Chatrchyan, S.

Link to this page

Authority KeyName Variants
25f83191-cbc8-493a-bc01-812b18529b77
  • Chatrchyan, S. (313)
Projects
BMWF (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MEYS (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), MoER (Estonia) [SF0690030s09], ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Republic of Korea), WCU (Republic of Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MSI (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MSTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), ThEPCenter (Thailand), IPST (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA) FMSR (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN (China), CAS (China), MoST (China), NSFC (China), COLCIEN-CIAS (Colombia), MSES (Croatia), RPF (Cyprus), Academy of Sciences (Estonia), NICPB (Estonia), Academy of Finland, ME (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), PAEC (Pakistan), SCSR (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MST (Russia), MAE (Russia), MSTDS (Serbia), MICINN (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA), European Union, Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation
FMSR (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), Academy of Sciences (Estonia), NICPB (Estonia), Academy of Finland, ME (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), PAEC (Pakistan), SCSR (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MST (Russia), MAE (Russia), MSTD (Serbia), MICINN (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA) BMWF (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), MoER (Estonia) [SF0690030s09], ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MSI (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MSTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), ThEP (Thailand), IPST (Thailand), NECTEC (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), Marie-Curie programme (European Union), European Research Council (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Austrian Science Fund (FWF), Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, European Union, Regional Development Fund
BMWF (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), MoER (Estonia) [SF0690030s09], ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MSI (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MSTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA) FMSR (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), Academy of Sciences (Estonia), NICPB (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MSI (New Zealand), PAEC (Pakistan), SCSR (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MSTD (Serbia), MICINN (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA)
FMSR (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), MoER (Estonia) [SF0690030s09], ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MSI (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MSTD (Serbia), MICINN (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA) FMSR (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN (China), CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), Academy of Sciences and NICPB (Estonia), Academy of Finland, ME (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), PAEC (Pakistan), SCSR (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MST (Russia), MAE (Russia), MSTD (Serbia), MICINN (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA)
FMSR (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN (China), CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), Academy of Sciences (Estonia), NICPB (Estonia), Academy of Finland, ME (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), PAEC (Pakistan), SCSR (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MST (Russia), MAE (Russia), MSTD (Serbia), MICINN (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA) FMSR (Austria), FNRS, FWO (Belgium), CNPq, CAPES, FAPERJ, FAPESP (Brazil), MES (Bulgaria), CERN, CAS, MoST, NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), MoER [SF0690030s09], ERDF (Estonia), Academy of Finland, MEC, HIP (Finland), CEA, CNRS/IN2P3 (France), BMBF, Germany, DFG, HGF (Germany), GSRT (Greece), OTKA, NKTH (Hungary), DAE, DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF, WCU (Korea), LAS (Lithuania), CINVESTAV, CONACYT, SEP, UASLP-FAI (Mexico), MSI (New Zealand), PAEC (Pakistan), MSHE, NSC (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MON, RosAtom, RAS, RFBR (Russia), MSTD (Serbia), MICINN, CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK, TAEK (Turkey), STFC (United Kingdom), DOE, NSF (USA)
Austrian de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis and Aristeia programmes, EU-ESF, Greek NSRF Austrian Federal Ministry of Science and Research and the Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, and Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, and National Office for Research and Technology, Hungary, Department of Atomic Energy and the Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI), Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education and the National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER), National Science Council, Taipei, Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, U.S. Department of Energy, and the U.S. National Science Foundation, Marie-Curie program and the European Research Council and EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS program of Foundation for Polish Science, EU, Regional Development Fund, Thalis and Aristeia programs, EU-ESF and the Greek NSRF
Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agency (CNPq), Brazilian Funding Agency (CAPES), Brazilian Funding Agency (FAPERJ), Brazilian Funding Agency (FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis and Aristeia programmes, EU-ESF, Greek NSRF Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, and University of Malaya (Malaysia), CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Funda, cao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, U.K., US Department of Energy, and the US National Science Foundation, Marie-Curie programme, European Research Council and EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis and Aristeia programmes, EU-ESF, Greek NSRF
Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, EU-ESF, Greek NSRF, [SF0690030s09] Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, Republic of Korea, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education (Malaysia), University of Malaya (Malaysia), CINVESTAV, Mexican Funding Agency, CONACYT, Mexican Funding Agency, SEP, Mexican Funding Agency, UASLP-FAI, Mexican Funding Agency, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, Poland, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Spain, Desarrollo e Innovacion, Spain, Programa Consolider-Ingenio, Spain, ETH Board, Swiss Funding Agency, ETH Zurich, Swiss Funding Agency, PSI, Swiss Funding Agency, SNF, Swiss Funding Agency, UniZH, Swiss Funding Agency, Canton Zurich, Swiss Funding Agency, SER, Swiss Funding Agency, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie programme (European Union), European Research Council (European Union), EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office (FRIA-Belgium), Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis and Aristeia programmes - EU-ESF, Greek NSRF, [SF0690030s09]
Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Recurrent financing contract [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, and University of Malaya (Malaysia), CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis and Aristeia programmes, EU-ESF, Greek NSRF Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy and the Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI), Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria a de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER), National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, U.S. Department of Energy, U.S. National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, EU-ESF, Greek NSRF
Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education and University of Malaya (Malaysia), CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science by EU, Regional Development Fund, EU-ESF, Greek NSRF Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, EU-ESF, Greek NSRF
Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis programme, Aristeia programme, EU-ESF, Greek NSRF Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, France, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Germany, Deutsche Forschungsgemeinschaft, Germany, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, Hungary, National Office for Research and Technology, Hungary, Department of Atomic Energy, India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, Republic of Korea, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, Poland, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Spain, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science - EU, Regional Development Fund, Thalis programme - EU-ESF, Aristeia programme - EU-ESF, Greek NSRF
Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education, Youth and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China, COLCIENCIAS, Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics, Institut National de Physique Nuclaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung,, Deutsche Forschungsgemeinschaft, HelmholtzGemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy and the Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education and the National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan), Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), Foundation for Polish Science, European Union, Regional Development Fund Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education, Youth and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy and the Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, European Union, Regional Development Fund
Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian-Ministry of Education, Youth and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy and the Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR (Armenia), Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis and Aristeia programmes, EU-ESF, Greek NSRF, JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), CONACYT, SEP, UASLP-FAI Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education, Youth and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, US Department of Energy, National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, EU-ESF, Greek NSRF
Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education, Youth and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis programme, Aristeia programme, EU-ESF, Greek NSRF Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education, Youth and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Cienciae a Tecnologia, Portugal, JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis programme, Aristeia programme, EU-ESF, Greek NSRF
Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education, Youth and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy, Department of Science and Technology, India, nstitute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, the Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, the Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, European Union, Regional Development Fund Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education, Youth and Science, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Cyprus, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Estonia [SF0690030s09], European Regional Development Fund, Estonia, CERN, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, France, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Germany, Deutsche Forschungsgemeinschaft, Germany, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, Hungary, National Office for Research and Technology, Hungary, Department of Atomic Energy, India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, Republic of Korea, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Armenia, JINR, Belarus, JINR, Georgia, JINR, Ukraine, JINR, Uzbekistan, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Spain, Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis programme, EU-ESF, Greek NSRF, Aristeia programme

Author's Bibliography

Measurement of the mass difference between top quark and antiquark in pp collisions at root s=8 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2017)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1617
AB  - The invariance of the standard model (SM) under the CPT transformation predicts equality of particle and antiparticle masses. This prediction is tested by measuring the mass difference between the top quark and antiquark (Delta m(t) = m(t) - m((t) over bar)) that are produced in pp collisions at a center-of-mass energy of 8 TeV, using events with a muon or an electron and at least four jets in the final state. The analysis is based on data corresponding to an integrated luminosity of 19.6 fb(-1) collected by the CMS experiment at the LHC, and yields a value of Delta m(t) = 0.15 0.19 (stat) +/- 0.09(syst) GeV, which is consistent with the SM expectation. This result is significantly more precise than previously reported measurements. (C) 2017 The Author(s). Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Measurement of the mass difference between top quark and antiquark in pp collisions at root s=8 TeV
VL  - 770
SP  - 50
EP  - 71
DO  - 10.1016/j.physletb.2017.04.028
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2017",
abstract = "The invariance of the standard model (SM) under the CPT transformation predicts equality of particle and antiparticle masses. This prediction is tested by measuring the mass difference between the top quark and antiquark (Delta m(t) = m(t) - m((t) over bar)) that are produced in pp collisions at a center-of-mass energy of 8 TeV, using events with a muon or an electron and at least four jets in the final state. The analysis is based on data corresponding to an integrated luminosity of 19.6 fb(-1) collected by the CMS experiment at the LHC, and yields a value of Delta m(t) = 0.15 0.19 (stat) +/- 0.09(syst) GeV, which is consistent with the SM expectation. This result is significantly more precise than previously reported measurements. (C) 2017 The Author(s). Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Measurement of the mass difference between top quark and antiquark in pp collisions at root s=8 TeV",
volume = "770",
pages = "50-71",
doi = "10.1016/j.physletb.2017.04.028"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Milošević, J., Milenović, P.,& Reković, V.. (2017). Measurement of the mass difference between top quark and antiquark in pp collisions at root s=8 TeV. in Physics Letters B, 770, 50-71.
https://doi.org/10.1016/j.physletb.2017.04.028
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Milošević J, Milenović P, Reković V. Measurement of the mass difference between top quark and antiquark in pp collisions at root s=8 TeV. in Physics Letters B. 2017;770:50-71.
doi:10.1016/j.physletb.2017.04.028 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Measurement of the mass difference between top quark and antiquark in pp collisions at root s=8 TeV" in Physics Letters B, 770 (2017):50-71,
https://doi.org/10.1016/j.physletb.2017.04.028 . .
3
8
9
13

Erratum: Search for new physics in events with same-sign dileptons and jets in pp collisions at root s = 8 TeV (vol 01, pg 163, 2014)

