Parojčić, Jelena

Link to this page

Authority KeyName Variants
orcid::0000-0001-8074-6221
  • Parojčić, Jelena (2)
Projects

Author's Bibliography

Processability evaluation of multiparticulate units prepared by selective laser sintering using the SeDeM Expert System approach

Vasiljević, Ivana; Turković, Erna; Piller, Michael; Mirković, Miljana M.; Zimmer, Andreas; Aleksić, Ivana; Ibrić, Svetlana; Parojčić, Jelena

(2022)

TY  - JOUR
AU  - Vasiljević, Ivana
AU  - Turković, Erna
AU  - Piller, Michael
AU  - Mirković, Miljana M.
AU  - Zimmer, Andreas
AU  - Aleksić, Ivana
AU  - Ibrić, Svetlana
AU  - Parojčić, Jelena
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10500
AB  - 3D printing in dosage forms fabrication is in the focus of researchers, however, the attempts in multiparticulate units (MPUs) preparation are scarce. The aim of this study was to fabricate different size MPUs by selective laser sintering (SLS), using different polymers, and investigate their processability based on the SeDeM Expert System approach. MPUs (1- or 2-mm size) were prepared with model drug (ibuprofen or caffeine), polymer (poly(ethylene)oxide (PEO), ethyl cellulose (EC) or methacrylic acid-ethyl acrylate copolymer (MA-EA)) and printing aid. Comprehensive sample characterization was performed and experimentally obtained parameters were mathematically transformed and evaluated using the SeDeM Expert System framework. The obtained samples exhibited irregular shape, despite the spherical printing object design. Polymer incorporated notably affected MPUs properties. The obtained samples exhibited low bulk density, good flowability-, as well as stability-related parameters, which indicated their suitability for filling into capsules or sachets. Low density values implied that compressibility enhancing excipients may be required for MPUs incorporation in tablets. Samples containing EC and MA-EA were found suitable for compression, due to high compacts tensile strength. The obtained results indicate that SeDeM Expert System may extended from powder compressibility evaluation tool to framework facilitating powders/multiparticulate units processing.
T2  - International Journal of Pharmaceutics
T1  - Processability evaluation of multiparticulate units prepared by selective laser sintering using the SeDeM Expert System approach
VL  - 629
SP  - 122337
DO  - 10.1016/j.ijpharm.2022.122337
ER  - 
@article{
author = "Vasiljević, Ivana and Turković, Erna and Piller, Michael and Mirković, Miljana M. and Zimmer, Andreas and Aleksić, Ivana and Ibrić, Svetlana and Parojčić, Jelena",
year = "2022",
abstract = "3D printing in dosage forms fabrication is in the focus of researchers, however, the attempts in multiparticulate units (MPUs) preparation are scarce. The aim of this study was to fabricate different size MPUs by selective laser sintering (SLS), using different polymers, and investigate their processability based on the SeDeM Expert System approach. MPUs (1- or 2-mm size) were prepared with model drug (ibuprofen or caffeine), polymer (poly(ethylene)oxide (PEO), ethyl cellulose (EC) or methacrylic acid-ethyl acrylate copolymer (MA-EA)) and printing aid. Comprehensive sample characterization was performed and experimentally obtained parameters were mathematically transformed and evaluated using the SeDeM Expert System framework. The obtained samples exhibited irregular shape, despite the spherical printing object design. Polymer incorporated notably affected MPUs properties. The obtained samples exhibited low bulk density, good flowability-, as well as stability-related parameters, which indicated their suitability for filling into capsules or sachets. Low density values implied that compressibility enhancing excipients may be required for MPUs incorporation in tablets. Samples containing EC and MA-EA were found suitable for compression, due to high compacts tensile strength. The obtained results indicate that SeDeM Expert System may extended from powder compressibility evaluation tool to framework facilitating powders/multiparticulate units processing.",
journal = "International Journal of Pharmaceutics",
title = "Processability evaluation of multiparticulate units prepared by selective laser sintering using the SeDeM Expert System approach",
volume = "629",
pages = "122337",
doi = "10.1016/j.ijpharm.2022.122337"
}
Vasiljević, I., Turković, E., Piller, M., Mirković, M. M., Zimmer, A., Aleksić, I., Ibrić, S.,& Parojčić, J.. (2022). Processability evaluation of multiparticulate units prepared by selective laser sintering using the SeDeM Expert System approach. in International Journal of Pharmaceutics, 629, 122337.
https://doi.org/10.1016/j.ijpharm.2022.122337
Vasiljević I, Turković E, Piller M, Mirković MM, Zimmer A, Aleksić I, Ibrić S, Parojčić J. Processability evaluation of multiparticulate units prepared by selective laser sintering using the SeDeM Expert System approach. in International Journal of Pharmaceutics. 2022;629:122337.
doi:10.1016/j.ijpharm.2022.122337 .
Vasiljević, Ivana, Turković, Erna, Piller, Michael, Mirković, Miljana M., Zimmer, Andreas, Aleksić, Ivana, Ibrić, Svetlana, Parojčić, Jelena, "Processability evaluation of multiparticulate units prepared by selective laser sintering using the SeDeM Expert System approach" in International Journal of Pharmaceutics, 629 (2022):122337,
https://doi.org/10.1016/j.ijpharm.2022.122337 . .
2
1

