Tchernychova, Elena

Link to this page

Authority KeyName Variants
e1036c2d-d55c-4542-abed-98b1b6cdb015
  • Tchernychova, Elena (2)
Projects

Author's Bibliography

Tiling the Silicon for Added Functionality: PLD Growth of Highly Crystalline STO and PZT on Graphene Oxide-Buffered Silicon Surface

Jovanović, Zoran M.; Trstenjak, Urška; Ho, Hsin-Chia; Butsyk, Olena; Chen, Binbin; Tchernychova, Elena; Borodavka, Fedir; Koster, Gertjan; Hlinka, Jiří; Spreitzer, Matjaž

(2023)

TY  - JOUR
AU  - Jovanović, Zoran M.
AU  - Trstenjak, Urška
AU  - Ho, Hsin-Chia
AU  - Butsyk, Olena
AU  - Chen, Binbin
AU  - Tchernychova, Elena
AU  - Borodavka, Fedir
AU  - Koster, Gertjan
AU  - Hlinka, Jiří
AU  - Spreitzer, Matjaž
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10623
AB  - The application of two-dimensional (2D) materials
has alleviated a number of challenges of traditional epitaxy and
pushed forward the integration of dissimilar materials. Besides
acting as a seed layer for van der Waals epitaxy, the 2D materials�
being atom(s) thick�have also enabled wetting transparency in
which the potential field of the substrate, although partially
screened, is still capable of imposing epitaxial overgrowth. One of
the crucial steps in this technology is the preservation of the quality
of 2D materials during and after their transfer to a substrate of
interest. In the present study, we show that by honing the
achievements of traditional epitaxy and wet chemistry a hybrid
approach can be devised that offers a unique perspective for the
integration of functional oxides with a silicon platform. It is based
on SrO-assisted deoxidation and controllable coverage of silicon surface with a layer(s) of spin-coated graphene oxide, thus
simultaneously allowing both direct and van der Waals epitaxy of SrTiO3 (STO). We were able to grow a high-quality STO pseudosubstrate suitable for further overgrowth of functional oxides, such as PbZr1−xTixO3 (PZT). Given that the quality of the films grown
on a reduced graphene oxide-buffer layer was almost identical to that obtained on SiC-derived graphene, we believe that this
approach may provide new routes for direct and “remote” epitaxy or layer-transfer techniques of dissimilar material systems.
T2  - ACS Applied Materials and Interfaces
T1  - Tiling the Silicon for Added Functionality: PLD Growth of Highly
Crystalline STO and PZT on Graphene Oxide-Buffered Silicon Surface
VL  - 15
SP  - 6058
EP  - 6068
DO  - 10.1021/acsami.2c17351
ER  - 
@article{
author = "Jovanović, Zoran M. and Trstenjak, Urška and Ho, Hsin-Chia and Butsyk, Olena and Chen, Binbin and Tchernychova, Elena and Borodavka, Fedir and Koster, Gertjan and Hlinka, Jiří and Spreitzer, Matjaž",
year = "2023",
abstract = "The application of two-dimensional (2D) materials
has alleviated a number of challenges of traditional epitaxy and
pushed forward the integration of dissimilar materials. Besides
acting as a seed layer for van der Waals epitaxy, the 2D materials�
being atom(s) thick�have also enabled wetting transparency in
which the potential field of the substrate, although partially
screened, is still capable of imposing epitaxial overgrowth. One of
the crucial steps in this technology is the preservation of the quality
of 2D materials during and after their transfer to a substrate of
interest. In the present study, we show that by honing the
achievements of traditional epitaxy and wet chemistry a hybrid
approach can be devised that offers a unique perspective for the
integration of functional oxides with a silicon platform. It is based
on SrO-assisted deoxidation and controllable coverage of silicon surface with a layer(s) of spin-coated graphene oxide, thus
simultaneously allowing both direct and van der Waals epitaxy of SrTiO3 (STO). We were able to grow a high-quality STO pseudosubstrate suitable for further overgrowth of functional oxides, such as PbZr1−xTixO3 (PZT). Given that the quality of the films grown
on a reduced graphene oxide-buffer layer was almost identical to that obtained on SiC-derived graphene, we believe that this
approach may provide new routes for direct and “remote” epitaxy or layer-transfer techniques of dissimilar material systems.",
journal = "ACS Applied Materials and Interfaces",
title = "Tiling the Silicon for Added Functionality: PLD Growth of Highly
Crystalline STO and PZT on Graphene Oxide-Buffered Silicon Surface",
volume = "15",
pages = "6058-6068",
doi = "10.1021/acsami.2c17351"
}
Jovanović, Z. M., Trstenjak, U., Ho, H., Butsyk, O., Chen, B., Tchernychova, E., Borodavka, F., Koster, G., Hlinka, J.,& Spreitzer, M.. (2023). Tiling the Silicon for Added Functionality: PLD Growth of Highly
Crystalline STO and PZT on Graphene Oxide-Buffered Silicon Surface. in ACS Applied Materials and Interfaces, 15, 6058-6068.
https://doi.org/10.1021/acsami.2c17351
Jovanović ZM, Trstenjak U, Ho H, Butsyk O, Chen B, Tchernychova E, Borodavka F, Koster G, Hlinka J, Spreitzer M. Tiling the Silicon for Added Functionality: PLD Growth of Highly
Crystalline STO and PZT on Graphene Oxide-Buffered Silicon Surface. in ACS Applied Materials and Interfaces. 2023;15:6058-6068.
doi:10.1021/acsami.2c17351 .
Jovanović, Zoran M., Trstenjak, Urška, Ho, Hsin-Chia, Butsyk, Olena, Chen, Binbin, Tchernychova, Elena, Borodavka, Fedir, Koster, Gertjan, Hlinka, Jiří, Spreitzer, Matjaž, "Tiling the Silicon for Added Functionality: PLD Growth of Highly
Crystalline STO and PZT on Graphene Oxide-Buffered Silicon Surface" in ACS Applied Materials and Interfaces, 15 (2023):6058-6068,
https://doi.org/10.1021/acsami.2c17351 . .
1
2
1