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2015)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/361
T2  - Journal of High Energy Physics
T1  - Erratum: Search for new physics in events with same-sign dileptons and jets in pp collisions at root s = 8 TeV (vol 01, pg 163, 2014)
IS  - 1
DO  - 10.1007/JHEP01(2015)014
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2015",
journal = "Journal of High Energy Physics",
title = "Erratum: Search for new physics in events with same-sign dileptons and jets in pp collisions at root s = 8 TeV (vol 01, pg 163, 2014)",
number = "1",
doi = "10.1007/JHEP01(2015)014"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Milošević, J., Milenović, P.,& Reković, V.. (2015). Erratum: Search for new physics in events with same-sign dileptons and jets in pp collisions at root s = 8 TeV (vol 01, pg 163, 2014). in Journal of High Energy Physics(1).
https://doi.org/10.1007/JHEP01(2015)014
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Milošević J, Milenović P, Reković V. Erratum: Search for new physics in events with same-sign dileptons and jets in pp collisions at root s = 8 TeV (vol 01, pg 163, 2014). in Journal of High Energy Physics. 2015;(1).
doi:10.1007/JHEP01(2015)014 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Erratum: Search for new physics in events with same-sign dileptons and jets in pp collisions at root s = 8 TeV (vol 01, pg 163, 2014)" in Journal of High Energy Physics, no. 1 (2015),
https://doi.org/10.1007/JHEP01(2015)014 . .
1
13
12
9

Erratum to: Measurement of jet multiplicity distributions in t(t)over-bar production in pp collisions at root s = 7 TeV (vol 74, 3014, 2014)

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2015)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/592
T2  - European Physical Journal C. Particles and Fields
T1  - Erratum to: Measurement of jet multiplicity distributions in t(t)over-bar production in pp collisions at root s = 7 TeV (vol 74, 3014, 2014)
VL  - 75
IS  - 5
DO  - 10.1140/epjc/s10052-015-3437-2
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2015",
journal = "European Physical Journal C. Particles and Fields",
title = "Erratum to: Measurement of jet multiplicity distributions in t(t)over-bar production in pp collisions at root s = 7 TeV (vol 74, 3014, 2014)",
volume = "75",
number = "5",
doi = "10.1140/epjc/s10052-015-3437-2"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Milošević, J., Milenović, P.,& Reković, V.. (2015). Erratum to: Measurement of jet multiplicity distributions in t(t)over-bar production in pp collisions at root s = 7 TeV (vol 74, 3014, 2014). in European Physical Journal C. Particles and Fields, 75(5).
https://doi.org/10.1140/epjc/s10052-015-3437-2
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Milošević J, Milenović P, Reković V. Erratum to: Measurement of jet multiplicity distributions in t(t)over-bar production in pp collisions at root s = 7 TeV (vol 74, 3014, 2014). in European Physical Journal C. Particles and Fields. 2015;75(5).
doi:10.1140/epjc/s10052-015-3437-2 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Erratum to: Measurement of jet multiplicity distributions in t(t)over-bar production in pp collisions at root s = 7 TeV (vol 74, 3014, 2014)" in European Physical Journal C. Particles and Fields, 75, no. 5 (2015),
https://doi.org/10.1140/epjc/s10052-015-3437-2 . .
2
6
12
2

Study of Z production in PbPb and pp collisions at root s(NN)=2.76 TeV in the dimuon and dielectron decay channels

Chatrchyan, S.; Adžić, Petar; Ekmedžić, Marko; Milošević, Jovan; Reković, Vladimir; Đorđević, Miloš; Milenović, Predrag

(2015)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Ekmedžić, Marko
AU  - Milošević, Jovan
AU  - Reković, Vladimir
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/457
AB  - The production of Z bosons is studied in the dimuon and dielectron decay channels in PbPb and pp collisions at root s(NN) = 2.76TeV, using data collected by the CMS experiment at the LHC. The PbPb data sample corresponds to an integrated luminosity of about 166 mu b(-1), while the pp data sample collected in 2013 at the same nucleon-nucleon centre-of-mass energy has an integrated luminosity of 5.4 pb(-1). The Z boson yield is measured as a function of rapidity, transverse momentum, and collision centrality. The ratio of PbPb to pp yields, scaled by the number of inelastic nucleon-nucleon collisions, is found to be 1.06 +/- 0.05 (stat) +/- 0.08 (syst) in the dimuon channel and 1.02 +/- 0.08 (stat) +/- 0.15 (syst) in the dielectron channel, for centrality-integrated Z boson production. This binary collision scaling is seen to hold in the entire kinematic region studied, as expected for a colourless probe that is unaffected by the hot and dense QCD medium produced in heavy ion collisions.
T2  - Journal of High Energy Physics
T1  - Study of Z production in PbPb and pp collisions at root s(NN)=2.76 TeV in the dimuon and dielectron decay channels
IS  - 3
DO  - 10.1007/JHEP03(2015)022
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Ekmedžić, Marko and Milošević, Jovan and Reković, Vladimir and Đorđević, Miloš and Milenović, Predrag",
year = "2015",
abstract = "The production of Z bosons is studied in the dimuon and dielectron decay channels in PbPb and pp collisions at root s(NN) = 2.76TeV, using data collected by the CMS experiment at the LHC. The PbPb data sample corresponds to an integrated luminosity of about 166 mu b(-1), while the pp data sample collected in 2013 at the same nucleon-nucleon centre-of-mass energy has an integrated luminosity of 5.4 pb(-1). The Z boson yield is measured as a function of rapidity, transverse momentum, and collision centrality. The ratio of PbPb to pp yields, scaled by the number of inelastic nucleon-nucleon collisions, is found to be 1.06 +/- 0.05 (stat) +/- 0.08 (syst) in the dimuon channel and 1.02 +/- 0.08 (stat) +/- 0.15 (syst) in the dielectron channel, for centrality-integrated Z boson production. This binary collision scaling is seen to hold in the entire kinematic region studied, as expected for a colourless probe that is unaffected by the hot and dense QCD medium produced in heavy ion collisions.",
journal = "Journal of High Energy Physics",
title = "Study of Z production in PbPb and pp collisions at root s(NN)=2.76 TeV in the dimuon and dielectron decay channels",
number = "3",
doi = "10.1007/JHEP03(2015)022"
}
Chatrchyan, S., Adžić, P., Ekmedžić, M., Milošević, J., Reković, V., Đorđević, M.,& Milenović, P.. (2015). Study of Z production in PbPb and pp collisions at root s(NN)=2.76 TeV in the dimuon and dielectron decay channels. in Journal of High Energy Physics(3).
https://doi.org/10.1007/JHEP03(2015)022
Chatrchyan S, Adžić P, Ekmedžić M, Milošević J, Reković V, Đorđević M, Milenović P. Study of Z production in PbPb and pp collisions at root s(NN)=2.76 TeV in the dimuon and dielectron decay channels. in Journal of High Energy Physics. 2015;(3).
doi:10.1007/JHEP03(2015)022 .
Chatrchyan, S., Adžić, Petar, Ekmedžić, Marko, Milošević, Jovan, Reković, Vladimir, Đorđević, Miloš, Milenović, Predrag, "Study of Z production in PbPb and pp collisions at root s(NN)=2.76 TeV in the dimuon and dielectron decay channels" in Journal of High Energy Physics, no. 3 (2015),
https://doi.org/10.1007/JHEP03(2015)022 . .
2
36
38
32

Erratum: Search for anomalous production in the highly-boosted all-hadronic final state (vol 09, 029, 2012)

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Krpić, D.; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Krpić, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5951
T2  - Journal of High Energy Physics
T1  - Erratum: Search for anomalous production in the highly-boosted all-hadronic final state (vol 09, 029, 2012)
IS  - 3
DO  - 10.1007/JHEP03(2014)132
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Krpić, D. and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2014",
journal = "Journal of High Energy Physics",
title = "Erratum: Search for anomalous production in the highly-boosted all-hadronic final state (vol 09, 029, 2012)",
number = "3",
doi = "10.1007/JHEP03(2014)132"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Krpić, D., Milošević, J., Milenović, P.,& Reković, V.. (2014). Erratum: Search for anomalous production in the highly-boosted all-hadronic final state (vol 09, 029, 2012). in Journal of High Energy Physics(3).
https://doi.org/10.1007/JHEP03(2014)132
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Krpić D, Milošević J, Milenović P, Reković V. Erratum: Search for anomalous production in the highly-boosted all-hadronic final state (vol 09, 029, 2012). in Journal of High Energy Physics. 2014;(3).
doi:10.1007/JHEP03(2014)132 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Krpić, D., Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Erratum: Search for anomalous production in the highly-boosted all-hadronic final state (vol 09, 029, 2012)" in Journal of High Energy Physics, no. 3 (2014),
https://doi.org/10.1007/JHEP03(2014)132 . .
1
4
4

Erratum: Measurement of the t(t)over-bar production cross section in the dilepton channel in pp collisions at root s = 8 TeV (vol 2, 024, 2014)

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5918
T2  - Journal of High Energy Physics
T1  - Erratum: Measurement of the t(t)over-bar production cross section in the dilepton channel in pp collisions at root s = 8 TeV (vol 2, 024, 2014)
IS  - 2
DO  - 10.1007/JHEP02(2014)102
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2014",
journal = "Journal of High Energy Physics",
title = "Erratum: Measurement of the t(t)over-bar production cross section in the dilepton channel in pp collisions at root s = 8 TeV (vol 2, 024, 2014)",
number = "2",
doi = "10.1007/JHEP02(2014)102"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Milošević, J., Milenović, P.,& Reković, V.. (2014). Erratum: Measurement of the t(t)over-bar production cross section in the dilepton channel in pp collisions at root s = 8 TeV (vol 2, 024, 2014). in Journal of High Energy Physics(2).
https://doi.org/10.1007/JHEP02(2014)102
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Milošević J, Milenović P, Reković V. Erratum: Measurement of the t(t)over-bar production cross section in the dilepton channel in pp collisions at root s = 8 TeV (vol 2, 024, 2014). in Journal of High Energy Physics. 2014;(2).
doi:10.1007/JHEP02(2014)102 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Erratum: Measurement of the t(t)over-bar production cross section in the dilepton channel in pp collisions at root s = 8 TeV (vol 2, 024, 2014)" in Journal of High Energy Physics, no. 2 (2014),
https://doi.org/10.1007/JHEP02(2014)102 . .
1
15
9
8

