Milojkov, Dušan V.

Link to this page

Authority KeyName Variants
orcid::0000-0003-0746-4185
  • Milojkov, Dušan V. (4)
  • Milojkov, Dušan (1)
  • Milojkov, Dušan V (1)

Author's Bibliography

Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents

Milojkov, Dušan V.; Radosavljević-Mihajlović, Ana S.; Stanić, Vojislav; Nastasijević, Branislav J.; Radotić, Ksenija; Janković-Častvan, Ivona; Živković-Radovanović, Vukosava

(2023)

TY  - JOUR
AU  - Milojkov, Dušan V.
AU  - Radosavljević-Mihajlović, Ana S.
AU  - Stanić, Vojislav
AU  - Nastasijević, Branislav J.
AU  - Radotić, Ksenija
AU  - Janković-Častvan, Ivona
AU  - Živković-Radovanović, Vukosava
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10612
AB  - Nanomaterials based on metal–doped fluorapatite (FAP) have attracted considerable interest as potential next–generation antimicrobial agents. In this study, Cu2+–doped FAP nanocrystals have been successfully synthesized by a neutralization method at room temperature. Their structural, optical, antimicrobial, and hemcompatible properties have been investigated. XRD, FTIR, FESEM, and N2 adsorption–desorption studies indicate the formation of single–phase FAP mesoporous nanopowders, composed of rod–like particles. TEM images confirmed the formation of nanorodes with a length of 60 nm and a width of about 18 nm. Rietveld analysis shows that the Cu2+ ions preferentially substitute Ca2 (6 h) sites in the hexagonal fluorapatite crystal structure. Fluorescence spectroscopy accompanied by MCR–ALS method confirms substitution of Cu2+ ions in FAP crystal lattice with extracting additional d–d band transition at green color from FAP broadband self–activated luminescence in violet–blue color. Antimicrobial studies conducted on Staphylococcus aureus, Escherichia coli and Micrococcus lysodeikticus showed that FAP nanopowder with the highest Cu2+ content have strong bacteriostatic action on Staphylococcus aureus bacterial strain in mediums containing nutrition matters. In addition, this sample in comparison to pure FAP achieved a high percentage of relative reduction of bacterial population for all three species, being >90% in most cases. Fungistatic action is noticed too, throwgh the slowing down mycelium growth of fungus Aspergillus niger, Aspergillus flavus and Penicillium roqueforti and reduction of sporulation of Aspergillus niger species. Cu2+–doped FAP nanocrystals shows a synergistic antimicrobial effect with Cu2+ and F− ions. Concerning the potential biomedical applications, the hemolysis ratios of the Cu2+–doped FAP samples were below 5%. The obtained results pointed out the possible use of the synthesized nanocrystals as broad–spectrum antimicrobial agents for various biomedical and health care preparations.
T2  - Journal of Photochemistry and Photobiology B: Biology
T1  - Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents
VL  - 239
SP  - 112649
DO  - 10.1016/j.jphotobiol.2023.112649
ER  - 
@article{
author = "Milojkov, Dušan V. and Radosavljević-Mihajlović, Ana S. and Stanić, Vojislav and Nastasijević, Branislav J. and Radotić, Ksenija and Janković-Častvan, Ivona and Živković-Radovanović, Vukosava",
year = "2023",
