Avdeev, Max

Link to this page

Authority KeyName Variants
orcid::0000-0003-2366-5809
  • Avdeev, Max (3)
  • Avdeev, Maxim (1)
Projects

Author's Bibliography

New insights into BaTi1-xSnxO3 (0 LT = x LT = 0.20) phase diagram from neutron diffraction data

Veselinović, Ljiljana M.; Mitrić, Miodrag; Avdeev, Maxim; Marković, Smilja; Uskoković, Dragan

(2016)

TY  - JOUR
AU  - Veselinović, Ljiljana M.
AU  - Mitrić, Miodrag
AU  - Avdeev, Maxim
AU  - Marković, Smilja
AU  - Uskoković, Dragan
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1312
AB  - Neutron powder diffraction (NPD) was employed to further investigate the BaTi1-xSnxO3 (BTS) system previously studied by X-ray diffraction. The room-temperature phase compositions and crystal structures of BTS samples with x = 0, 0.025, 0.05, 0.07, 0.10, 0.12, 0.15 and 0.20 were refined by the Rietveld method using NPD data. It is well known that barium titanate powder (x = 0) crystallizes in the tetragonal P4mm space group. The crystal structures of the samples with 0.025 LT = x LT = 0.07 were refined as mixtures of P4mm and Amm2 phases; those with x = 0.1 and 0.12 show the coexistence of rhombohedral R3m and cubic phases, while the samples with x = 0.15 and 0.20 crystallize in a single cubic Pm (3) over barm phase. Temperature-dependent NPD was used to characterize the BaTi0.95Sn0.05O3 sample at 273, 333 and 373 K, and it was found to form single-phase Amm2, P4mm and Pm (3) over barm structures at these respective temperatures. The NPD results are in agreement with data obtained by differential scanning calorimetry and dielectric permittivity measurements, which show a para-electric-ferroelectric transition (associated with structural transition) from Pm (3) over barm to P4mm at about 353 K followed by a P4mm to Amm2 phase transition at about 303 K.
T2  - Journal of Applied Crystallography
T1  - New insights into BaTi1-xSnxO3 (0 LT = x LT = 0.20) phase diagram from neutron diffraction data
VL  - 49
SP  - 1726
EP  - 1733
DO  - 10.1107/S1600576716013157
ER  - 
@article{
author = "Veselinović, Ljiljana M. and Mitrić, Miodrag and Avdeev, Maxim and Marković, Smilja and Uskoković, Dragan",
year = "2016",
abstract = "Neutron powder diffraction (NPD) was employed to further investigate the BaTi1-xSnxO3 (BTS) system previously studied by X-ray diffraction. The room-temperature phase compositions and crystal structures of BTS samples with x = 0, 0.025, 0.05, 0.07, 0.10, 0.12, 0.15 and 0.20 were refined by the Rietveld method using NPD data. It is well known that barium titanate powder (x = 0) crystallizes in the tetragonal P4mm space group. The crystal structures of the samples with 0.025 LT = x LT = 0.07 were refined as mixtures of P4mm and Amm2 phases; those with x = 0.1 and 0.12 show the coexistence of rhombohedral R3m and cubic phases, while the samples with x = 0.15 and 0.20 crystallize in a single cubic Pm (3) over barm phase. Temperature-dependent NPD was used to characterize the BaTi0.95Sn0.05O3 sample at 273, 333 and 373 K, and it was found to form single-phase Amm2, P4mm and Pm (3) over barm structures at these respective temperatures. The NPD results are in agreement with data obtained by differential scanning calorimetry and dielectric permittivity measurements, which show a para-electric-ferroelectric transition (associated with structural transition) from Pm (3) over barm to P4mm at about 353 K followed by a P4mm to Amm2 phase transition at about 303 K.",
journal = "Journal of Applied Crystallography",
title = "New insights into BaTi1-xSnxO3 (0 LT = x LT = 0.20) phase diagram from neutron diffraction data",
volume = "49",
pages = "1726-1733",
doi = "10.1107/S1600576716013157"
}
Veselinović, L. M., Mitrić, M., Avdeev, M., Marković, S.,& Uskoković, D.. (2016). New insights into BaTi1-xSnxO3 (0 LT = x LT = 0.20) phase diagram from neutron diffraction data. in Journal of Applied Crystallography, 49, 1726-1733.
https://doi.org/10.1107/S1600576716013157
Veselinović LM, Mitrić M, Avdeev M, Marković S, Uskoković D. New insights into BaTi1-xSnxO3 (0 LT = x LT = 0.20) phase diagram from neutron diffraction data. in Journal of Applied Crystallography. 2016;49:1726-1733.
doi:10.1107/S1600576716013157 .
Veselinović, Ljiljana M., Mitrić, Miodrag, Avdeev, Maxim, Marković, Smilja, Uskoković, Dragan, "New insights into BaTi1-xSnxO3 (0 LT = x LT = 0.20) phase diagram from neutron diffraction data" in Journal of Applied Crystallography, 49 (2016):1726-1733,
https://doi.org/10.1107/S1600576716013157 . .
1
17
13
17