Study of double parton scattering using W+2-jet events in proton-proton collisions at root s=7 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5926
AB  - Double parton scattering is investigated in proton-proton collisions at = 7 TeV where the final state includes a W boson, which decays into a muon and a neutrino, and two jets. The data sample corresponds to an integrated luminosity of 5 fb(-1), collected with the CMS detector at the LHC. Observables sensitive to double parton scattering are investigated after being corrected for detector effects and selection efficiencies. The fraction of W + 2-jet events due to double parton scattering is measured to be 0.055 +/- 0.002 (stat.) +/- 0.014 (syst.). The effective cross section, sigma (eff), characterizing the effective transverse area of hard partonic interactions in collisions between protons is measured to be 20.7 +/- 0.8(stat.) +/- 6.6(syst.)mb.
T2  - Journal of High Energy Physics
T1  - Study of double parton scattering using W+2-jet events in proton-proton collisions at root s=7 TeV
IS  - 3
DO  - 10.1007/JHEP03(2014)032
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2014",
abstract = "Double parton scattering is investigated in proton-proton collisions at = 7 TeV where the final state includes a W boson, which decays into a muon and a neutrino, and two jets. The data sample corresponds to an integrated luminosity of 5 fb(-1), collected with the CMS detector at the LHC. Observables sensitive to double parton scattering are investigated after being corrected for detector effects and selection efficiencies. The fraction of W + 2-jet events due to double parton scattering is measured to be 0.055 +/- 0.002 (stat.) +/- 0.014 (syst.). The effective cross section, sigma (eff), characterizing the effective transverse area of hard partonic interactions in collisions between protons is measured to be 20.7 +/- 0.8(stat.) +/- 6.6(syst.)mb.",
journal = "Journal of High Energy Physics",
title = "Study of double parton scattering using W+2-jet events in proton-proton collisions at root s=7 TeV",
number = "3",
doi = "10.1007/JHEP03(2014)032"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Milošević, J., Milenović, P.,& Reković, V.. (2014). Study of double parton scattering using W+2-jet events in proton-proton collisions at root s=7 TeV. in Journal of High Energy Physics(3).
https://doi.org/10.1007/JHEP03(2014)032
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Milošević J, Milenović P, Reković V. Study of double parton scattering using W+2-jet events in proton-proton collisions at root s=7 TeV. in Journal of High Energy Physics. 2014;(3).
doi:10.1007/JHEP03(2014)032 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Study of double parton scattering using W+2-jet events in proton-proton collisions at root s=7 TeV" in Journal of High Energy Physics, no. 3 (2014),
https://doi.org/10.1007/JHEP03(2014)032 . .
2
93
107
97

Modification of jet shapes in PbPb collisions at root s(NN)=2.76 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Krpić, D.; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Krpić, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5933
AB  - The first measurement of jet shapes, defined as the fractional transverse momentum radial distribution, for inclusive jets produced in heavy-ion collisions is presented. Data samples of PbPb and pp collisions, corresponding to integrated luminosities of 150 mu b(-1) and 5.3 pb(-1) respectively, were collected at a nucleon-nucleon centre-of-mass energy of root s(NN) = 2.76 TeV with the CMS detector at the LHC. The jets are reconstructed with the anti-k(T) algorithm with a distance parameter R = 0.3, and the jet shapes are measured for charged particles with transverse momentum P-T GT 1 GeV/c. The jet shapes measured in PbPb collisions in different collision centralities are compared to reference distributions based on the pp data. A centrality-dependent modification of the jet shapes is observed in the more central PbPb collisions, indicating a redistribution of the energy inside the jet cone. This measurement provides information about the parton shower mechanism in the hot and dense medium produced in heavy-ion collisions. (C) 2014 The Authors. Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Modification of jet shapes in PbPb collisions at root s(NN)=2.76 TeV
VL  - 730
SP  - 243
EP  - 263
DO  - 10.1016/j.physletb.2014.01.042
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Krpić, D. and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2014",
abstract = "The first measurement of jet shapes, defined as the fractional transverse momentum radial distribution, for inclusive jets produced in heavy-ion collisions is presented. Data samples of PbPb and pp collisions, corresponding to integrated luminosities of 150 mu b(-1) and 5.3 pb(-1) respectively, were collected at a nucleon-nucleon centre-of-mass energy of root s(NN) = 2.76 TeV with the CMS detector at the LHC. The jets are reconstructed with the anti-k(T) algorithm with a distance parameter R = 0.3, and the jet shapes are measured for charged particles with transverse momentum P-T GT 1 GeV/c. The jet shapes measured in PbPb collisions in different collision centralities are compared to reference distributions based on the pp data. A centrality-dependent modification of the jet shapes is observed in the more central PbPb collisions, indicating a redistribution of the energy inside the jet cone. This measurement provides information about the parton shower mechanism in the hot and dense medium produced in heavy-ion collisions. (C) 2014 The Authors. Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Modification of jet shapes in PbPb collisions at root s(NN)=2.76 TeV",
volume = "730",
pages = "243-263",
doi = "10.1016/j.physletb.2014.01.042"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Krpić, D., Milošević, J., Milenović, P.,& Reković, V.. (2014). Modification of jet shapes in PbPb collisions at root s(NN)=2.76 TeV. in Physics Letters B, 730, 243-263.
https://doi.org/10.1016/j.physletb.2014.01.042
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Krpić D, Milošević J, Milenović P, Reković V. Modification of jet shapes in PbPb collisions at root s(NN)=2.76 TeV. in Physics Letters B. 2014;730:243-263.
doi:10.1016/j.physletb.2014.01.042 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Krpić, D., Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Modification of jet shapes in PbPb collisions at root s(NN)=2.76 TeV" in Physics Letters B, 730 (2014):243-263,
https://doi.org/10.1016/j.physletb.2014.01.042 . .
2
146
144
172

Search for baryon number violation in top-quark decays

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5947
AB  - A search for baryon number violation (BNV) in top-quark decays is performed using pp collisions produced by the LHC at root s = 8 TeV. The top-quark decay considered in this search results in one light lepton (muon or electron), two jets, but no neutrino in the final state. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.5 fb(-1). The event selection is optimized for top quarks produced in pairs, with one undergoing the BNV decay and the other the standard model hadronic decay to three jets. No significant excess of events over the expected yield from standard model processes is observed. The upper limits at 95% confidence level on the branching fraction of the BNV top-quark decay are calculated to be 0.0016 and 0.0017 for the muon and the electron channels, respectively. Assuming lepton universality, an upper limit of 0.0015 results from the combination of the two channels. These limits are the first that have been obtained on a BNV process involving the top quark. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
T2  - Physics Letters B
T1  - Search for baryon number violation in top-quark decays
VL  - 731
SP  - 173
EP  - 196
DO  - 10.1016/j.physletb.2014.02.033
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2014",
abstract = "A search for baryon number violation (BNV) in top-quark decays is performed using pp collisions produced by the LHC at root s = 8 TeV. The top-quark decay considered in this search results in one light lepton (muon or electron), two jets, but no neutrino in the final state. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.5 fb(-1). The event selection is optimized for top quarks produced in pairs, with one undergoing the BNV decay and the other the standard model hadronic decay to three jets. No significant excess of events over the expected yield from standard model processes is observed. The upper limits at 95% confidence level on the branching fraction of the BNV top-quark decay are calculated to be 0.0016 and 0.0017 for the muon and the electron channels, respectively. Assuming lepton universality, an upper limit of 0.0015 results from the combination of the two channels. These limits are the first that have been obtained on a BNV process involving the top quark. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license",
journal = "Physics Letters B",
title = "Search for baryon number violation in top-quark decays",
volume = "731",
pages = "173-196",
doi = "10.1016/j.physletb.2014.02.033"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Milošević, J., Milenović, P.,& Reković, V.. (2014). Search for baryon number violation in top-quark decays. in Physics Letters B, 731, 173-196.
https://doi.org/10.1016/j.physletb.2014.02.033
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Milošević J, Milenović P, Reković V. Search for baryon number violation in top-quark decays. in Physics Letters B. 2014;731:173-196.
doi:10.1016/j.physletb.2014.02.033 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Search for baryon number violation in top-quark decays" in Physics Letters B, 731 (2014):173-196,
https://doi.org/10.1016/j.physletb.2014.02.033 . .
2
12
8
13