abstract = "Nanomaterials based on metal–doped fluorapatite (FAP) have attracted considerable interest as potential next–generation antimicrobial agents. In this study, Cu2+–doped FAP nanocrystals have been successfully synthesized by a neutralization method at room temperature. Their structural, optical, antimicrobial, and hemcompatible properties have been investigated. XRD, FTIR, FESEM, and N2 adsorption–desorption studies indicate the formation of single–phase FAP mesoporous nanopowders, composed of rod–like particles. TEM images confirmed the formation of nanorodes with a length of 60 nm and a width of about 18 nm. Rietveld analysis shows that the Cu2+ ions preferentially substitute Ca2 (6 h) sites in the hexagonal fluorapatite crystal structure. Fluorescence spectroscopy accompanied by MCR–ALS method confirms substitution of Cu2+ ions in FAP crystal lattice with extracting additional d–d band transition at green color from FAP broadband self–activated luminescence in violet–blue color. Antimicrobial studies conducted on Staphylococcus aureus, Escherichia coli and Micrococcus lysodeikticus showed that FAP nanopowder with the highest Cu2+ content have strong bacteriostatic action on Staphylococcus aureus bacterial strain in mediums containing nutrition matters. In addition, this sample in comparison to pure FAP achieved a high percentage of relative reduction of bacterial population for all three species, being >90% in most cases. Fungistatic action is noticed too, throwgh the slowing down mycelium growth of fungus Aspergillus niger, Aspergillus flavus and Penicillium roqueforti and reduction of sporulation of Aspergillus niger species. Cu2+–doped FAP nanocrystals shows a synergistic antimicrobial effect with Cu2+ and F− ions. Concerning the potential biomedical applications, the hemolysis ratios of the Cu2+–doped FAP samples were below 5%. The obtained results pointed out the possible use of the synthesized nanocrystals as broad–spectrum antimicrobial agents for various biomedical and health care preparations.",
journal = "Journal of Photochemistry and Photobiology B: Biology",
title = "Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents",
volume = "239",
pages = "112649",
doi = "10.1016/j.jphotobiol.2023.112649"
}
Milojkov, D. V., Radosavljević-Mihajlović, A. S., Stanić, V., Nastasijević, B. J., Radotić, K., Janković-Častvan, I.,& Živković-Radovanović, V.. (2023). Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents. in Journal of Photochemistry and Photobiology B: Biology, 239, 112649.
https://doi.org/10.1016/j.jphotobiol.2023.112649
Milojkov DV, Radosavljević-Mihajlović AS, Stanić V, Nastasijević BJ, Radotić K, Janković-Častvan I, Živković-Radovanović V. Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents. in Journal of Photochemistry and Photobiology B: Biology. 2023;239:112649.
doi:10.1016/j.jphotobiol.2023.112649 .
Milojkov, Dušan V., Radosavljević-Mihajlović, Ana S., Stanić, Vojislav, Nastasijević, Branislav J., Radotić, Ksenija, Janković-Častvan, Ivona, Živković-Radovanović, Vukosava, "Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents" in Journal of Photochemistry and Photobiology B: Biology, 239 (2023):112649,
https://doi.org/10.1016/j.jphotobiol.2023.112649 . .
2
1