Comparative evaluation of mechanical properties of lactose-based excipients co-processed with lipophilic glycerides as meltable binders

Ćirin-Varađan, Slobodanka; Đuriš, Jelena; Mirković, Miljana M.; Ivanović, Marija M.; Parojčić, Jelena; Aleksić, Ivana

(2021)

TY  - JOUR
AU  - Ćirin-Varađan, Slobodanka
AU  - Đuriš, Jelena
AU  - Mirković, Miljana M.
AU  - Ivanović, Marija M.
AU  - Parojčić, Jelena
AU  - Aleksić, Ivana
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10074
AB  - The introduction of the high-speed tableting machines and the lack of excipients with good flow and compaction properties required for direct compression process have increased research interest in the development of co-processed excipients. Melt granulation, as an environmentally friendly and cost-effective method, has recently been recognized as a promising co-processing technique. The aim of the present study was to prepare lipid-based co-processed excipients by in situ fluidized bed melt granulation and to investigated their suitability for direct compression process. Lactose monohydrate was co-processed with glyceryl dibehenate (Compritol® 888 ATO) or glyceryl palmitostearate (Precirol® ATO 5), as lipophilic meltable binders. Besides the flowability testing, dynamic compaction analysis was applied for thorough investigation into the tableting properties of developed co-processed excipients. Solid state characterization, performed by means of XRPD and DRIFT, confirmed the absence of chemical changes of the single components of co-processed excipients. Co-processed excipients showed improved flowability in comparison with single ingredients and corresponding physical mixtures. Novel co-processed excipients were found to have better tabletability profiles than physical mixtures of the ingredients, and were able to retain acceptable tensile strength values at high content of paracetamol in tableting mixture. Tablets with high tensile strength could be obtained with less work of compression needed in comparison with the commercial lactose-based excipients. Furthermore, novel lipid-based co-processed excipients were found to be highly superior regarding the antiadhesive and lubricating properties, with no additional lubricants required.
T2  - Journal of Drug Delivery Science and Technology
T1  - Comparative evaluation of mechanical properties of lactose-based excipients co-processed with lipophilic glycerides as meltable binders
SP  - 102981
DO  - 10.1016/j.jddst.2021.102981
ER  - 
@article{
author = "Ćirin-Varađan, Slobodanka and Đuriš, Jelena and Mirković, Miljana M. and Ivanović, Marija M. and Parojčić, Jelena and Aleksić, Ivana",
year = "2021",
abstract = "The introduction of the high-speed tableting machines and the lack of excipients with good flow and compaction properties required for direct compression process have increased research interest in the development of co-processed excipients. Melt granulation, as an environmentally friendly and cost-effective method, has recently been recognized as a promising co-processing technique. The aim of the present study was to prepare lipid-based co-processed excipients by in situ fluidized bed melt granulation and to investigated their suitability for direct compression process. Lactose monohydrate was co-processed with glyceryl dibehenate (Compritol® 888 ATO) or glyceryl palmitostearate (Precirol® ATO 5), as lipophilic meltable binders. Besides the flowability testing, dynamic compaction analysis was applied for thorough investigation into the tableting properties of developed co-processed excipients. Solid state characterization, performed by means of XRPD and DRIFT, confirmed the absence of chemical changes of the single components of co-processed excipients. Co-processed excipients showed improved flowability in comparison with single ingredients and corresponding physical mixtures. Novel co-processed excipients were found to have better tabletability profiles than physical mixtures of the ingredients, and were able to retain acceptable tensile strength values at high content of paracetamol in tableting mixture. Tablets with high tensile strength could be obtained with less work of compression needed in comparison with the commercial lactose-based excipients. Furthermore, novel lipid-based co-processed excipients were found to be highly superior regarding the antiadhesive and lubricating properties, with no additional lubricants required.",
journal = "Journal of Drug Delivery Science and Technology",
title = "Comparative evaluation of mechanical properties of lactose-based excipients co-processed with lipophilic glycerides as meltable binders",
pages = "102981",
doi = "10.1016/j.jddst.2021.102981"
}
Ćirin-Varađan, S., Đuriš, J., Mirković, M. M., Ivanović, M. M., Parojčić, J.,& Aleksić, I.. (2021). Comparative evaluation of mechanical properties of lactose-based excipients co-processed with lipophilic glycerides as meltable binders. in Journal of Drug Delivery Science and Technology, 102981.
https://doi.org/10.1016/j.jddst.2021.102981
Ćirin-Varađan S, Đuriš J, Mirković MM, Ivanović MM, Parojčić J, Aleksić I. Comparative evaluation of mechanical properties of lactose-based excipients co-processed with lipophilic glycerides as meltable binders. in Journal of Drug Delivery Science and Technology. 2021;:102981.
doi:10.1016/j.jddst.2021.102981 .
Ćirin-Varađan, Slobodanka, Đuriš, Jelena, Mirković, Miljana M., Ivanović, Marija M., Parojčić, Jelena, Aleksić, Ivana, "Comparative evaluation of mechanical properties of lactose-based excipients co-processed with lipophilic glycerides as meltable binders" in Journal of Drug Delivery Science and Technology (2021):102981,
https://doi.org/10.1016/j.jddst.2021.102981 . .
3
3