Measurement of higher-order harmonic azimuthal anisotropy in PbPb collisions at root s(NN)=2.76 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5952
AB  - Measurements are presented by the CMS Collaboration at the Large Hadron Collider (LHC) of the higher-order harmonic coefficients that describe the azimuthal anisotropy of charged particles emitted in root s(NN) = 2.76 TeV PbPb collisions. Expressed in terms of the Fourier components of the azimuthal distribution, the n = 3-6 harmonic coefficients are presented for charged particles as a function of their transverse momentum (0.3 LT p(T) LT 8.0 GeV/c), collision centrality (0%-70%), and pseudorapidity (|eta| LT 2.0). The data are analyzed using the event plane, multiparticle cumulant, and Lee-Yang zeros methods, which provide different sensitivities to initial-state fluctuations. Taken together with earlier LHC measurements of elliptic flow (n = 2), the results on higher-order harmonic coefficients develop a more complete picture of the collective motion in high-energy heavy-ion collisions and shed light on the properties of the produced medium.
T2  - Physical Review C
T1  - Measurement of higher-order harmonic azimuthal anisotropy in PbPb collisions at root s(NN)=2.76 TeV
VL  - 89
IS  - 4
DO  - 10.1103/PhysRevC.89.044906
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2014",
abstract = "Measurements are presented by the CMS Collaboration at the Large Hadron Collider (LHC) of the higher-order harmonic coefficients that describe the azimuthal anisotropy of charged particles emitted in root s(NN) = 2.76 TeV PbPb collisions. Expressed in terms of the Fourier components of the azimuthal distribution, the n = 3-6 harmonic coefficients are presented for charged particles as a function of their transverse momentum (0.3 LT p(T) LT 8.0 GeV/c), collision centrality (0%-70%), and pseudorapidity (|eta| LT 2.0). The data are analyzed using the event plane, multiparticle cumulant, and Lee-Yang zeros methods, which provide different sensitivities to initial-state fluctuations. Taken together with earlier LHC measurements of elliptic flow (n = 2), the results on higher-order harmonic coefficients develop a more complete picture of the collective motion in high-energy heavy-ion collisions and shed light on the properties of the produced medium.",
journal = "Physical Review C",
title = "Measurement of higher-order harmonic azimuthal anisotropy in PbPb collisions at root s(NN)=2.76 TeV",
volume = "89",
number = "4",
doi = "10.1103/PhysRevC.89.044906"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Milošević, J., Milenović, P.,& Reković, V.. (2014). Measurement of higher-order harmonic azimuthal anisotropy in PbPb collisions at root s(NN)=2.76 TeV. in Physical Review C, 89(4).
https://doi.org/10.1103/PhysRevC.89.044906
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Milošević J, Milenović P, Reković V. Measurement of higher-order harmonic azimuthal anisotropy in PbPb collisions at root s(NN)=2.76 TeV. in Physical Review C. 2014;89(4).
doi:10.1103/PhysRevC.89.044906 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Measurement of higher-order harmonic azimuthal anisotropy in PbPb collisions at root s(NN)=2.76 TeV" in Physical Review C, 89, no. 4 (2014),
https://doi.org/10.1103/PhysRevC.89.044906 . .
2
142
124
138

Event activity dependence of (nS) production in=5.02 TeV pPb and=2.76 TeV pp collisions

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5965
AB  - The production of (1S), (2S), and (3S) is investigated in pPb and pp collisions at centre-of-mass energies per nucleon pair of 5.02 TeV and 2.76 TeV, respectively. The datasets correspond to integrated luminosities of about 31 nb(-1) (pPb) and 5.4 pb(-1) (pp), collected in 2013 by the CMS experiment at the LHC. Upsilons that decay into muons are reconstructed within the rapidity interval |y (CM)| LT 1.93 in the nucleon-nucleon centre-of-mass frame. Their production is studied as a function of two measures of event activity, namely the charged-particle multiplicity measured in the pseudorapidity interval |eta| LT 2.4, and the sum of transverse energy deposited at forward pseudorapidity, 4.0 LT |eta| LT 5.2. The cross sections normalized by their event activity integrated values, (nS)/aEuro(nS)aEuro parts per thousand, are found to rise with both measures of the event activity in pp and pPb. In both collision systems, the ratios of the excited to the ground state cross sections, (nS)/ (1S), are found to decrease with the charged-particle multiplicity, while as a function of the transverse energy the variation is less pronounced. The event activity integrated double ratios, [(nS)/ (1S)](pPb) /[(nS)/ (1S)](pp), are also measured and found to be 0.83 +/- 0.05 (stat.) +/- 0.05 (syst.) and 0.71 +/- 0.08 (stat.) +/- 0.09 (syst.) for (2S) and (3S), respectively.
T2  - Journal of High Energy Physics
T1  - Event activity dependence of (nS) production in=5.02 TeV pPb and=2.76 TeV pp collisions
IS  - 4
DO  - 10.1007/JHEP04(2014)103
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2014",
abstract = "The production of (1S), (2S), and (3S) is investigated in pPb and pp collisions at centre-of-mass energies per nucleon pair of 5.02 TeV and 2.76 TeV, respectively. The datasets correspond to integrated luminosities of about 31 nb(-1) (pPb) and 5.4 pb(-1) (pp), collected in 2013 by the CMS experiment at the LHC. Upsilons that decay into muons are reconstructed within the rapidity interval |y (CM)| LT 1.93 in the nucleon-nucleon centre-of-mass frame. Their production is studied as a function of two measures of event activity, namely the charged-particle multiplicity measured in the pseudorapidity interval |eta| LT 2.4, and the sum of transverse energy deposited at forward pseudorapidity, 4.0 LT |eta| LT 5.2. The cross sections normalized by their event activity integrated values, (nS)/aEuro(nS)aEuro parts per thousand, are found to rise with both measures of the event activity in pp and pPb. In both collision systems, the ratios of the excited to the ground state cross sections, (nS)/ (1S), are found to decrease with the charged-particle multiplicity, while as a function of the transverse energy the variation is less pronounced. The event activity integrated double ratios, [(nS)/ (1S)](pPb) /[(nS)/ (1S)](pp), are also measured and found to be 0.83 +/- 0.05 (stat.) +/- 0.05 (syst.) and 0.71 +/- 0.08 (stat.) +/- 0.09 (syst.) for (2S) and (3S), respectively.",
journal = "Journal of High Energy Physics",
title = "Event activity dependence of (nS) production in=5.02 TeV pPb and=2.76 TeV pp collisions",
number = "4",
doi = "10.1007/JHEP04(2014)103"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Milošević, J., Milenović, P.,& Reković, V.. (2014). Event activity dependence of (nS) production in=5.02 TeV pPb and=2.76 TeV pp collisions. in Journal of High Energy Physics(4).
https://doi.org/10.1007/JHEP04(2014)103
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Milošević J, Milenović P, Reković V. Event activity dependence of (nS) production in=5.02 TeV pPb and=2.76 TeV pp collisions. in Journal of High Energy Physics. 2014;(4).
doi:10.1007/JHEP04(2014)103 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Event activity dependence of (nS) production in=5.02 TeV pPb and=2.76 TeV pp collisions" in Journal of High Energy Physics, no. 4 (2014),
https://doi.org/10.1007/JHEP04(2014)103 . .
2
70
91
89

Measurements of the t(t)Overbar charge asymmetry using the dilepton decay channel in pp collisions at root s=7 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5994
AB  - The t(t)Overbar charge asymmetry in proton-proton collisions root s = 7TeV is measured using the dilepton decay channel (ee, e mu, or mu mu). The data correspond to a total integrated luminosity of 5.0 fb(-1), collected by the CMS experiment at the LHC. The t(t) Overbar and lepton charge asymmetries, defined as the differences in absolute values of the rapidities between the reconstructed top quarks and antiquarks and of the pseudorapidities between the positive and negative leptons, respectively, are measured to be A(C) = -0.010 +/- 0.017 (stat.) +/- 0.008 (syst.) and A(C)(lep) = 0.009 +/- 0.010 (stat.) +/- 0.006 (syst.). The lepton charge asymmetry is also measured as a function of the invariant mass, rapidity, and transverse momentum of the system. All measurements are consistent with the expectations of the standard model.
T2  - Journal of High Energy Physics
T1  - Measurements of the t(t)Overbar charge asymmetry using the dilepton decay channel in pp collisions at root s=7 TeV
IS  - 4
DO  - 10.1007/JHEP04(2014)191
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2014",
abstract = "The t(t)Overbar charge asymmetry in proton-proton collisions root s = 7TeV is measured using the dilepton decay channel (ee, e mu, or mu mu). The data correspond to a total integrated luminosity of 5.0 fb(-1), collected by the CMS experiment at the LHC. The t(t) Overbar and lepton charge asymmetries, defined as the differences in absolute values of the rapidities between the reconstructed top quarks and antiquarks and of the pseudorapidities between the positive and negative leptons, respectively, are measured to be A(C) = -0.010 +/- 0.017 (stat.) +/- 0.008 (syst.) and A(C)(lep) = 0.009 +/- 0.010 (stat.) +/- 0.006 (syst.). The lepton charge asymmetry is also measured as a function of the invariant mass, rapidity, and transverse momentum of the system. All measurements are consistent with the expectations of the standard model.",
journal = "Journal of High Energy Physics",
title = "Measurements of the t(t)Overbar charge asymmetry using the dilepton decay channel in pp collisions at root s=7 TeV",
number = "4",
doi = "10.1007/JHEP04(2014)191"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Milošević, J., Milenović, P.,& Reković, V.. (2014). Measurements of the t(t)Overbar charge asymmetry using the dilepton decay channel in pp collisions at root s=7 TeV. in Journal of High Energy Physics(4).
https://doi.org/10.1007/JHEP04(2014)191
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Milošević J, Milenović P, Reković V. Measurements of the t(t)Overbar charge asymmetry using the dilepton decay channel in pp collisions at root s=7 TeV. in Journal of High Energy Physics. 2014;(4).
doi:10.1007/JHEP04(2014)191 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Measurements of the t(t)Overbar charge asymmetry using the dilepton decay channel in pp collisions at root s=7 TeV" in Journal of High Energy Physics, no. 4 (2014),
https://doi.org/10.1007/JHEP04(2014)191 . .
2
23
40
28

Search for Top-Quark Partners with Charge 5/3 in the Same-Sign Dilepton Final State