Nanofabrication and characterisation of magnetic Fe3O4 nanostructures for potential environmental and biomedical applications

Milojkov, Dušan; Mraković, Ana; Jovanović, Gvozden; Vuković, Nikola; Bugarčić, Mladen; Antanasković, Anja; Živković-Radovanović, Vukosava

(Belgrade : Institute of Technical Sciences of SASA, 2023)

TY  - CONF
AU  - Milojkov, Dušan
AU  - Mraković, Ana
AU  - Jovanović, Gvozden
AU  - Vuković, Nikola
AU  - Bugarčić, Mladen
AU  - Antanasković, Anja
AU  - Živković-Radovanović, Vukosava
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12302
AB  - Magnetic iron oxide nanomaterials, which enable a multitude of uses, are given special focus in the fields of biomedicine and environmental protection. The detection, sorption, and/or degradation of inorganic (lead, chromium, arsenic, and cadmium), organic (dyes, pharmaceuticals, pesticides, phenols, and benzene), and biological (viruses and bacteria) pollutants can all be effectively accomplished with the use of magnetic nanoparticles. Magnetic iron oxide nanomaterials are in particular focus for use as hyperthermia media in cancer treatment and as magnetic resonance imaging (MRI) contrast agents. The possibility of magnetic separation of such materials, due to their essential properties under the influence of an external magnetic field, reduces production costs and also prevents the production and accumulation of toxic waste. Among the many metal oxide nanomaterials, magnetite (Fe3O4) and maghemite (γ-Fe2O3) are currently the only two magnetic materials approved by the US Food and Drug Administration (FDA) for human use as iron deficiency therapeutics and as contrast agents for MRI. Here, we synthesized nanoparticles of magnetite (Fe3O4) by the method of reduction-precipitation and characterized. Additionally, potential binding of brilliant green dye on Fe3O4 and construction of innovative magnetic composite was investigated. The physicochemical features were explored using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM). XRD analysis confirms formation of the crystal phase of magnetite. The presence of magnetite nanoparticles is shown by typical groups for the peaks of iron compounds at a lower wavelength (≤ 700 cm-1 ) that are characteristic of the Fe-O bond. Morphological analyzes with FESEM showed that magnetite is a composite of nanospheres and nanorods that provide a large surface area. Dye binding study was performed using UVvisible and FTIR spectrometer.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts
T1  - Nanofabrication and characterisation of magnetic Fe3O4 nanostructures for potential environmental and biomedical applications
SP  - 14
EP  - 14
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12302
ER  - 
@conference{
author = "Milojkov, Dušan and Mraković, Ana and Jovanović, Gvozden and Vuković, Nikola and Bugarčić, Mladen and Antanasković, Anja and Živković-Radovanović, Vukosava",
year = "2023",
