Kenić Marinković, D.

Link to this page

Authority KeyName Variants
6e3026e6-33a5-438b-905c-520feb7c7968
  • Kenić Marinković, D. (3)
Projects

Author's Bibliography

Nanoparticles Ca/Co-HAp in the treatment of weakened bones jaw tegmenta

Ajduković, Zorica; Ignjatović, Nenad L.; Petrović, N.; Rajković, J.; Kenić Marinković, D.; Najman, Stevo; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2013)

TY  - CONF
AU  - Ajduković, Zorica
AU  - Ignjatović, Nenad L.
AU  - Petrović, N.
AU  - Rajković, J.
AU  - Kenić Marinković, D.
AU  - Najman, Stevo
AU  - Uskoković, Dragan
PY  - 2013
UR  - http://dais.sanu.ac.rs/123456789/388
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7413
AB  - The lack of bone in the jaw tegmenta inflicts major problem and leads to an inability to adequately treat stomatoprosthetic patients. If the bone tissue damage is minor, the balanced activities of osteoblasts and bone osteoclasts can repair it independently. If the damage is bigger it is necessary to support the biological potential to repair the bone, and for that reason nanoparticlebiomaterial Ca / Co-HAp was used in this study. The research was done on rats with uniform anatomical and physiological characteristics. Assessment of repair and consolidation of the jaw bone tegmenta was performed by istomorphometric and SEM analysis. The best results were obtained in the experimental group of animals where the Ca / Co-Hap was mixed with autologousplasma. Following the implementation of the above mentioned nanocomposites, a significant formation of new bone was evident on the SEM analysis, as well as the rising of histomorphometric parameters of bone formation, which indicates that the Ca / Co-HAp nanocomposite is the material of choice for the rapid regeneration and repair of bone jaw tegmenta.
PB  - Belgrade : Materials Research Society of Serbia
C3  - The Fifteenth Annual Conference YUCOMAT 2013: Programme and the Book of Abstracts
T1  - Nanoparticles Ca/Co-HAp in the treatment of weakened bones jaw tegmenta
SP  - 147
EP  - 147
UR  - https://hdl.handle.net/21.15107/rcub_vinar_7413
ER  - 
@conference{
author = "Ajduković, Zorica and Ignjatović, Nenad L. and Petrović, N. and Rajković, J. and Kenić Marinković, D. and Najman, Stevo and Uskoković, Dragan",
year = "2013",
abstract = "The lack of bone in the jaw tegmenta inflicts major problem and leads to an inability to adequately treat stomatoprosthetic patients. If the bone tissue damage is minor, the balanced activities of osteoblasts and bone osteoclasts can repair it independently. If the damage is bigger it is necessary to support the biological potential to repair the bone, and for that reason nanoparticlebiomaterial Ca / Co-HAp was used in this study. The research was done on rats with uniform anatomical and physiological characteristics. Assessment of repair and consolidation of the jaw bone tegmenta was performed by istomorphometric and SEM analysis. The best results were obtained in the experimental group of animals where the Ca / Co-Hap was mixed with autologousplasma. Following the implementation of the above mentioned nanocomposites, a significant formation of new bone was evident on the SEM analysis, as well as the rising of histomorphometric parameters of bone formation, which indicates that the Ca / Co-HAp nanocomposite is the material of choice for the rapid regeneration and repair of bone jaw tegmenta.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "The Fifteenth Annual Conference YUCOMAT 2013: Programme and the Book of Abstracts",
title = "Nanoparticles Ca/Co-HAp in the treatment of weakened bones jaw tegmenta",
pages = "147-147",
url = "https://hdl.handle.net/21.15107/rcub_vinar_7413"
}
Ajduković, Z., Ignjatović, N. L., Petrović, N., Rajković, J., Kenić Marinković, D., Najman, S.,& Uskoković, D.. (2013). Nanoparticles Ca/Co-HAp in the treatment of weakened bones jaw tegmenta. in The Fifteenth Annual Conference YUCOMAT 2013: Programme and the Book of Abstracts
Belgrade : Materials Research Society of Serbia., 147-147.
https://hdl.handle.net/21.15107/rcub_vinar_7413
Ajduković Z, Ignjatović NL, Petrović N, Rajković J, Kenić Marinković D, Najman S, Uskoković D. Nanoparticles Ca/Co-HAp in the treatment of weakened bones jaw tegmenta. in The Fifteenth Annual Conference YUCOMAT 2013: Programme and the Book of Abstracts. 2013;:147-147.
https://hdl.handle.net/21.15107/rcub_vinar_7413 .
Ajduković, Zorica, Ignjatović, Nenad L., Petrović, N., Rajković, J., Kenić Marinković, D., Najman, Stevo, Uskoković, Dragan, "Nanoparticles Ca/Co-HAp in the treatment of weakened bones jaw tegmenta" in The Fifteenth Annual Conference YUCOMAT 2013: Programme and the Book of Abstracts (2013):147-147,
https://hdl.handle.net/21.15107/rcub_vinar_7413 .