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5995
AB  - A search for the production of heavy partners of the top quark with charge 5/3 is performed in events with a pair of same-sign leptons. The data sample corresponds to an integrated luminosity of 19.5 fb(-1) and was collected at root s = 8 TeV by the CMS experiment. No significant excess is observed in the data above the expected background, and the existence of top-quark partners with masses below 800 GeV is excluded at a 95% confidence level, assuming they decay exclusively to tW. This is the first limit on these particles from the LHC, and it is significantly more restrictive than previous limits.
T2  - Physical Review Letters
T1  - Search for Top-Quark Partners with Charge 5/3 in the Same-Sign Dilepton Final State
VL  - 112
IS  - 17
DO  - 10.1103/PhysRevLett.112.171801
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2014",
abstract = "A search for the production of heavy partners of the top quark with charge 5/3 is performed in events with a pair of same-sign leptons. The data sample corresponds to an integrated luminosity of 19.5 fb(-1) and was collected at root s = 8 TeV by the CMS experiment. No significant excess is observed in the data above the expected background, and the existence of top-quark partners with masses below 800 GeV is excluded at a 95% confidence level, assuming they decay exclusively to tW. This is the first limit on these particles from the LHC, and it is significantly more restrictive than previous limits.",
journal = "Physical Review Letters",
title = "Search for Top-Quark Partners with Charge 5/3 in the Same-Sign Dilepton Final State",
volume = "112",
number = "17",
doi = "10.1103/PhysRevLett.112.171801"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Milošević, J., Milenović, P.,& Reković, V.. (2014). Search for Top-Quark Partners with Charge 5/3 in the Same-Sign Dilepton Final State. in Physical Review Letters, 112(17).
https://doi.org/10.1103/PhysRevLett.112.171801
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Milošević J, Milenović P, Reković V. Search for Top-Quark Partners with Charge 5/3 in the Same-Sign Dilepton Final State. in Physical Review Letters. 2014;112(17).
doi:10.1103/PhysRevLett.112.171801 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Search for Top-Quark Partners with Charge 5/3 in the Same-Sign Dilepton Final State" in Physical Review Letters, 112, no. 17 (2014),
https://doi.org/10.1103/PhysRevLett.112.171801 . .
13
66
73
88

Measurement of the W gamma and Z gamma inclusive cross sections in pp collisions at root s=7 TeV and limits on anomalous triple gauge boson couplings

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Krpić, D.; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Krpić, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5996
AB  - Measurements of W gamma and Z gamma production in proton-proton collisions at root s = 7 TeV are used to extract limits on anomalous triple gauge couplings. The results are based on data recorded by the CMS experiment at the LHC that correspond to an integrated luminosity of 5.0 fb(-1). The cross sections are measured for photon transverse momenta p(T)(gamma) GT 15 GeV, and for separations between photons and final-state charged leptons in the pseudorapidity-azimuthal plane of Delta R(l,gamma) GT 0.7 in l nu gamma and ll gamma final states, where l refers either to an electron or a muon. A dilepton invariant mass requirement of m(ll) GT 50 GeV is imposed for the Z gamma process. No deviations are observed relative to predictions from the standard model, and limits are set on anomalous WW gamma, ZZ gamma, and Z gamma gamma triple gauge couplings.
T2  - Physical Review D
T1  - Measurement of the W gamma and Z gamma inclusive cross sections in pp collisions at root s=7 TeV and limits on anomalous triple gauge boson couplings
VL  - 89
IS  - 9
DO  - 10.1103/PhysRevD.89.092005
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Krpić, D. and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2014",
abstract = "Measurements of W gamma and Z gamma production in proton-proton collisions at root s = 7 TeV are used to extract limits on anomalous triple gauge couplings. The results are based on data recorded by the CMS experiment at the LHC that correspond to an integrated luminosity of 5.0 fb(-1). The cross sections are measured for photon transverse momenta p(T)(gamma) GT 15 GeV, and for separations between photons and final-state charged leptons in the pseudorapidity-azimuthal plane of Delta R(l,gamma) GT 0.7 in l nu gamma and ll gamma final states, where l refers either to an electron or a muon. A dilepton invariant mass requirement of m(ll) GT 50 GeV is imposed for the Z gamma process. No deviations are observed relative to predictions from the standard model, and limits are set on anomalous WW gamma, ZZ gamma, and Z gamma gamma triple gauge couplings.",
journal = "Physical Review D",
title = "Measurement of the W gamma and Z gamma inclusive cross sections in pp collisions at root s=7 TeV and limits on anomalous triple gauge boson couplings",
volume = "89",
number = "9",
doi = "10.1103/PhysRevD.89.092005"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Krpić, D., Milošević, J., Milenović, P.,& Reković, V.. (2014). Measurement of the W gamma and Z gamma inclusive cross sections in pp collisions at root s=7 TeV and limits on anomalous triple gauge boson couplings. in Physical Review D, 89(9).
https://doi.org/10.1103/PhysRevD.89.092005
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Krpić D, Milošević J, Milenović P, Reković V. Measurement of the W gamma and Z gamma inclusive cross sections in pp collisions at root s=7 TeV and limits on anomalous triple gauge boson couplings. in Physical Review D. 2014;89(9).
doi:10.1103/PhysRevD.89.092005 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Krpić, D., Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Measurement of the W gamma and Z gamma inclusive cross sections in pp collisions at root s=7 TeV and limits on anomalous triple gauge boson couplings" in Physical Review D, 89, no. 9 (2014),
https://doi.org/10.1103/PhysRevD.89.092005 . .
2
37
23
63

Search for Top Squark and Higgsino Production Using Diphoton Higgs Boson Decays

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5997
AB  - Results are presented of a search for a natural supersymmetry scenario with gauge mediated symmetry breaking. It is assumed that only the supersymmetric partners of the top quark (the top squark) and the Higgs boson (Higgsino) are accessible. Events are examined in which there are two photons forming a Higgs boson candidate, and at least two b-quark jets. In 19.7 fb(-1) of proton-proton collision data at root s = 8 TeV, recorded in the CMS experiment, no evidence of a signal is found and lower limits at the 95% confidence level are set, excluding the top squark mass below 360 to 410 GeV, depending on the Higgsino mass.
T2  - Physical Review Letters
T1  - Search for Top Squark and Higgsino Production Using Diphoton Higgs Boson Decays
VL  - 112
IS  - 16
DO  - 10.1103/PhysRevLett.112.161802
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2014",
abstract = "Results are presented of a search for a natural supersymmetry scenario with gauge mediated symmetry breaking. It is assumed that only the supersymmetric partners of the top quark (the top squark) and the Higgs boson (Higgsino) are accessible. Events are examined in which there are two photons forming a Higgs boson candidate, and at least two b-quark jets. In 19.7 fb(-1) of proton-proton collision data at root s = 8 TeV, recorded in the CMS experiment, no evidence of a signal is found and lower limits at the 95% confidence level are set, excluding the top squark mass below 360 to 410 GeV, depending on the Higgsino mass.",
journal = "Physical Review Letters",
title = "Search for Top Squark and Higgsino Production Using Diphoton Higgs Boson Decays",
volume = "112",
number = "16",
doi = "10.1103/PhysRevLett.112.161802"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Milošević, J., Milenović, P.,& Reković, V.. (2014). Search for Top Squark and Higgsino Production Using Diphoton Higgs Boson Decays. in Physical Review Letters, 112(16).
https://doi.org/10.1103/PhysRevLett.112.161802
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Milošević J, Milenović P, Reković V. Search for Top Squark and Higgsino Production Using Diphoton Higgs Boson Decays. in Physical Review Letters. 2014;112(16).
doi:10.1103/PhysRevLett.112.161802 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Search for Top Squark and Higgsino Production Using Diphoton Higgs Boson Decays" in Physical Review Letters, 112, no. 16 (2014),
https://doi.org/10.1103/PhysRevLett.112.161802 . .
4
39
47
41

Measurement of the properties of a Higgs boson in the four-lepton final state

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5999
AB  - The properties of a Higgs boson candidate are measured in the H - GT ZZ - GT 4l decay channel, with l = e, mu, using data from pp collisions corresponding to an integrated luminosity of 5.1 fb(-1) at the center-of-mass energy of root s = 7 TeV and 19.7 fb(-1) at ffiffiffi root s = 8 TeV, recorded with the CMS detector at the LHC. The new boson is observed as a narrow resonance with a local significance of 6.8 standard deviations, a measured mass of 125.6 +/- 0.4(stat) +/- 0.2(syst) GeV, and a total width LT = 3.4 GeV at the 95% confidence level. The production cross section of the new boson times its branching fraction to four leptons is measured to be 0.93(-0.23)(+0.26) (stat)(-0.09)(+0.13) (syst) times that predicted by the standard model. Its spin-parity properties are found to be consistent with the expectations for the standard-model Higgs boson. The hypotheses of a pseudoscalar and all tested spin-1 boson hypotheses are excluded at the 99% confidence level or higher. All tested spin-2 boson hypotheses are excluded at the 95% confidence level or higher.
T2  - Physical Review D
T1  - Measurement of the properties of a Higgs boson in the four-lepton final state
VL  - 89
IS  - 9
DO  - 10.1103/PhysRevD.89.092007
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2014",
abstract = "The properties of a Higgs boson candidate are measured in the H - GT ZZ - GT 4l decay channel, with l = e, mu, using data from pp collisions corresponding to an integrated luminosity of 5.1 fb(-1) at the center-of-mass energy of root s = 7 TeV and 19.7 fb(-1) at ffiffiffi root s = 8 TeV, recorded with the CMS detector at the LHC. The new boson is observed as a narrow resonance with a local significance of 6.8 standard deviations, a measured mass of 125.6 +/- 0.4(stat) +/- 0.2(syst) GeV, and a total width LT = 3.4 GeV at the 95% confidence level. The production cross section of the new boson times its branching fraction to four leptons is measured to be 0.93(-0.23)(+0.26) (stat)(-0.09)(+0.13) (syst) times that predicted by the standard model. Its spin-parity properties are found to be consistent with the expectations for the standard-model Higgs boson. The hypotheses of a pseudoscalar and all tested spin-1 boson hypotheses are excluded at the 99% confidence level or higher. All tested spin-2 boson hypotheses are excluded at the 95% confidence level or higher.",
journal = "Physical Review D",
title = "Measurement of the properties of a Higgs boson in the four-lepton final state",
volume = "89",
number = "9",
doi = "10.1103/PhysRevD.89.092007"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Milošević, J., Milenović, P.,& Reković, V.. (2014). Measurement of the properties of a Higgs boson in the four-lepton final state. in Physical Review D, 89(9).
https://doi.org/10.1103/PhysRevD.89.092007
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Milošević J, Milenović P, Reković V. Measurement of the properties of a Higgs boson in the four-lepton final state. in Physical Review D. 2014;89(9).
doi:10.1103/PhysRevD.89.092007 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Measurement of the properties of a Higgs boson in the four-lepton final state" in Physical Review D, 89, no. 9 (2014),
https://doi.org/10.1103/PhysRevD.89.092007 . .
28
303
408
344