abstract = "Magnetic iron oxide nanomaterials, which enable a multitude of uses, are given special focus in the fields of biomedicine and environmental protection. The detection, sorption, and/or degradation of inorganic (lead, chromium, arsenic, and cadmium), organic (dyes, pharmaceuticals, pesticides, phenols, and benzene), and biological (viruses and bacteria) pollutants can all be effectively accomplished with the use of magnetic nanoparticles. Magnetic iron oxide nanomaterials are in particular focus for use as hyperthermia media in cancer treatment and as magnetic resonance imaging (MRI) contrast agents. The possibility of magnetic separation of such materials, due to their essential properties under the influence of an external magnetic field, reduces production costs and also prevents the production and accumulation of toxic waste. Among the many metal oxide nanomaterials, magnetite (Fe3O4) and maghemite (γ-Fe2O3) are currently the only two magnetic materials approved by the US Food and Drug Administration (FDA) for human use as iron deficiency therapeutics and as contrast agents for MRI. Here, we synthesized nanoparticles of magnetite (Fe3O4) by the method of reduction-precipitation and characterized. Additionally, potential binding of brilliant green dye on Fe3O4 and construction of innovative magnetic composite was investigated. The physicochemical features were explored using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM). XRD analysis confirms formation of the crystal phase of magnetite. The presence of magnetite nanoparticles is shown by typical groups for the peaks of iron compounds at a lower wavelength (≤ 700 cm-1 ) that are characteristic of the Fe-O bond. Morphological analyzes with FESEM showed that magnetite is a composite of nanospheres and nanorods that provide a large surface area. Dye binding study was performed using UVvisible and FTIR spectrometer.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts",
title = "Nanofabrication and characterisation of magnetic Fe3O4 nanostructures for potential environmental and biomedical applications",
pages = "14-14",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12302"
}
Milojkov, D., Mraković, A., Jovanović, G., Vuković, N., Bugarčić, M., Antanasković, A.,& Živković-Radovanović, V.. (2023). Nanofabrication and characterisation of magnetic Fe3O4 nanostructures for potential environmental and biomedical applications. in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts
Belgrade : Institute of Technical Sciences of SASA., 14-14.
https://hdl.handle.net/21.15107/rcub_vinar_12302
Milojkov D, Mraković A, Jovanović G, Vuković N, Bugarčić M, Antanasković A, Živković-Radovanović V. Nanofabrication and characterisation of magnetic Fe3O4 nanostructures for potential environmental and biomedical applications. in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts. 2023;:14-14.
https://hdl.handle.net/21.15107/rcub_vinar_12302 .
Milojkov, Dušan, Mraković, Ana, Jovanović, Gvozden, Vuković, Nikola, Bugarčić, Mladen, Antanasković, Anja, Živković-Radovanović, Vukosava, "Nanofabrication and characterisation of magnetic Fe3O4 nanostructures for potential environmental and biomedical applications" in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts (2023):14-14,
https://hdl.handle.net/21.15107/rcub_vinar_12302 .

Influence of Pr3+ and CO32− Ions Coupled Substitution on Structural, Optical and Antibacterial Properties of Fluorapatite Nanopowders Obtained by Precipitation

Milojkov, Dušan V; Sokić, Miroslav; Radosavljević-Mihajlović, Ana S.; Stanić, Vojislav; Manojlović, Vaso; Mutavdžić, Dragosav R; Milanović, Marija

(2021)