Fluorine Doping of Layered NaxCoO2 Structure

Jugović, Dragana; Milović, Miloš; Mitrić, Miodrag; Cvjetićanin, Nikola; Avdeev, Max; Jokić, Bojan M.; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2015)

TY  - CONF
AU  - Jugović, Dragana
AU  - Milović, Miloš
AU  - Mitrić, Miodrag
AU  - Cvjetićanin, Nikola
AU  - Avdeev, Max
AU  - Jokić, Bojan M.
AU  - Uskoković, Dragan
PY  - 2015
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7543
AB  - The room temperature Na-ion secondary battery has been under focus lately due to its feasibility to compete against the already well-established Li-ion secondary battery. Transition metal oxides of general formula NaxMO2 have been investigated as potential cathode materials for sodium batteries. Layered NaxCoO2 is synthesized via solid-state method at 900 ºC in air atmosphere. Fluorine doping of the as-prepared powder is established by the use of ammonium hydrogen difluoride (NH4HF2) as a fluorinating agent. The fluorination takes place only at low temperature (200 ºC), while the treatment at higher temperatures (≥ 400 ºC) facilitates the formation of NaF. It is shown that various and controllable amounts of fluorine can be successfully incorporated into the structure. Finally, the effects of fluorine doping on both structural and electrochemical properties are examined.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Seventeenth Annual Conference YUCOMAT 2015 : Programme and The Book of Abstracts
T1  - Fluorine Doping of Layered NaxCoO2 Structure
SP  - 12
EP  - 12
UR  - https://hdl.handle.net/21.15107/rcub_vinar_7543
ER  - 
@conference{
author = "Jugović, Dragana and Milović, Miloš and Mitrić, Miodrag and Cvjetićanin, Nikola and Avdeev, Max and Jokić, Bojan M. and Uskoković, Dragan",
year = "2015",
abstract = "The room temperature Na-ion secondary battery has been under focus lately due to its feasibility to compete against the already well-established Li-ion secondary battery. Transition metal oxides of general formula NaxMO2 have been investigated as potential cathode materials for sodium batteries. Layered NaxCoO2 is synthesized via solid-state method at 900 ºC in air atmosphere. Fluorine doping of the as-prepared powder is established by the use of ammonium hydrogen difluoride (NH4HF2) as a fluorinating agent. The fluorination takes place only at low temperature (200 ºC), while the treatment at higher temperatures (≥ 400 ºC) facilitates the formation of NaF. It is shown that various and controllable amounts of fluorine can be successfully incorporated into the structure. Finally, the effects of fluorine doping on both structural and electrochemical properties are examined.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Seventeenth Annual Conference YUCOMAT 2015 : Programme and The Book of Abstracts",
title = "Fluorine Doping of Layered NaxCoO2 Structure",
pages = "12-12",
url = "https://hdl.handle.net/21.15107/rcub_vinar_7543"
}
Jugović, D., Milović, M., Mitrić, M., Cvjetićanin, N., Avdeev, M., Jokić, B. M.,& Uskoković, D.. (2015). Fluorine Doping of Layered NaxCoO2 Structure. in Seventeenth Annual Conference YUCOMAT 2015 : Programme and The Book of Abstracts
Belgrade : Materials Research Society of Serbia., 12-12.
https://hdl.handle.net/21.15107/rcub_vinar_7543
Jugović D, Milović M, Mitrić M, Cvjetićanin N, Avdeev M, Jokić BM, Uskoković D. Fluorine Doping of Layered NaxCoO2 Structure. in Seventeenth Annual Conference YUCOMAT 2015 : Programme and The Book of Abstracts. 2015;:12-12.
https://hdl.handle.net/21.15107/rcub_vinar_7543 .
Jugović, Dragana, Milović, Miloš, Mitrić, Miodrag, Cvjetićanin, Nikola, Avdeev, Max, Jokić, Bojan M., Uskoković, Dragan, "Fluorine Doping of Layered NaxCoO2 Structure" in Seventeenth Annual Conference YUCOMAT 2015 : Programme and The Book of Abstracts (2015):12-12,
https://hdl.handle.net/21.15107/rcub_vinar_7543 .

Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mossbauer spectroscopy

Jugović, Dragana; Milović, Miloš; Ivanovski, Valentin N.; Avdeev, Max; Dominko, Robert; Jokić, Bojan M.; Uskoković, Dragan

(2014)

TY  - JOUR
AU  - Jugović, Dragana
AU  - Milović, Miloš
AU  - Ivanovski, Valentin N.
AU  - Avdeev, Max
AU  - Dominko, Robert
AU  - Jokić, Bojan M.
AU  - Uskoković, Dragan
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/6045
AB  - A composite powder Li2FeSiO4/C is synthesized through a solid state reaction at 750 C. The Rietveld crystal structure refinement is done in the monoclinic P2(1)/n space group. It is found that the crystal structure is prone to antisite defect where small part of iron ion occupies exclusively Li(2) crystallographic position, of two different lithium tetrahedral positions (Li(1) and Li(2)). This finding is also confirmed by Mossbauer spectroscopy study: the sextet evidenced in the Mossbauer spectrum is assigned to the iron ions positioned at the Li(2) sites. A bond-valence energy landscape calculation is used to predict the conduction pathways of lithium ions. The calculations suggest that Li conductivity is two-dimensional in the (101) plane. Upon galvanostatic cyclings the structure starts to rearrange to inverse,311 polymorph. (C) 2014 Elsevier B.V. All rights reserved.
T2  - Journal of Power Sources
T1  - Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mossbauer spectroscopy
VL  - 265
SP  - 75
EP  - 80
DO  - 10.1016/j.jpowsour.2014.04.121
ER  - 
@article{
author = "Jugović, Dragana and Milović, Miloš and Ivanovski, Valentin N. and Avdeev, Max and Dominko, Robert and Jokić, Bojan M. and Uskoković, Dragan",
year = "2014",
abstract = "A composite powder Li2FeSiO4/C is synthesized through a solid state reaction at 750 C. The Rietveld crystal structure refinement is done in the monoclinic P2(1)/n space group. It is found that the crystal structure is prone to antisite defect where small part of iron ion occupies exclusively Li(2) crystallographic position, of two different lithium tetrahedral positions (Li(1) and Li(2)). This finding is also confirmed by Mossbauer spectroscopy study: the sextet evidenced in the Mossbauer spectrum is assigned to the iron ions positioned at the Li(2) sites. A bond-valence energy landscape calculation is used to predict the conduction pathways of lithium ions. The calculations suggest that Li conductivity is two-dimensional in the (101) plane. Upon galvanostatic cyclings the structure starts to rearrange to inverse,311 polymorph. (C) 2014 Elsevier B.V. All rights reserved.",
journal = "Journal of Power Sources",
title = "Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mossbauer spectroscopy",
volume = "265",
pages = "75-80",
doi = "10.1016/j.jpowsour.2014.04.121"
}
Jugović, D., Milović, M., Ivanovski, V. N., Avdeev, M., Dominko, R., Jokić, B. M.,& Uskoković, D.. (2014). Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mossbauer spectroscopy. in Journal of Power Sources, 265, 75-80.
https://doi.org/10.1016/j.jpowsour.2014.04.121
Jugović D, Milović M, Ivanovski VN, Avdeev M, Dominko R, Jokić BM, Uskoković D. Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mossbauer spectroscopy. in Journal of Power Sources. 2014;265:75-80.
doi:10.1016/j.jpowsour.2014.04.121 .
Jugović, Dragana, Milović, Miloš, Ivanovski, Valentin N., Avdeev, Max, Dominko, Robert, Jokić, Bojan M., Uskoković, Dragan, "Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mossbauer spectroscopy" in Journal of Power Sources, 265 (2014):75-80,
https://doi.org/10.1016/j.jpowsour.2014.04.121 . .
10
12
12