Hemolytic activity of bioactive nanocomposites

Ajduković, Zorica; Ignjatović, Nenad L.; Petrović, N.; Najman, Stevo; Rajković, J.; Kenić Marinković, D.; Krstić, V.; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia; Institute of Technical Sciences of SASA; Vinča Institute of Nuclear Sciences, University of Belgrade, 2012)

TY  - CONF
AU  - Ajduković, Zorica
AU  - Ignjatović, Nenad L.
AU  - Petrović, N.
AU  - Najman, Stevo
AU  - Rajković, J.
AU  - Kenić Marinković, D.
AU  - Krstić, V.
AU  - Uskoković, Dragan
PY  - 2012
UR  - http://dais.sanu.ac.rs/123456789/497
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7453
AB  - Huge range of tested biomaterials in recent decades has emerged as an ideal scaffold for cell growth, but few have demonstrated clinical efficacy. Among them, synthetic hydroxyapatite (HAp, Ca10(PO4)6(OH)2) is the most promising because of its biocompatibility, bioactivity, and osteoconductivity. Biocompatibility represents the primary concern for any material to be used as a substitute for natural tissue. Hydroxyapatite particles interact with numerous cellular systems in vivo, and some of these interactions may lead to cell damage and to stimulate platelet activation, coagulation and thrombus formation. The aim of this work was to examine the hemocompatibility of nanocalcium hydroxyapatite substituted with 5% and 12% cobalt (Ca /CoHAp) and hydroxyapatite/polylactidcoglicolid (HAp / PLGA) in relation to pure HAp by testing their hemolytic activities. The results show the discrepancy in hemolytic activity of implanted matherials. The degree of crystallinity of samples had a more dominant influence on hemolysis than the percentage of substituted cobalt. Hemolysis ratios of the nanocalcium hydroxyapatite substituted with cobalt samples were below 3%, indicating good blood compatibility and that they are promising for medical application.
PB  - Belgrade : Materials Research Society of Serbia; Institute of Technical Sciences of SASA; Vinča Institute of Nuclear Sciences, University of Belgrade
C3  - Joint Event of the 11th Young Researchers’ Conference: Materials Science and Engineering and the 1st European Early Stage Researches’ Conference on Hydrogen Storage: Program and the Book of Abstracts
T1  - Hemolytic activity of bioactive nanocomposites
SP  - 49
EP  - 49
UR  - https://hdl.handle.net/21.15107/rcub_vinar_7453
ER  - 
@conference{
author = "Ajduković, Zorica and Ignjatović, Nenad L. and Petrović, N. and Najman, Stevo and Rajković, J. and Kenić Marinković, D. and Krstić, V. and Uskoković, Dragan",
year = "2012",
abstract = "Huge range of tested biomaterials in recent decades has emerged as an ideal scaffold for cell growth, but few have demonstrated clinical efficacy. Among them, synthetic hydroxyapatite (HAp, Ca10(PO4)6(OH)2) is the most promising because of its biocompatibility, bioactivity, and osteoconductivity. Biocompatibility represents the primary concern for any material to be used as a substitute for natural tissue. Hydroxyapatite particles interact with numerous cellular systems in vivo, and some of these