TY  - JOUR
AU  - Milojkov, Dušan V
AU  - Sokić, Miroslav
AU  - Radosavljević-Mihajlović, Ana S.
AU  - Stanić, Vojislav
AU  - Manojlović, Vaso
AU  - Mutavdžić, Dragosav R
AU  - Milanović, Marija
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9922
AB  - Coupled substitution of fluorapatite (FAP) crystal lattice plays an important role in the engineering of optically active nanomaterials. Uniform fluorapatite nanopowders doped with praseodymium (Pr3+) and carbonate (CO32−) ions have been successfully synthesized by precipitation method under room temperature (25 °C). The structural, morphological, chemical and optical properties of monophase material were characterized by X-ray diffraction (XRD), Fourier Transform Infrared and Far Infrared Spectroscopy (FTIR and FIR, respectively), Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS), Transmission Electron Microscopy (TEM) and Photoluminescence Spectroscopy (PL). Coupled substitution of FAP crystal lattice with Pr3+ and CO32− reduces the crystallite size with a constant c/a ratio of 1.72. FTIR study showed that synthesized nanopowders were AB-type CO32− substitution, and FIR study revealed new Pr–O vibrations. TEM analysis was found that synthesized nanopowders were composed of irregular spheres in the nanometer range. The fluorescence of FAP nanoparticles was in the violet-blue region of the visible part of the spectrum. When Pr3+ was doped in a lattice, the violet-blue emission becomes sharper due to reabsorption. MCR–ALS analyses of fluorescence spectra indicated the shift of the maximum to the blue color with the increase in the concentration of Pr3+ ions. Additionally, luminescent nanopowders demonstrated significant antibacterial activity against Escherichia coli. As the obtained nanoparticles showed a good absorption of ultraviolet A light and reabsorption of blue-green luminescence, they are suitable for further development of optically active nanomaterials for light filtering. Optically active PrCFAP nanopowders with antibacterial properties may be promising additives for the development of multifunctional cosmetic and health care products.
T2  - Metals
T1  - Influence of Pr3+ and CO32− Ions Coupled Substitution on Structural, Optical and Antibacterial Properties of Fluorapatite Nanopowders Obtained by Precipitation
VL  - 11
IS  - 9
SP  - 1384
DO  - 10.3390/met11091384
ER  - 
@article{
author = "Milojkov, Dušan V and Sokić, Miroslav and Radosavljević-Mihajlović, Ana S. and Stanić, Vojislav and Manojlović, Vaso and Mutavdžić, Dragosav R and Milanović, Marija",
year = "2021",
abstract = "Coupled substitution of fluorapatite (FAP) crystal lattice plays an important role in the engineering of optically active nanomaterials. Uniform fluorapatite nanopowders doped with praseodymium (Pr3+) and carbonate (CO32−) ions have been successfully synthesized by precipitation method under room temperature (25 °C). The structural, morphological, chemical and optical properties of monophase material were characterized by X-ray diffraction (XRD), Fourier Transform Infrared and Far Infrared Spectroscopy (FTIR and FIR, respectively), Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS), Transmission Electron Microscopy (TEM) and Photoluminescence Spectroscopy (PL). Coupled substitution of FAP crystal lattice with Pr3+ and CO32− reduces the crystallite size with a constant c/a ratio of 1.72. FTIR study showed that synthesized nanopowders were AB-type CO32− substitution, and FIR study revealed new Pr–O vibrations. TEM analysis was found that synthesized nanopowders were composed of irregular spheres in the nanometer range. The fluorescence of FAP nanoparticles was in the violet-blue region of the visible part of the spectrum. When Pr3+ was doped in a lattice, the violet-blue emission becomes sharper due to reabsorption. MCR–ALS analyses of fluorescence spectra indicated the shift of the maximum to the blue color with the increase in the concentration of Pr3+ ions. Additionally, luminescent nanopowders demonstrated significant antibacterial activity against Escherichia coli. As the obtained nanoparticles showed a good absorption of ultraviolet A light and reabsorption of blue-green luminescence, they are suitable for further development of optically active nanomaterials for light filtering. Optically active PrCFAP nanopowders with antibacterial properties may be promising additives for the development of multifunctional cosmetic and health care products.",
journal = "Metals",
title = "Influence of Pr3+ and CO32− Ions Coupled Substitution on Structural, Optical and Antibacterial Properties of Fluorapatite Nanopowders Obtained by Precipitation",
volume = "11",
number = "9",
pages = "1384",
doi = "10.3390/met11091384"
}
Milojkov, D. V., Sokić, M., Radosavljević-Mihajlović, A. S., Stanić, V., Manojlović, V., Mutavdžić, D. R.,& Milanović, M.. (2021). Influence of Pr3+ and CO32− Ions Coupled Substitution on Structural, Optical and Antibacterial Properties of Fluorapatite Nanopowders Obtained by Precipitation. in Metals, 11(9), 1384.
https://doi.org/10.3390/met11091384
Milojkov DV, Sokić M, Radosavljević-Mihajlović AS, Stanić V, Manojlović V, Mutavdžić DR, Milanović M. Influence of Pr3+ and CO32− Ions Coupled Substitution on Structural, Optical and Antibacterial Properties of Fluorapatite Nanopowders Obtained by Precipitation. in Metals. 2021;11(9):1384.
doi:10.3390/met11091384 .
Milojkov, Dušan V, Sokić, Miroslav, Radosavljević-Mihajlović, Ana S., Stanić, Vojislav, Manojlović, Vaso, Mutavdžić, Dragosav R, Milanović, Marija, "Influence of Pr3+ and CO32− Ions Coupled Substitution on Structural, Optical and Antibacterial Properties of Fluorapatite Nanopowders Obtained by Precipitation" in Metals, 11, no. 9 (2021):1384,
https://doi.org/10.3390/met11091384 . .
4
5