Measurement of Inclusive W and Z Boson Production Cross Sections in pp Collisions at root s=8 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Krpić, D.; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Krpić, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/6000
AB  - A measurement of total and fiducial inclusive W and Z boson production cross sections in pp collisions at root s = 8 TeV is presented. Electron and muon final states are analyzed in a data sample collected with the CMS detector corresponding to an integrated luminosity of 18.2 +/- 0.5 pb(-1). The measured total inclusive cross sections times branching fractions are sigma(pp - GT WX) x B(W - GT l upsilon) = 12.21 +/- 0.03(stat) +/- 0.24(syst) +/- 0.32(lum) nb and sigma(pp - GT ZX) x B(Z - GT l(+)l(-)) = 1.15 +/- 0.01(stat) +/- 0.02(syst) +/- 0.03(lum) nb for the dilepton mass in the range of 60-120 GeV. The measured values agree with next-to-next-to-leading-order QCD cross section calculations. Ratios of cross sections are reported with a precision of 2%. This is the first measurement of inclusive W and Z boson production in proton-proton collisions at root s = 8 TeV.
T2  - Physical Review Letters
T1  - Measurement of Inclusive W and Z Boson Production Cross Sections in pp Collisions at root s=8 TeV
VL  - 112
IS  - 19
DO  - 10.1103/PhysRevLett.112.191802
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Krpić, D. and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2014",
abstract = "A measurement of total and fiducial inclusive W and Z boson production cross sections in pp collisions at root s = 8 TeV is presented. Electron and muon final states are analyzed in a data sample collected with the CMS detector corresponding to an integrated luminosity of 18.2 +/- 0.5 pb(-1). The measured total inclusive cross sections times branching fractions are sigma(pp - GT WX) x B(W - GT l upsilon) = 12.21 +/- 0.03(stat) +/- 0.24(syst) +/- 0.32(lum) nb and sigma(pp - GT ZX) x B(Z - GT l(+)l(-)) = 1.15 +/- 0.01(stat) +/- 0.02(syst) +/- 0.03(lum) nb for the dilepton mass in the range of 60-120 GeV. The measured values agree with next-to-next-to-leading-order QCD cross section calculations. Ratios of cross sections are reported with a precision of 2%. This is the first measurement of inclusive W and Z boson production in proton-proton collisions at root s = 8 TeV.",
journal = "Physical Review Letters",
title = "Measurement of Inclusive W and Z Boson Production Cross Sections in pp Collisions at root s=8 TeV",
volume = "112",
number = "19",
doi = "10.1103/PhysRevLett.112.191802"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Krpić, D., Milošević, J., Milenović, P.,& Reković, V.. (2014). Measurement of Inclusive W and Z Boson Production Cross Sections in pp Collisions at root s=8 TeV. in Physical Review Letters, 112(19).
https://doi.org/10.1103/PhysRevLett.112.191802
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Krpić D, Milošević J, Milenović P, Reković V. Measurement of Inclusive W and Z Boson Production Cross Sections in pp Collisions at root s=8 TeV. in Physical Review Letters. 2014;112(19).
doi:10.1103/PhysRevLett.112.191802 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Krpić, D., Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Measurement of Inclusive W and Z Boson Production Cross Sections in pp Collisions at root s=8 TeV" in Physical Review Letters, 112, no. 19 (2014),
https://doi.org/10.1103/PhysRevLett.112.191802 . .
4
81
73
84

Search for Flavor-Changing Neutral Currents in Top-Quark Decays t - GT Zq in pp Collisions at root s=8 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/6003
AB  - A search for flavor-changing neutral currents in top-quark decays t - GT Zq is performed in events produced from the decay chain (tt) over bar - GT Zq + Wb, where both vector bosons decay leptonically, producing a final state with three leptons (electrons or muons). A data set collected with the CMS detector at the LHC is used, corresponding to an integrated luminosity of 19.7 fb(-1) of proton-proton collisions at a center-of-mass energy of 8 TeV. No excess is seen in the observed number of events relative to the standard model prediction; thus, no evidence for flavor-changing neutral currents in top-quark decays is found. A combination with a previous search at 7 TeV excludes a t. Zq branching fraction greater than 0.05% at the 95% confidence level.
T2  - Physical Review Letters
T1  - Search for Flavor-Changing Neutral Currents in Top-Quark Decays t - GT Zq in pp Collisions at root s=8 TeV
VL  - 112
IS  - 17
DO  - 10.1103/PhysRevLett.112.171802
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2014",
abstract = "A search for flavor-changing neutral currents in top-quark decays t - GT Zq is performed in events produced from the decay chain (tt) over bar - GT Zq + Wb, where both vector bosons decay leptonically, producing a final state with three leptons (electrons or muons). A data set collected with the CMS detector at the LHC is used, corresponding to an integrated luminosity of 19.7 fb(-1) of proton-proton collisions at a center-of-mass energy of 8 TeV. No excess is seen in the observed number of events relative to the standard model prediction; thus, no evidence for flavor-changing neutral currents in top-quark decays is found. A combination with a previous search at 7 TeV excludes a t. Zq branching fraction greater than 0.05% at the 95% confidence level.",
journal = "Physical Review Letters",
title = "Search for Flavor-Changing Neutral Currents in Top-Quark Decays t - GT Zq in pp Collisions at root s=8 TeV",
volume = "112",
number = "17",
doi = "10.1103/PhysRevLett.112.171802"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Milošević, J., Milenović, P.,& Reković, V.. (2014). Search for Flavor-Changing Neutral Currents in Top-Quark Decays t - GT Zq in pp Collisions at root s=8 TeV. in Physical Review Letters, 112(17).
https://doi.org/10.1103/PhysRevLett.112.171802
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Milošević J, Milenović P, Reković V. Search for Flavor-Changing Neutral Currents in Top-Quark Decays t - GT Zq in pp Collisions at root s=8 TeV. in Physical Review Letters. 2014;112(17).
doi:10.1103/PhysRevLett.112.171802 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Search for Flavor-Changing Neutral Currents in Top-Quark Decays t - GT Zq in pp Collisions at root s=8 TeV" in Physical Review Letters, 112, no. 17 (2014),
https://doi.org/10.1103/PhysRevLett.112.171802 . .
3
51
84
84

Measurements of t(t)over-bar Spin Correlations and Top-Quark Polarization Using Dilepton Final States in pp Collisions at root s=7 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/6004
AB  - Spin correlations and polarization in the top quark-antiquark system are measured using dilepton final states produced in pp collisions at the LHC at root s = 7 TeV. The data correspond to an integrated luminosity of 5.0 fb(-1) collected with the CMS detector. The measurements are performed using events with two oppositely charged leptons (electrons or muons), a significant imbalance in transverse momentum, and two or more jets, where at least one of the jets is identified as originating from a b quark. The spin correlations and polarization are measured through asymmetries in angular distributions of the two selected leptons, unfolded to the parton level. All measurements are found to be in agreement with predictions of the standard model.
T2  - Physical Review Letters
T1  - Measurements of t(t)over-bar Spin Correlations and Top-Quark Polarization Using Dilepton Final States in pp Collisions at root s=7 TeV
VL  - 112
IS  - 18
DO  - 10.1103/PhysRevLett.112.182001
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2014",
abstract = "Spin correlations and polarization in the top quark-antiquark system are measured using dilepton final states produced in pp collisions at the LHC at root s = 7 TeV. The data correspond to an integrated luminosity of 5.0 fb(-1) collected with the CMS detector. The measurements are performed using events with two oppositely charged leptons (electrons or muons), a significant imbalance in transverse momentum, and two or more jets, where at least one of the jets is identified as originating from a b quark. The spin correlations and polarization are measured through asymmetries in angular distributions of the two selected leptons, unfolded to the parton level. All measurements are found to be in agreement with predictions of the standard model.",
journal = "Physical Review Letters",
title = "Measurements of t(t)over-bar Spin Correlations and Top-Quark Polarization Using Dilepton Final States in pp Collisions at root s=7 TeV",
volume = "112",
number = "18",
doi = "10.1103/PhysRevLett.112.182001"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Milošević, J., Milenović, P.,& Reković, V.. (2014). Measurements of t(t)over-bar Spin Correlations and Top-Quark Polarization Using Dilepton Final States in pp Collisions at root s=7 TeV. in Physical Review Letters, 112(18).
https://doi.org/10.1103/PhysRevLett.112.182001
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Milošević J, Milenović P, Reković V. Measurements of t(t)over-bar Spin Correlations and Top-Quark Polarization Using Dilepton Final States in pp Collisions at root s=7 TeV. in Physical Review Letters. 2014;112(18).
doi:10.1103/PhysRevLett.112.182001 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Measurements of t(t)over-bar Spin Correlations and Top-Quark Polarization Using Dilepton Final States in pp Collisions at root s=7 TeV" in Physical Review Letters, 112, no. 18 (2014),
https://doi.org/10.1103/PhysRevLett.112.182001 . .
4
52
50
63

Search for supersymmetry in pp collisions at root s=8 TeV in events with a single lepton, large jet multiplicity, and multiple b jets

