the epoxide in order to improve the mechanical properties, diffuse the light, improve the adhesion with TPU and decrease the production costs. Micro-Vickers hardness of the epoxy composite was increased by 70% with the addition of 15 wt% of SiO2. Impact energy of the epoxy composite with 15 wt% of SiO2 was increased by 272.9% after adding the TPU layer. Compressive strength of the epoxy resin is improved by 16.2% by reinforcement with 15 wt% of SiO2, while the laminate composite material showed 207% higher compressive strength than the commonly used asphalt pavement. Moreover, the addition of 15 wt% of SiO2 improved the adhesion between epoxy composite and TPU layer (11.2%). Thus, obtained laminated material made of the epoxy composite with 15 wt% of SiO2 (obtained from rice husk waste) and TPU598 showed mechanical properties and LED light transmission/diffusion appropriate for application in the intelligent pedestrian crossings. © 2021, Iran Polymer and Petrochemical Institute.
T2  - Iranian Polymer Journal (English Edition)
T1  - High-performance laminate material based on polyurethane and epoxide reinforced by silica particles from rice husk used for intelligent pedestrian crossings
VL  - 30
IS  - 3
SP  - 319
EP  - 330
DO  - 10.1007/s13726-020-00894-6
ER  - 
@article{
author = "Tomić, Nataša Z. and Marinković, Aleksandar D. and Balanč, Bojana and Obradović, Vera and Pavlović, Vladimir B. and Manojlović, Vaso and Vuksanović, Marija M.",
year = "2021",
abstract = "Intelligent pedestrian crossings were made with the aim to increase pedestrian safety at poorly lit locations. New technologies include the design of polymer materials that have high performance by optimizing properties such as compression, tensile and impact strengths, wear resistance, hardness and transparency. The desired properties are set up to face the demands of a heavy daily traffic load and enable the functionality. Laminate material consists of the epoxy composite reinforced with silica (SiO2) derived from rice husk waste and a protective thermoplastic polyurethane layer. The top layer of the laminate material is a transparent thermoplastic polyurethane (TPU) serving as a protective layer with high wear resistance and good adhesion with epoxy composite. Silica obtained from rice husk waste was used in reinforcing of the epoxide in order to improve the mechanical properties, diffuse the light, improve the adhesion with TPU and decrease the production costs. Micro-Vickers hardness of the epoxy composite was increased by 70% with the addition of 15 wt% of SiO2. Impact energy of the epoxy composite with 15 wt% of SiO2 was increased by 272.9% after adding the TPU layer. Compressive strength of the epoxy resin is improved by 16.2% by reinforcement with 15 wt% of SiO2, while the laminate composite material showed 207% higher compressive strength than the commonly used asphalt pavement. Moreover, the addition of 15 wt% of SiO2 improved the adhesion between epoxy composite and TPU layer (11.2%). Thus, obtained laminated material made of the epoxy composite with 15 wt% of SiO2 (obtained from rice husk waste) and TPU598 showed mechanical properties and LED light transmission/diffusion appropriate for application in the intelligent pedestrian crossings. © 2021, Iran Polymer and Petrochemical Institute.",
journal = "Iranian Polymer Journal (English Edition)",
title = "High-performance laminate material based on polyurethane and epoxide reinforced by silica particles from rice husk used for intelligent pedestrian crossings",
volume = "30",
number = "3",
pages = "319-330",
doi = "10.1007/s13726-020-00894-6"
}
Tomić, N. Z., Marinković, A. D., Balanč, B., Obradović, V., Pavlović, V. B., Manojlović, V.,& Vuksanović, M. M.. (2021). High-performance laminate material based on polyurethane and epoxide reinforced by silica particles from rice husk used for intelligent pedestrian crossings. in Iranian Polymer Journal (English Edition), 30(3), 319-330.
https://doi.org/10.1007/s13726-020-00894-6
Tomić NZ, Marinković AD, Balanč B, Obradović V, Pavlović VB, Manojlović V, Vuksanović MM. High-performance laminate material based on polyurethane and epoxide reinforced by silica particles from rice husk used for intelligent pedestrian crossings. in Iranian Polymer Journal (English Edition). 2021;30(3):319-330.
doi:10.1007/s13726-020-00894-6 .
Tomić, Nataša Z., Marinković, Aleksandar D., Balanč, Bojana, Obradović, Vera, Pavlović, Vladimir B., Manojlović, Vaso, Vuksanović, Marija M., "High-performance laminate material based on polyurethane and epoxide reinforced by silica particles from rice husk used for intelligent pedestrian crossings" in Iranian Polymer Journal (English Edition), 30, no. 3 (2021):319-330,
https://doi.org/10.1007/s13726-020-00894-6 . .
1
9
1
9

Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al–LDH

Tomić, Nataša Z.; Saleh, Mohamed Nasr; Vuksanović, Marija M.; Egelja, Adela; Obradović, Vera; Marinković, Aleksandar; Jančić-Heinemann, Radmila

(2021)

TY  - JOUR
AU  - Tomić, Nataša Z.
AU  - Saleh, Mohamed Nasr
AU  - Vuksanović, Marija M.
AU  - Egelja, Adela
AU  - Obradović, Vera
AU  - Marinković, Aleksandar
AU  - Jančić-Heinemann, Radmila
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9823
AB  - The goal of this study was to investigate the effect of the structure of Mn-Al layered double hydroxide (LDH) on the adhesion behavior of composite adhesives on two Al alloys (L3005 and L8079). The composite adhesives were made out of the UV-curing Bisphenol A glycidylmethacrylate/triethylene glycol dimethacrylate (BT) as polymer matrix and the addition of 1, 3, and 5 wt. % of Mn-Al LDH as adhesion enhancers. Adhesion was evaluated by using the micro Vickers hardness testing procedure. The wetting angle of composite adhesives to the Al substrates was measured and compared to the adhesion parameter b obtained from the microhardness tests. The highest increase in adhesion was observed for BT with 5 wt. % of Mn-Al LDH on L3005 substrate, which was more than 15 times higher than the adhesion for the neat BT. The morphological segregation of composite adhesives after the contact with Al substrates was examined by optical microscopy and a higher compatibility of Mn-Al LDH particles with L3005 substrate was found. The methods used for the adhesion properties assessment suggested that the Mn-Al LDH was the best adhesion enhancer of the BT matrix for L3005 substrate containing a higher content of Mn and surface hydroxyl groups.
T2  - Polymers
T1  - Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al–LDH
VL  - 13
IS  - 9
SP  - 1525
DO  - 10.3390/polym13091525
ER  - 
@article{
author = "Tomić, Nataša Z. and Saleh, Mohamed Nasr and Vuksanović, Marija M. and Egelja, Adela and Obradović, Vera and Marinković, Aleksandar and Jančić-Heinemann, Radmila",
year = "2021",
abstract = "The goal of this study was to investigate the effect of the structure of Mn-Al layered double hydroxide (LDH) on the adhesion behavior of composite adhesives on two Al alloys (L3005 and L8079). The composite adhesives were made out of the UV-curing Bisphenol A glycidylmethacrylate/triethylene glycol dimethacrylate (BT) as polymer matrix and the addition of 1, 3, and 5 wt. % of Mn-Al LDH as adhesion enhancers. Adhesion was evaluated by using the micro Vickers hardness testing procedure. The wetting angle of composite adhesives to the Al substrates was measured and compared to the adhesion parameter b obtained from the microhardness tests. The highest increase in adhesion was observed for BT with 5 wt. % of Mn-Al LDH on L3005 substrate, which was more than 15 times higher than the adhesion for the neat BT. The morphological segregation of composite adhesives after the contact with Al substrates was examined by optical microscopy and a higher compatibility of Mn-Al LDH particles with L3005 substrate was found. The methods used for the adhesion properties assessment suggested that the Mn-Al LDH was the best adhesion enhancer of the BT matrix for L3005 substrate containing a higher content of Mn and surface hydroxyl groups.",
journal = "Polymers",
title = "Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al–LDH",
volume = "13",
number = "9",
pages = "1525",
doi = "10.3390/polym13091525"
}
Tomić, N. Z., Saleh, M. N., Vuksanović, M. M., Egelja, A., Obradović, V., Marinković, A.,& Jančić-Heinemann, R.. (2021). Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al–LDH. in Polymers, 13(9), 1525.
https://doi.org/10.3390/polym13091525
Tomić NZ, Saleh MN, Vuksanović MM, Egelja A, Obradović V, Marinković A, Jančić-Heinemann R. Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al–LDH. in Polymers. 2021;13(9):1525.
doi:10.3390/polym13091525 .
Tomić, Nataša Z., Saleh, Mohamed Nasr, Vuksanović, Marija M., Egelja, Adela, Obradović, Vera, Marinković, Aleksandar, Jančić-Heinemann, Radmila, "Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al–LDH" in Polymers, 13, no. 9 (2021):1525,
https://doi.org/10.3390/polym13091525 . .
2
1
2