Fabrication and characterization of luminescent Pr3+ doped fluorapatite nanocrystals as bioimaging contrast agents

Milojkov, Dušan V.; Silvestre, Oscar F.; Stanić, Vojislav; Janjić, Goran V.; Mutavdžić, Dragosav R.; Milanović, Marija; Nieder, Jana B.

(2020)

TY  - JOUR
AU  - Milojkov, Dušan V.
AU  - Silvestre, Oscar F.
AU  - Stanić, Vojislav
AU  - Janjić, Goran V.
AU  - Mutavdžić, Dragosav R.
AU  - Milanović, Marija
AU  - Nieder, Jana B.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8529
AB  - Fluorapatite doped with rare-earth elements has a wide-range of biomedical applications. Here, a new type of fluorapatite nanocrystals doped with praseodymium (FAP-Pr) with excitation-emission profiles in visible part of the spectrum is fabricated. Energy levels of Pr3+ activator ion contain metastable multiplet states that offer the possibility of efficient multicolor emission lines in FAP nanocrystals. Three types of FAP-Pr nanocrystals with 0.1%, 0.5% and 1% atomic percent of Pr3+ (along with the undoped FAP control sample) are studied. Their novel chemical production method is described, the FAP-Pr nanocrystals structure, biocompatibility and the suitability for cell imaging are analyzed. Physicochemical characterization confirms crystals down to nanometer size. In addition, quantum-chemical calculation predicts that Pr3+ ions are incorporated into the FAP crystal lattice at Ca2 (6 h) sites. In vitro viability results shows that FAP-Pr nanocrystals are nontoxic to live cells. Additionally, the cell uptake of the FAP-Pr nanocrystals is studied using fluorescence-based widefield and confocal microscopy. The nanocrystals show characteristic green emission at 545 nm (3P0→3H5 transition of Pr3+ ion) and orange emission at 600 nm (1D2→3H4), which we use to discriminate from cell autofluorescence background. Orthogonal projections across 3D confocal stacks show that the nanocrystals are able to enter the cells positioning themselves within the cytoplasm. Overall, the new FAP-Pr nanocrystals are biocompatible and of the tested types, the 0.5% Pr3+ doped nanocrystals show the highest promise as a tracking nanoparticle probe for bioimaging applications. © 2019
T2  - Journal of Luminescence
T1  - Fabrication and characterization of luminescent Pr3+ doped fluorapatite nanocrystals as bioimaging contrast agents
VL  - 217
SP  - 116757
DO  - 10.1016/j.jlumin.2019.116757
ER  - 
@article{
author = "Milojkov, Dušan V. and Silvestre, Oscar F. and Stanić, Vojislav and Janjić, Goran V. and Mutavdžić, Dragosav R. and Milanović, Marija and Nieder, Jana B.",
year = "2020",
abstract = "Fluorapatite doped with rare-earth elements has a wide-range of biomedical applications. Here, a new type of fluorapatite nanocrystals doped with praseodymium (FAP-Pr) with excitation-emission profiles in visible part of the spectrum is fabricated. Energy levels of Pr3+ activator ion contain metastable multiplet states that offer the possibility of efficient multicolor emission lines in FAP nanocrystals. Three types of FAP-Pr nanocrystals with 0.1%, 0.5% and 1% atomic percent of Pr3+ (along with the undoped FAP control sample) are studied. Their novel chemical production method is described, the FAP-Pr nanocrystals structure, biocompatibility and the suitability for cell imaging are analyzed. Physicochemical characterization confirms crystals down to nanometer size. In addition, quantum-chemical calculation predicts that Pr3+ ions are incorporated into the FAP crystal lattice at Ca2 (6 h) sites. In vitro viability results shows that FAP-Pr nanocrystals are nontoxic to live cells. Additionally, the cell uptake of the FAP-Pr nanocrystals is studied using fluorescence-based widefield and confocal microscopy. The nanocrystals show characteristic green emission at 545 nm (3P0→3H5 transition of Pr3+ ion) and orange emission at 600 nm (1D2→3H4), which we use to discriminate from cell autofluorescence background. Orthogonal projections across 3D confocal stacks show that the nanocrystals are able to enter the cells positioning themselves within the cytoplasm. Overall, the new FAP-Pr nanocrystals are biocompatible and of the tested types, the 0.5% Pr3+ doped nanocrystals show the highest promise as a tracking nanoparticle probe for bioimaging applications. © 2019",
journal = "Journal of Luminescence",
title = "Fabrication and characterization of luminescent Pr3+ doped fluorapatite nanocrystals as bioimaging contrast agents",
volume = "217",
pages = "116757",
doi = "10.1016/j.jlumin.2019.116757"
}
Milojkov, D. V., Silvestre, O. F., Stanić, V., Janjić, G. V., Mutavdžić, D. R., Milanović, M.,& Nieder, J. B.. (2020). Fabrication and characterization of luminescent Pr3+ doped fluorapatite nanocrystals as bioimaging contrast agents. in Journal of Luminescence, 217, 116757.
https://doi.org/10.1016/j.jlumin.2019.116757
Milojkov DV, Silvestre OF, Stanić V, Janjić GV, Mutavdžić DR, Milanović M, Nieder JB. Fabrication and characterization of luminescent Pr3+ doped fluorapatite nanocrystals as bioimaging contrast agents. in Journal of Luminescence. 2020;217:116757.
doi:10.1016/j.jlumin.2019.116757 .
Milojkov, Dušan V., Silvestre, Oscar F., Stanić, Vojislav, Janjić, Goran V., Mutavdžić, Dragosav R., Milanović, Marija, Nieder, Jana B., "Fabrication and characterization of luminescent Pr3+ doped fluorapatite nanocrystals as bioimaging contrast agents" in Journal of Luminescence, 217 (2020):116757,
https://doi.org/10.1016/j.jlumin.2019.116757 . .
23
8
20

Effects of Ag + Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method

Milojkov, Dušan V.; Stanić, Vojislav; Dimović, Slavko; Mutavdžić, Dragosav R.; Živković-Radovanović, Vukosava; Janjić, Goran V.; Radotić, Ksenija

(2019)