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/6012
AB  - Results are reported from a search for supersymmetry in pp collisions at a center-of-mass energy of 8 TeV, based on events with a single isolated lepton (electron or muon) and multiple jets, at least two of which are identified as b jets. The data sample corresponds to an integrated luminosity of 19.3 fb(-1) recorded by the CMS experiment at the LHC in 2012. The search is motivated by supersymmetric models that involve strong-production processes and cascade decays of new particles. The resulting final states contain multiple jets as well as missing transverse momentum from weakly interacting particles. The event yields, observed across several kinematic regions, are consistent with the expectations from standard model processes. The results are interpreted in the context of simplified supersymmetric scenarios with pair production of gluinos, where each gluino decays to a top quark-antiquark pair and the lightest neutralino. For the case of decays via virtual top squarks, gluinos with a mass smaller than 1.26 TeV are excluded for low neutralino masses. (C) 2014 The Authors. Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Search for supersymmetry in pp collisions at root s=8 TeV in events with a single lepton, large jet multiplicity, and multiple b jets
VL  - 733
SP  - 328
EP  - 353
DO  - 10.1016/j.physletb.2014.04.023
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2014",
abstract = "Results are reported from a search for supersymmetry in pp collisions at a center-of-mass energy of 8 TeV, based on events with a single isolated lepton (electron or muon) and multiple jets, at least two of which are identified as b jets. The data sample corresponds to an integrated luminosity of 19.3 fb(-1) recorded by the CMS experiment at the LHC in 2012. The search is motivated by supersymmetric models that involve strong-production processes and cascade decays of new particles. The resulting final states contain multiple jets as well as missing transverse momentum from weakly interacting particles. The event yields, observed across several kinematic regions, are consistent with the expectations from standard model processes. The results are interpreted in the context of simplified supersymmetric scenarios with pair production of gluinos, where each gluino decays to a top quark-antiquark pair and the lightest neutralino. For the case of decays via virtual top squarks, gluinos with a mass smaller than 1.26 TeV are excluded for low neutralino masses. (C) 2014 The Authors. Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Search for supersymmetry in pp collisions at root s=8 TeV in events with a single lepton, large jet multiplicity, and multiple b jets",
volume = "733",
pages = "328-353",
doi = "10.1016/j.physletb.2014.04.023"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Milošević, J., Milenović, P.,& Reković, V.. (2014). Search for supersymmetry in pp collisions at root s=8 TeV in events with a single lepton, large jet multiplicity, and multiple b jets. in Physics Letters B, 733, 328-353.
https://doi.org/10.1016/j.physletb.2014.04.023
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Milošević J, Milenović P, Reković V. Search for supersymmetry in pp collisions at root s=8 TeV in events with a single lepton, large jet multiplicity, and multiple b jets. in Physics Letters B. 2014;733:328-353.
doi:10.1016/j.physletb.2014.04.023 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Search for supersymmetry in pp collisions at root s=8 TeV in events with a single lepton, large jet multiplicity, and multiple b jets" in Physics Letters B, 733 (2014):328-353,
https://doi.org/10.1016/j.physletb.2014.04.023 . .
2
57
65
53

Measurement of associated W plus charm production in pp collisions at root s=7 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Krpić, D.; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Krpić, D.
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/6014
AB  - Measurements are presented of the associated production of a W boson and a charm-quark jet (W + c) in pp collisions at a center-of-mass energy of 7 TeV. The analysis is conducted with a data sample corresponding to a total integrated luminosity of 5 fb(-1), collected by the CMS detector at the LHC. W boson candidates are identified by their decay into a charged lepton (muon or electron) and a neutrino. The W + c measurements are performed for charm-quark jets in the kinematic region p(T)(jet) GT 25 GeV, vertical bar eta(jet)vertical bar LT 2.5, for two different thresholds for the transverse momentum of the lepton from the W-boson decay, and in the pseudorapidity range eta(l) LT 2.1. Hadronic and inclusive semileptonic decays of charm hadrons are used to measure the following total cross sections: sigma(pp - GT W + c + X) x B (W - GT lv) = 107.7 +/- 3.3 (stat.) +/- 6.9 (syst.) pb (p(T)(l) GT 25 GeV) and sigma (pp - GT W + c + X) x B (W - GT lv) = 84.1 +/- 2.0 (stat.) +/- 4.9 (syst.) pb (p(T)(l) GT 35 GeV), and the cross section ratios sigma(pp - GT W+ + (c) over bar + X)/sigma(pp - GT W- + c + X) = 0.954 +/- 0.025 (stat.) +/- 0.004 (syst.) (p(T)(l) GT 25 GeV) and sigma(pp - GT W+ + (c) over bar + X)/sigma(pp - GT W- + c + X) = 0.938 +/- 0.019 (stat.) +/- 0.006 (syst.) (p(T)(l) GT 35 GeV). Cross sections and cross section ratios are also measured differentially with respect to the absolute value of the pseudorapidity of the lepton from the W-boson decay. These are the first measurements from the LHC directly sensitive to the strange quark and antiquark content of the proton. Results are compared with theoretical predictions and are consistent with the predictions based on global fits of parton distribution functions.
T2  - Journal of High Energy Physics
T1  - Measurement of associated W plus charm production in pp collisions at root s=7 TeV
IS  - 2
DO  - 10.1007/JHEP02(2014)013
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Krpić, D. and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2014",
abstract = "Measurements are presented of the associated production of a W boson and a charm-quark jet (W + c) in pp collisions at a center-of-mass energy of 7 TeV. The analysis is conducted with a data sample corresponding to a total integrated luminosity of 5 fb(-1), collected by the CMS detector at the LHC. W boson candidates are identified by their decay into a charged lepton (muon or electron) and a neutrino. The W + c measurements are performed for charm-quark jets in the kinematic region p(T)(jet) GT 25 GeV, vertical bar eta(jet)vertical bar LT 2.5, for two different thresholds for the transverse momentum of the lepton from the W-boson decay, and in the pseudorapidity range eta(l) LT 2.1. Hadronic and inclusive semileptonic decays of charm hadrons are used to measure the following total cross sections: sigma(pp - GT W + c + X) x B (W - GT lv) = 107.7 +/- 3.3 (stat.) +/- 6.9 (syst.) pb (p(T)(l) GT 25 GeV) and sigma (pp - GT W + c + X) x B (W - GT lv) = 84.1 +/- 2.0 (stat.) +/- 4.9 (syst.) pb (p(T)(l) GT 35 GeV), and the cross section ratios sigma(pp - GT W+ + (c) over bar + X)/sigma(pp - GT W- + c + X) = 0.954 +/- 0.025 (stat.) +/- 0.004 (syst.) (p(T)(l) GT 25 GeV) and sigma(pp - GT W+ + (c) over bar + X)/sigma(pp - GT W- + c + X) = 0.938 +/- 0.019 (stat.) +/- 0.006 (syst.) (p(T)(l) GT 35 GeV). Cross sections and cross section ratios are also measured differentially with respect to the absolute value of the pseudorapidity of the lepton from the W-boson decay. These are the first measurements from the LHC directly sensitive to the strange quark and antiquark content of the proton. Results are compared with theoretical predictions and are consistent with the predictions based on global fits of parton distribution functions.",
journal = "Journal of High Energy Physics",
title = "Measurement of associated W plus charm production in pp collisions at root s=7 TeV",
number = "2",
doi = "10.1007/JHEP02(2014)013"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Krpić, D., Milošević, J., Milenović, P.,& Reković, V.. (2014). Measurement of associated W plus charm production in pp collisions at root s=7 TeV. in Journal of High Energy Physics(2).
https://doi.org/10.1007/JHEP02(2014)013
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Krpić D, Milošević J, Milenović P, Reković V. Measurement of associated W plus charm production in pp collisions at root s=7 TeV. in Journal of High Energy Physics. 2014;(2).
doi:10.1007/JHEP02(2014)013 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Krpić, D., Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Measurement of associated W plus charm production in pp collisions at root s=7 TeV" in Journal of High Energy Physics, no. 2 (2014),
https://doi.org/10.1007/JHEP02(2014)013 . .
2
60
33
83

Evidence for the 125 GeV Higgs boson decaying to a pair of tau leptons

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/6020
AB  - A search for a standard model Higgs boson decaying into a pair of tau leptons is performed using events recorded by the CMS experiment at the LHC in 2011 and 2012. The dataset corresponds to an integrated luminosity of 4.9 fb(-1) at a centre-of-mass energy of 7 TeV and 19.7 fb(-1) at 8 TeV. Each tau lepton decays hadronically or leptonically to an electron or a muon, leading to six different final states for the tau-lepton pair, all considered in this analysis. An excess of events is observed over the expected background contributions, with a local significance larger than 3 standard deviations for m (H) values between 115 and 130 GeV. The best fit of the observed H - GT tau tau signal cross section times branching fraction for m(H) = 125 GeV is 0.78 +/- 0.27 times the standard model expectation. These observations constitute evidence for the 125 GeV Higgs boson decaying to a pair of tau leptons.
T2  - Journal of High Energy Physics
T1  - Evidence for the 125 GeV Higgs boson decaying to a pair of tau leptons
IS  - 5
DO  - 10.1007/JHEP05(2014)104
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2014",
abstract = "A search for a standard model Higgs boson decaying into a pair of tau leptons is performed using events recorded by the CMS experiment at the LHC in 2011 and 2012. The dataset corresponds to an integrated luminosity of 4.9 fb(-1) at a centre-of-mass energy of 7 TeV and 19.7 fb(-1) at 8 TeV. Each tau lepton decays hadronically or leptonically to an electron or a muon, leading to six different final states for the tau-lepton pair, all considered in this analysis. An excess of events is observed over the expected background contributions, with a local significance larger than 3 standard deviations for m (H) values between 115 and 130 GeV. The best fit of the observed H - GT tau tau signal cross section times branching fraction for m(H) = 125 GeV is 0.78 +/- 0.27 times the standard model expectation. These observations constitute evidence for the 125 GeV Higgs boson decaying to a pair of tau leptons.",
journal = "Journal of High Energy Physics",
title = "Evidence for the 125 GeV Higgs boson decaying to a pair of tau leptons",
number = "5",
doi = "10.1007/JHEP05(2014)104"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Milošević, J., Milenović, P.,& Reković, V.. (2014). Evidence for the 125 GeV Higgs boson decaying to a pair of tau leptons. in Journal of High Energy Physics(5).
https://doi.org/10.1007/JHEP05(2014)104
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Milošević J, Milenović P, Reković V. Evidence for the 125 GeV Higgs boson decaying to a pair of tau leptons. in Journal of High Energy Physics. 2014;(5).
doi:10.1007/JHEP05(2014)104 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Evidence for the 125 GeV Higgs boson decaying to a pair of tau leptons" in Journal of High Energy Physics, no. 5 (2014),
https://doi.org/10.1007/JHEP05(2014)104 . .
44
163
234
208