interactions may lead to cell damage and to stimulate platelet activation, coagulation and thrombus formation. The aim of this work was to examine the hemocompatibility of nanocalcium hydroxyapatite substituted with 5% and 12% cobalt (Ca /CoHAp) and hydroxyapatite/polylactidcoglicolid (HAp / PLGA) in relation to pure HAp by testing their hemolytic activities. The results show the discrepancy in hemolytic activity of implanted matherials. The degree of crystallinity of samples had a more dominant influence on hemolysis than the percentage of substituted cobalt. Hemolysis ratios of the nanocalcium hydroxyapatite substituted with cobalt samples were below 3%, indicating good blood compatibility and that they are promising for medical application.",
publisher = "Belgrade : Materials Research Society of Serbia; Institute of Technical Sciences of SASA; Vinča Institute of Nuclear Sciences, University of Belgrade",
journal = "Joint Event of the 11th Young Researchers’ Conference: Materials Science and Engineering and the 1st European Early Stage Researches’ Conference on Hydrogen Storage: Program and the Book of Abstracts",
title = "Hemolytic activity of bioactive nanocomposites",
pages = "49-49",
url = "https://hdl.handle.net/21.15107/rcub_vinar_7453"
}
Ajduković, Z., Ignjatović, N. L., Petrović, N., Najman, S., Rajković, J., Kenić Marinković, D., Krstić, V.,& Uskoković, D.. (2012). Hemolytic activity of bioactive nanocomposites. in Joint Event of the 11th Young Researchers’ Conference: Materials Science and Engineering and the 1st European Early Stage Researches’ Conference on Hydrogen Storage: Program and the Book of Abstracts
Belgrade : Materials Research Society of Serbia; Institute of Technical Sciences of SASA; Vinča Institute of Nuclear Sciences, University of Belgrade., 49-49.
https://hdl.handle.net/21.15107/rcub_vinar_7453
Ajduković Z, Ignjatović NL, Petrović N, Najman S, Rajković J, Kenić Marinković D, Krstić V, Uskoković D. Hemolytic activity of bioactive nanocomposites. in Joint Event of the 11th Young Researchers’ Conference: Materials Science and Engineering and the 1st European Early Stage Researches’ Conference on Hydrogen Storage: Program and the Book of Abstracts. 2012;:49-49.
https://hdl.handle.net/21.15107/rcub_vinar_7453 .
Ajduković, Zorica, Ignjatović, Nenad L., Petrović, N., Najman, Stevo, Rajković, J., Kenić Marinković, D., Krstić, V., Uskoković, Dragan, "Hemolytic activity of bioactive nanocomposites" in Joint Event of the 11th Young Researchers’ Conference: Materials Science and Engineering and the 1st European Early Stage Researches’ Conference on Hydrogen Storage: Program and the Book of Abstracts (2012):49-49,
https://hdl.handle.net/21.15107/rcub_vinar_7453 .

Bioactive composite materials in regeneration of the resorbed bone of alveolar ridges

Ajduković, Zorica; Ignjatović, Nenad L.; Rajković, Jelena; Najman, Stevo; Mihailović, D.; Petrović, N.; Kenić Marinković, D.; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia; Institute of Technical Sciences of SASA; Vinča Institute of Nuclear Sciences, University of Belgrade, 2012)