Li2FeSiO4 cathode material: the structure and electrochemical performances

Jugović, Dragana; Milović, Miloš; Mitrić, Miodrag; Ivanovski, Valentin N.; Avdeev, Max; Jokić, Bojan M.; Dominko, Robert; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2014)

TY  - CONF
AU  - Jugović, Dragana
AU  - Milović, Miloš
AU  - Mitrić, Miodrag
AU  - Ivanovski, Valentin N.
AU  - Avdeev, Max
AU  - Jokić, Bojan M.
AU  - Dominko, Robert
AU  - Uskoković, Dragan
PY  - 2014
UR  - http://dais.sanu.ac.rs/123456789/590
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7487
AB  - Monoclinic Li2FeSiO4 that crystallizes in P21/n space group was investigated as a potential cathode material for lithium-ion batteries. A combined X-ray diffraction and Mössbauer spectroscopy study was used for the structural investigation. It was found that the crystal structure is prone to an “antisite” defect, the one in which the Fe ion and the Li ion exchange places. This finding was also confirmed by the Mössbauer spectroscopy. In order to obtain composites of Li2FeSiO4 and carbon, several synthesis techniques that use different carbon sources were involved. Electrochemical performances were investigated through galvanostatic charge/discharge tests. Discharge curve profile did not reflect a two-phase intercalation reaction (no obvious voltage plateau) due to the low conductivity at room temperature.
PB  - Belgrade : Materials Research Society of Serbia
C3  - The Sixteenth Annual Conference YUCOMAT 2014: Programme and the Book of Abstracts
T1  - Li2FeSiO4 cathode material: the structure and electrochemical performances
SP  - 6
EP  - 6
UR  - https://hdl.handle.net/21.15107/rcub_vinar_7487
ER  - 
@conference{
author = "Jugović, Dragana and Milović, Miloš and Mitrić, Miodrag and Ivanovski, Valentin N. and Avdeev, Max and Jokić, Bojan M. and Dominko, Robert and Uskoković, Dragan",
year = "2014",
abstract = "Monoclinic Li2FeSiO4 that crystallizes in P21/n space group was investigated as a potential cathode material for lithium-ion batteries. A combined X-ray diffraction and Mössbauer spectroscopy study was used for the structural investigation. It was found that the crystal structure is prone to an “antisite” defect, the one in which the Fe ion and the Li ion exchange places. This finding was also confirmed by the Mössbauer spectroscopy. In order to obtain composites of Li2FeSiO4 and carbon, several synthesis techniques that use different carbon sources were involved. Electrochemical performances were investigated through galvanostatic charge/discharge tests. Discharge curve profile did not reflect a two-phase intercalation reaction (no obvious voltage plateau) due to the low conductivity at room temperature.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "The Sixteenth Annual Conference YUCOMAT 2014: Programme and the Book of Abstracts",
title = "Li2FeSiO4 cathode material: the structure and electrochemical performances",
pages = "6-6",
url = "https://hdl.handle.net/21.15107/rcub_vinar_7487"
}
Jugović, D., Milović, M., Mitrić, M., Ivanovski, V. N., Avdeev, M., Jokić, B. M., Dominko, R.,& Uskoković, D.. (2014). Li2FeSiO4 cathode material: the structure and electrochemical performances. in The Sixteenth Annual Conference YUCOMAT 2014: Programme and the Book of Abstracts
Belgrade : Materials Research Society of Serbia., 6-6.
https://hdl.handle.net/21.15107/rcub_vinar_7487
Jugović D, Milović M, Mitrić M, Ivanovski VN, Avdeev M, Jokić BM, Dominko R, Uskoković D. Li2FeSiO4 cathode material: the structure and electrochemical performances. in The Sixteenth Annual Conference YUCOMAT 2014: Programme and the Book of Abstracts. 2014;:6-6.
https://hdl.handle.net/21.15107/rcub_vinar_7487 .
Jugović, Dragana, Milović, Miloš, Mitrić, Miodrag, Ivanovski, Valentin N., Avdeev, Max, Jokić, Bojan M., Dominko, Robert, Uskoković, Dragan, "Li2FeSiO4 cathode material: the structure and electrochemical performances" in The Sixteenth Annual Conference YUCOMAT 2014: Programme and the Book of Abstracts (2014):6-6,
https://hdl.handle.net/21.15107/rcub_vinar_7487 .