TY  - JOUR
AU  - Milojkov, Dušan V.
AU  - Stanić, Vojislav
AU  - Dimović, Slavko
AU  - Mutavdžić, Dragosav R.
AU  - Živković-Radovanović, Vukosava
AU  - Janjić, Goran V.
AU  - Radotić, Ksenija
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8629
AB  - In the present study we have analyzed effects of Ag+ ions doping on energetic profiles of nanophosphors materials based on fluorapatite crystal system. The UV radiation absorption and luminescence properties of monophase fluorapatite (FAP) and Ag+ doped fluorapatite (AgFAP) nanomaterials obtained by neutralization method were investigated using the photoluminescence spectrophotometry. The excitation-emission profiles of nanomaterials were analyzed statistically by MCR-ALS method and number of fluorophores was extracted. FAP lattice absorbed light at 350 nm in the UVA part of spectrum, and with increasing concentration of Ag+ ions new absorption maximum appeared at 270 nm in the UVC part. Fluorescence of FAP nanoparticles was in violet region of visible part of the spectrum, with a red shift to the green region when Ag+ was doped in lattice. MCR-ALS analyses of fluorescence spectra confirm formation of two maxima, at 484 and 505 nm, as a consequence of Ag+ ions doping in FAP lattice at Ca1 (4f) sites. The results of quantum chemical calculations showed that an Ag+ ion is stronger bonded to the binding site 1 (-1352:6 kcal/mol) than to the binding site 2 (-1249:0 kcal/mol). Considering that AgFAP1 nanopowder absorbs photons over all part of UV radiation spectrum, this material might be used as potential radiation protective nanomaterial. © 2019 Polish Academy of Sciences. All rights reserved.
T2  - Acta Physica Polonica A
T1  - Effects of Ag + Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method
VL  - 136
IS  - 1
SP  - 86
EP  - 91
DO  - 10.12693/APhysPolA.136.86
ER  - 
@article{
author = "Milojkov, Dušan V. and Stanić, Vojislav and Dimović, Slavko and Mutavdžić, Dragosav R. and Živković-Radovanović, Vukosava and Janjić, Goran V. and Radotić, Ksenija",
year = "2019",
abstract = "In the present study we have analyzed effects of Ag+ ions doping on energetic profiles of nanophosphors materials based on fluorapatite crystal system. The UV radiation absorption and luminescence properties of monophase fluorapatite (FAP) and Ag+ doped fluorapatite (AgFAP) nanomaterials obtained by neutralization method were investigated using the photoluminescence spectrophotometry. The excitation-emission profiles of nanomaterials were analyzed statistically by MCR-ALS method and number of fluorophores was extracted. FAP lattice absorbed light at 350 nm in the UVA part of spectrum, and with increasing concentration of Ag+ ions new absorption maximum appeared at 270 nm in the UVC part. Fluorescence of FAP nanoparticles was in violet region of visible part of the spectrum, with a red shift to the green region when Ag+ was doped in lattice. MCR-ALS analyses of fluorescence spectra confirm formation of two maxima, at 484 and 505 nm, as a consequence of Ag+ ions doping in FAP lattice at Ca1 (4f) sites. The results of quantum chemical calculations showed that an Ag+ ion is stronger bonded to the binding site 1 (-1352:6 kcal/mol) than to the binding site 2 (-1249:0 kcal/mol). Considering that AgFAP1 nanopowder absorbs photons over all part of UV radiation spectrum, this material might be used as potential radiation protective nanomaterial. © 2019 Polish Academy of Sciences. All rights reserved.",
journal = "Acta Physica Polonica A",
title = "Effects of Ag + Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method",
volume = "136",
number = "1",
pages = "86-91",
doi = "10.12693/APhysPolA.136.86"
}
Milojkov, D. V., Stanić, V., Dimović, S., Mutavdžić, D. R., Živković-Radovanović, V., Janjić, G. V.,& Radotić, K.. (2019). Effects of Ag + Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method. in Acta Physica Polonica A, 136(1), 86-91.
https://doi.org/10.12693/APhysPolA.136.86
Milojkov DV, Stanić V, Dimović S, Mutavdžić DR, Živković-Radovanović V, Janjić GV, Radotić K. Effects of Ag + Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method. in Acta Physica Polonica A. 2019;136(1):86-91.
doi:10.12693/APhysPolA.136.86 .
Milojkov, Dušan V., Stanić, Vojislav, Dimović, Slavko, Mutavdžić, Dragosav R., Živković-Radovanović, Vukosava, Janjić, Goran V., Radotić, Ksenija, "Effects of Ag + Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method" in Acta Physica Polonica A, 136, no. 1 (2019):86-91,
https://doi.org/10.12693/APhysPolA.136.86 . .
3
1
3

Synthesis and characterization of luminescent fluorapatite nanorods for labeling of Saccharomyces cerevisiae cells

Milojkov, Dušan V.; Nastasijević, Branislav J.; Živković-Radovanović, Vukosava; Janjić, Goran V.; Dimović, Slavko; Mutavdžić, Dragosav R.; Stanić, Vojislav

(Belgrade : Vinča Institute of Nuclear Sciences, 2018)