Measurement of four-jet production in proton-proton collisions at root s=7 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/6024
AB  - Measurements of the differential cross sections for the production of exactly four jets in proton-proton collisions are presented as a function of the transverse momentum p(T) and pseudorapidity eta, together with the correlations in azimuthal angle and the p(T) balance among the jets. The data sample was collected in 2010 at a center-of-mass energy of 7 TeV with the CMS detector at the LHC, with an integrated luminosity of 36 pb(-1). The cross section for exactly four jets, with two hard jets of p(T) GT 50 GeV each, together with two jets of p(T) GT 20 GeV each, within vertical bar eta vertical bar LT 4.7 is measured to be sigma = 330 +/- 5(stat.) +/- 45(syst.) nb. It is found that fixed-order matrix element calculations including parton showers describe the measured differential cross sections in some regions of phase space only, and that adding contributions from double parton scattering brings the Monte Carlo predictions closer to the data.
T2  - Physical Review D
T1  - Measurement of four-jet production in proton-proton collisions at root s=7 TeV
VL  - 89
IS  - 9
DO  - 10.1103/PhysRevD.89.092010
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2014",
abstract = "Measurements of the differential cross sections for the production of exactly four jets in proton-proton collisions are presented as a function of the transverse momentum p(T) and pseudorapidity eta, together with the correlations in azimuthal angle and the p(T) balance among the jets. The data sample was collected in 2010 at a center-of-mass energy of 7 TeV with the CMS detector at the LHC, with an integrated luminosity of 36 pb(-1). The cross section for exactly four jets, with two hard jets of p(T) GT 50 GeV each, together with two jets of p(T) GT 20 GeV each, within vertical bar eta vertical bar LT 4.7 is measured to be sigma = 330 +/- 5(stat.) +/- 45(syst.) nb. It is found that fixed-order matrix element calculations including parton showers describe the measured differential cross sections in some regions of phase space only, and that adding contributions from double parton scattering brings the Monte Carlo predictions closer to the data.",
journal = "Physical Review D",
title = "Measurement of four-jet production in proton-proton collisions at root s=7 TeV",
volume = "89",
number = "9",
doi = "10.1103/PhysRevD.89.092010"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Milošević, J., Milenović, P.,& Reković, V.. (2014). Measurement of four-jet production in proton-proton collisions at root s=7 TeV. in Physical Review D, 89(9).
https://doi.org/10.1103/PhysRevD.89.092010
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Milošević J, Milenović P, Reković V. Measurement of four-jet production in proton-proton collisions at root s=7 TeV. in Physical Review D. 2014;89(9).
doi:10.1103/PhysRevD.89.092010 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Measurement of four-jet production in proton-proton collisions at root s=7 TeV" in Physical Review D, 89, no. 9 (2014),
https://doi.org/10.1103/PhysRevD.89.092010 . .
2
33
23
36

Search for new physics in events with same-sign dileptons and jets in pp collisions at root s=8 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/6027
AB  - A search for new physics is performed based on events with jets and a pair of isolated, same-sign leptons. The results are obtained using a sample of proton-proton collision data collected by the CMS experiment at a centre-of-mass energy of 8TeV at the LHC, corresponding to an integrated luminosity of 19.5 fb(-1). In order to be sensitive to a wide variety of possible signals beyond the standard model, multiple search regions defined by the missing transverse energy, the hadronic energy, the number of jets and b-quark jets, and the transverse momenta of the leptons in the events are considered. No excess above the standard model background expectation is observed and constraints are set on a number of models for new physics, as well as on the same-sign top-quark pair and quadruple-top-quark production cross sections. Information on event selection efficiencies is also provided, so that the results can be used to confront an even broader class of new physics models.
T2  - Journal of High Energy Physics
T1  - Search for new physics in events with same-sign dileptons and jets in pp collisions at root s=8 TeV
IS  - 1
DO  - 10.1007/JHEP01(2014)163
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2014",
abstract = "A search for new physics is performed based on events with jets and a pair of isolated, same-sign leptons. The results are obtained using a sample of proton-proton collision data collected by the CMS experiment at a centre-of-mass energy of 8TeV at the LHC, corresponding to an integrated luminosity of 19.5 fb(-1). In order to be sensitive to a wide variety of possible signals beyond the standard model, multiple search regions defined by the missing transverse energy, the hadronic energy, the number of jets and b-quark jets, and the transverse momenta of the leptons in the events are considered. No excess above the standard model background expectation is observed and constraints are set on a number of models for new physics, as well as on the same-sign top-quark pair and quadruple-top-quark production cross sections. Information on event selection efficiencies is also provided, so that the results can be used to confront an even broader class of new physics models.",
journal = "Journal of High Energy Physics",
title = "Search for new physics in events with same-sign dileptons and jets in pp collisions at root s=8 TeV",
number = "1",
doi = "10.1007/JHEP01(2014)163"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Milošević, J., Milenović, P.,& Reković, V.. (2014). Search for new physics in events with same-sign dileptons and jets in pp collisions at root s=8 TeV. in Journal of High Energy Physics(1).
https://doi.org/10.1007/JHEP01(2014)163
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Milošević J, Milenović P, Reković V. Search for new physics in events with same-sign dileptons and jets in pp collisions at root s=8 TeV. in Journal of High Energy Physics. 2014;(1).
doi:10.1007/JHEP01(2014)163 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Search for new physics in events with same-sign dileptons and jets in pp collisions at root s=8 TeV" in Journal of High Energy Physics, no. 1 (2014),
https://doi.org/10.1007/JHEP01(2014)163 . .
13
66
100
56

Observation of the Associated Production of a Single Top Quark - and a W Boson in pp Collisions at root s=8 TeV

Chatrchyan, S.; Adžić, Petar; Đorđević, Miloš; Ekmedžić, Marko; Milošević, Jovan; Milenović, Predrag; Reković, Vladimir

(2014)

TY  - JOUR
AU  - Chatrchyan, S.
AU  - Adžić, Petar
AU  - Đorđević, Miloš
AU  - Ekmedžić, Marko
AU  - Milošević, Jovan
AU  - Milenović, Predrag
AU  - Reković, Vladimir
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/6028
AB  - The first observation of the associated production of a single top quark and a W boson is presented. The analysis is based on a data set corresponding to an integrated luminosity of 12.2 fb(-1) of proton-proton collisions at root s = 8 TeV recorded by the CMS experiment at the LHC. Events with two leptons and a jet originating from a b quark are selected. A multivariate analysis based on kinematic and topological properties is used to separate the signal from the dominant (tt) over bar background. An excess consistent with the signal hypothesis is observed, with a significance which corresponds to 6.1 standard deviations above a background-only hypothesis. The measured production cross section is 23.4 +/- 5.4 pb, in agreement with the standard model prediction.
T2  - Physical Review Letters
T1  - Observation of the Associated Production of a Single Top Quark - and a W Boson in pp Collisions at root s=8 TeV
VL  - 112
IS  - 23
DO  - 10.1103/PhysRevLett.112.231802
ER  - 
@article{
author = "Chatrchyan, S. and Adžić, Petar and Đorđević, Miloš and Ekmedžić, Marko and Milošević, Jovan and Milenović, Predrag and Reković, Vladimir",
year = "2014",
abstract = "The first observation of the associated production of a single top quark and a W boson is presented. The analysis is based on a data set corresponding to an integrated luminosity of 12.2 fb(-1) of proton-proton collisions at root s = 8 TeV recorded by the CMS experiment at the LHC. Events with two leptons and a jet originating from a b quark are selected. A multivariate analysis based on kinematic and topological properties is used to separate the signal from the dominant (tt) over bar background. An excess consistent with the signal hypothesis is observed, with a significance which corresponds to 6.1 standard deviations above a background-only hypothesis. The measured production cross section is 23.4 +/- 5.4 pb, in agreement with the standard model prediction.",
journal = "Physical Review Letters",
title = "Observation of the Associated Production of a Single Top Quark - and a W Boson in pp Collisions at root s=8 TeV",
volume = "112",
number = "23",
doi = "10.1103/PhysRevLett.112.231802"
}
Chatrchyan, S., Adžić, P., Đorđević, M., Ekmedžić, M., Milošević, J., Milenović, P.,& Reković, V.. (2014). Observation of the Associated Production of a Single Top Quark - and a W Boson in pp Collisions at root s=8 TeV. in Physical Review Letters, 112(23).
https://doi.org/10.1103/PhysRevLett.112.231802
Chatrchyan S, Adžić P, Đorđević M, Ekmedžić M, Milošević J, Milenović P, Reković V. Observation of the Associated Production of a Single Top Quark - and a W Boson in pp Collisions at root s=8 TeV. in Physical Review Letters. 2014;112(23).
doi:10.1103/PhysRevLett.112.231802 .
Chatrchyan, S., Adžić, Petar, Đorđević, Miloš, Ekmedžić, Marko, Milošević, Jovan, Milenović, Predrag, Reković, Vladimir, "Observation of the Associated Production of a Single Top Quark - and a W Boson in pp Collisions at root s=8 TeV" in Physical Review Letters, 112, no. 23 (2014),
https://doi.org/10.1103/PhysRevLett.112.231802 . .
16
94
88
119