Di Rosa, F.

Link to this page

Authority KeyName Variants
f57b2b6c-2ab7-4fd1-bf99-0cf866e4d950
  • Di Rosa, F. (1)
Projects

Author's Bibliography

A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line

Romano, Francesco; Cirrone, Giuseppe Antonio Pablo; Cuttone, Giacomo; Di Rosa, F.; Mazzaglia, S. E.; Petrović, Ivan M.; Ristić-Fira, Aleksandra; Varisano, A.

(2014)

TY  - JOUR
AU  - Romano, Francesco
AU  - Cirrone, Giuseppe Antonio Pablo
AU  - Cuttone, Giacomo
AU  - Di Rosa, F.
AU  - Mazzaglia, S. E.
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
AU  - Varisano, A.
PY  - 2014
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/6037
AB  - Fluence, depth absorbed dose and linear energy transfer (LET) distributions of proton and carbon ion beams have been investigated using the Monte Carlo code Geant4 (GEometry ANd Tracking). An open source application was developed with the aim to simulate two typical transport beam lines, one used for ocular therapy and cell irradiations with protons and the other for cell irradiations with carbon ions. This tool allows evaluation of the primary and total dose averaged LET and predict their spatial distribution in voxelized or sliced geometries. In order to reproduce the LET distributions in a realistic way, and also the secondary particles contributions due to nuclear interactions were considered in the computations. Pristine and spread-out Bragg peaks were taken into account both for proton and carbon ion beams, with the maximum energy of 62 MeV/n. Depth dose distributions were compared with experimental data, showing good agreement. Primary and total LET distributions were analysed in order to study the influence of contributions of secondary particles in regions at different depths. A non-negligible influence of high-LET components was found in the entrance channel for proton beams, determining the total dose averaged LET by the factor 3 higher than the primary one. A completely different situation was obtained for carbon ions. In this case, secondary particles mainly contributed in the tail that is after the peak. The results showed how the weight of light and heavy secondary ions can considerably influence the computation of LET depth distributions. This has an important role in the interpretation of results coming from radiobiological experiments and, therefore, in hadron treatment planning procedures.
T2  - Physics in Medicine and Biology
T1  - A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line
VL  - 59
IS  - 12
SP  - 2863
EP  - 2882
DO  - 10.1088/0031-9155/59/12/2863
ER  - 
@article{
author = "Romano, Francesco and Cirrone, Giuseppe Antonio Pablo and Cuttone, Giacomo and Di Rosa, F. and Mazzaglia, S. E. and Petrović, Ivan M. and Ristić-Fira, Aleksandra and Varisano, A.",
year = "2014",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/6037",
abstract = "Fluence, depth absorbed dose and linear energy transfer (LET) distributions of proton and carbon ion beams have been investigated using the Monte Carlo code Geant4 (GEometry ANd Tracking). An open source application was developed with the aim to simulate two typical transport beam lines, one used for ocular therapy and cell irradiations with protons and the other for cell irradiations with carbon ions. This tool allows evaluation of the primary and total dose averaged LET and predict their spatial distribution in voxelized or sliced geometries. In order to reproduce the LET distributions in a realistic way, and also the secondary particles contributions due to nuclear interactions were considered in the computations. Pristine and spread-out Bragg peaks were taken into account both for proton and carbon ion beams, with the maximum energy of 62 MeV/n. Depth dose distributions were compared with experimental data, showing good agreement. Primary and total LET distributions were analysed in order to study the influence of contributions of secondary particles in regions at different depths. A non-negligible influence of high-LET components was found in the entrance channel for proton beams, determining the total dose averaged LET by the factor 3 higher than the primary one. A completely different situation was obtained for carbon ions. In this case, secondary particles mainly contributed in the tail that is after the peak. The results showed how the weight of light and heavy secondary ions can considerably influence the computation of LET depth distributions. This has an important role in the interpretation of results coming from radiobiological experiments and, therefore, in hadron treatment planning procedures.",
journal = "Physics in Medicine and Biology",
title = "A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line",
volume = "59",
number = "12",
pages = "2863-2882",
doi = "10.1088/0031-9155/59/12/2863"
}
Romano, F., Cirrone, G. A. P., Cuttone, G., Di Rosa, F., Mazzaglia, S. E., Petrović, I. M., Ristić-Fira, A.,& Varisano, A. (2014). A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line.
Physics in Medicine and Biology, 59(12), 2863-2882.
https://doi.org/10.1088/0031-9155/59/12/2863
Romano F, Cirrone GAP, Cuttone G, Di Rosa F, Mazzaglia SE, Petrović IM, Ristić-Fira A, Varisano A. A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line. Physics in Medicine and Biology. 2014;59(12):2863-2882
Romano Francesco, Cirrone Giuseppe Antonio Pablo, Cuttone Giacomo, Di Rosa F., Mazzaglia S. E., Petrović Ivan M., Ristić-Fira Aleksandra, Varisano A., "A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line" Physics in Medicine and Biology, 59, no. 12 (2014):2863-2882,
https://doi.org/10.1088/0031-9155/59/12/2863 .
1
53
44
45