TY  - CONF
AU  - Ajduković, Zorica
AU  - Ignjatović, Nenad L.
AU  - Rajković, Jelena
AU  - Najman, Stevo
AU  - Mihailović, D.
AU  - Petrović, N.
AU  - Kenić Marinković, D.
AU  - Uskoković, Dragan
PY  - 2012
UR  - http://dais.sanu.ac.rs/123456789/498
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7454
AB  - Bone loss during the systemic osteoporosis has an important role in dentistry and medicine. The aim of the study was the application of bioactive micro and nanocomposite materials, alone, and in combination with autologous plasma in osteoporotic jaw bones of rats with artificially induced osteoporosis. The effect of these composites was measured by histomorphometric and atomic absorption spectrophotometric analysis. According to the best obtained results in regeneration and recovery of the resorbed alveolar bone, it can be concluded that nanocomposite combined with autologous plasma may be the material of choice to replace the osteoporotic damaged jaw bone.
PB  - Belgrade : Materials Research Society of Serbia; Institute of Technical Sciences of SASA; Vinča Institute of Nuclear Sciences, University of Belgrade
C3  - Joint Event of the 11th Young Researchers’ Conference: Materials Science and Engineering and the 1st European Early Stage Researches’ Conference on Hydrogen Storage: Program and the Book of Abstracts
T1  - Bioactive composite materials in regeneration of the resorbed bone of alveolar ridges
SP  - 103
EP  - 103
UR  - https://hdl.handle.net/21.15107/rcub_vinar_7454
ER  - 
@conference{
author = "Ajduković, Zorica and Ignjatović, Nenad L. and Rajković, Jelena and Najman, Stevo and Mihailović, D. and Petrović, N. and Kenić Marinković, D. and Uskoković, Dragan",
year = "2012",
abstract = "Bone loss during the systemic osteoporosis has an important role in dentistry and medicine. The aim of the study was the application of bioactive micro and nanocomposite materials, alone, and in combination with autologous plasma in osteoporotic jaw bones of rats with artificially induced osteoporosis. The effect of these composites was measured by histomorphometric and atomic absorption spectrophotometric analysis. According to the best obtained results in regeneration and recovery of the resorbed alveolar bone, it can be concluded that nanocomposite combined with autologous plasma may be the material of choice to replace the osteoporotic damaged jaw bone.",
publisher = "Belgrade : Materials Research Society of Serbia; Institute of Technical Sciences of SASA; Vinča Institute of Nuclear Sciences, University of Belgrade",
journal = "Joint Event of the 11th Young Researchers’ Conference: Materials Science and Engineering and the 1st European Early Stage Researches’ Conference on Hydrogen Storage: Program and the Book of Abstracts",
title = "Bioactive composite materials in regeneration of the resorbed bone of alveolar ridges",
pages = "103-103",
url = "https://hdl.handle.net/21.15107/rcub_vinar_7454"
}
Ajduković, Z., Ignjatović, N. L., Rajković, J., Najman, S., Mihailović, D., Petrović, N., Kenić Marinković, D.,& Uskoković, D.. (2012). Bioactive composite materials in regeneration of the resorbed bone of alveolar ridges. in Joint Event of the 11th Young Researchers’ Conference: Materials Science and Engineering and the 1st European Early Stage Researches’ Conference on Hydrogen Storage: Program and the Book of Abstracts
Belgrade : Materials Research Society of Serbia; Institute of Technical Sciences of SASA; Vinča Institute of Nuclear Sciences, University of Belgrade., 103-103.
https://hdl.handle.net/21.15107/rcub_vinar_7454
Ajduković Z, Ignjatović NL, Rajković J, Najman S, Mihailović D, Petrović N, Kenić Marinković D, Uskoković D. Bioactive composite materials in regeneration of the resorbed bone of alveolar ridges. in Joint Event of the 11th Young Researchers’ Conference: Materials Science and Engineering and the 1st European Early Stage Researches’ Conference on Hydrogen Storage: Program and the Book of Abstracts. 2012;:103-103.
https://hdl.handle.net/21.15107/rcub_vinar_7454 .
Ajduković, Zorica, Ignjatović, Nenad L., Rajković, Jelena, Najman, Stevo, Mihailović, D., Petrović, N., Kenić Marinković, D., Uskoković, Dragan, "Bioactive composite materials in regeneration of the resorbed bone of alveolar ridges" in Joint Event of the 11th Young Researchers’ Conference: Materials Science and Engineering and the 1st European Early Stage Researches’ Conference on Hydrogen Storage: Program and the Book of Abstracts (2012):103-103,
https://hdl.handle.net/21.15107/rcub_vinar_7454 .