TY  - CONF
AU  - Milojkov, Dušan V.
AU  - Nastasijević, Branislav J.
AU  - Živković-Radovanović, Vukosava
AU  - Janjić, Goran V.
AU  - Dimović, Slavko
AU  - Mutavdžić, Dragosav R.
AU  - Stanić, Vojislav
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11646
AB  - In this study, the preparation and characterization of luminescent fluorapatite (FAP) nanoparticles (50 and 80 nm rod-size), and their use for labeling of Saccharomyces cerevisae cells were investigated. Fluorapatite nanoparticles were obtained by neutralization method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) methods have confirmed a rod-like material of nanometer size with broadband emission within 380-600 nm under UVA light excitation. Fluorescence microscopy showed that fluorapatite nano fluorophors successfully labeled S. cerevisiae cells, by attaching the proteins on the cell wall. Obtained luminescent fluorapatite nanorods could be used as a probe for visualization and detection of yeast cells.
PB  - Belgrade : Vinča Institute of Nuclear Sciences
C3  - 6th Workshop Specific Methods for Food Safety and Quality, September 27th, 2018, Belgrade, Serbia, 14th International Conference on Fundamental and Applied Aspects of Physical Chemistry - Physical Chemistry
T1  - Synthesis and characterization of luminescent fluorapatite nanorods for labeling of Saccharomyces cerevisiae cells
SP  - 159
EP  - 162
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11646
ER  - 
@conference{
author = "Milojkov, Dušan V. and Nastasijević, Branislav J. and Živković-Radovanović, Vukosava and Janjić, Goran V. and Dimović, Slavko and Mutavdžić, Dragosav R. and Stanić, Vojislav",
year = "2018",
abstract = "In this study, the preparation and characterization of luminescent fluorapatite (FAP) nanoparticles (50 and 80 nm rod-size), and their use for labeling of Saccharomyces cerevisae cells were investigated. Fluorapatite nanoparticles were obtained by neutralization method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) methods have confirmed a rod-like material of nanometer size with broadband emission within 380-600 nm under UVA light excitation. Fluorescence microscopy showed that fluorapatite nano fluorophors successfully labeled S. cerevisiae cells, by attaching the proteins on the cell wall. Obtained luminescent fluorapatite nanorods could be used as a probe for visualization and detection of yeast cells.",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences",
journal = "6th Workshop Specific Methods for Food Safety and Quality, September 27th, 2018, Belgrade, Serbia, 14th International Conference on Fundamental and Applied Aspects of Physical Chemistry - Physical Chemistry",
title = "Synthesis and characterization of luminescent fluorapatite nanorods for labeling of Saccharomyces cerevisiae cells",
pages = "159-162",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11646"
}
Milojkov, D. V., Nastasijević, B. J., Živković-Radovanović, V., Janjić, G. V., Dimović, S., Mutavdžić, D. R.,& Stanić, V.. (2018). Synthesis and characterization of luminescent fluorapatite nanorods for labeling of Saccharomyces cerevisiae cells. in 6th Workshop Specific Methods for Food Safety and Quality, September 27th, 2018, Belgrade, Serbia, 14th International Conference on Fundamental and Applied Aspects of Physical Chemistry - Physical Chemistry
Belgrade : Vinča Institute of Nuclear Sciences., 159-162.
https://hdl.handle.net/21.15107/rcub_vinar_11646
Milojkov DV, Nastasijević BJ, Živković-Radovanović V, Janjić GV, Dimović S, Mutavdžić DR, Stanić V. Synthesis and characterization of luminescent fluorapatite nanorods for labeling of Saccharomyces cerevisiae cells. in 6th Workshop Specific Methods for Food Safety and Quality, September 27th, 2018, Belgrade, Serbia, 14th International Conference on Fundamental and Applied Aspects of Physical Chemistry - Physical Chemistry. 2018;:159-162.
https://hdl.handle.net/21.15107/rcub_vinar_11646 .
Milojkov, Dušan V., Nastasijević, Branislav J., Živković-Radovanović, Vukosava, Janjić, Goran V., Dimović, Slavko, Mutavdžić, Dragosav R., Stanić, Vojislav, "Synthesis and characterization of luminescent fluorapatite nanorods for labeling of Saccharomyces cerevisiae cells" in 6th Workshop Specific Methods for Food Safety and Quality, September 27th, 2018, Belgrade, Serbia, 14th International Conference on Fundamental and Applied Aspects of Physical Chemistry - Physical Chemistry (2018):159-162,
https://hdl.handle.net/21.15107/rcub_vinar_11646 .