The synthesis of Li(Co-Mn-Ni)O-2 cathode material from spent-Li ion batteries and the proof of its functionality in aqueous lithium and sodium electrolytic solutions

Senćanski, Jelena; Bajuk-Bogdanović, Danica V.; Majstorović, Divna M.; Tchernychova, Elena; Papan, Jelena; Vujković, Milica

(2017)

TY  - JOUR
AU  - Senćanski, Jelena
AU  - Bajuk-Bogdanović, Danica V.
AU  - Majstorović, Divna M.
AU  - Tchernychova, Elena
AU  - Papan, Jelena
AU  - Vujković, Milica
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1457
AB  - Several spent Li-ion batteries were manually dismantled and their components were uncurled and separated. The chemical composition of each batterys component was determined by atomic absorption spectroscopy. Among several ways to separate cathode material from the collector, the alkali dissolution treatment was selected as the most effective one. After both complete separation and acid leaching steps, the co-precipitation method, followed by a thermal treatment (700 degrees C or 850 degrees C), was used to resynthesize cathode material LiCo0.415Mn0.435Ni0.15O2. Its structure and morphology were characterized by XRD, Raman spectroscopy and SEM-EDS methods. The electrochemical behavior of recycled cathode materials was examined by cyclic voltammetry and chronopotentiometry in both LiNO3 and NaNO3 aqueous solutions. High sodium storage capacity, amounting to 93 mAh g(-1), was measured galvanostatically at a relatively high current of 100 mA g(-1). Initial lithium intercalation capacity of 64 mAh was determined potentiodynamically at very high scan rate of 20 mV s(-1) (similar to 40 C). Somewhat lower initial capacity of 30 mAh g(-1), but much lower capacity fade on cycling, was found for sodium intercalation at the same scan rate. The differences in the Li and Na charge storage capability were explained in terms of ion rearrangement during charging/discharging processes. (C) 2017 Elsevier B.V. All rights reserved.
T2  - Journal of Power Sources
T1  - The synthesis of Li(Co-Mn-Ni)O-2 cathode material from spent-Li ion batteries and the proof of its functionality in aqueous lithium and sodium electrolytic solutions
VL  - 342
SP  - 690
EP  - 703
DO  - 10.1016/j.jpowsour.2016.12.115
ER  - 
@article{
author = "Senćanski, Jelena and Bajuk-Bogdanović, Danica V. and Majstorović, Divna M. and Tchernychova, Elena and Papan, Jelena and Vujković, Milica",
year = "2017",
abstract = "Several spent Li-ion batteries were manually dismantled and their components were uncurled and separated. The chemical composition of each batterys component was determined by atomic absorption spectroscopy. Among several ways to separate cathode material from the collector, the alkali dissolution treatment was selected as the most effective one. After both complete separation and acid leaching steps, the co-precipitation method, followed by a thermal treatment (700 degrees C or 850 degrees C), was used to resynthesize cathode material LiCo0.415Mn0.435Ni0.15O2. Its structure and morphology were characterized by XRD, Raman spectroscopy and SEM-EDS methods. The electrochemical behavior of recycled cathode materials was examined by cyclic voltammetry and chronopotentiometry in both LiNO3 and NaNO3 aqueous solutions. High sodium storage capacity, amounting to 93 mAh g(-1), was measured galvanostatically at a relatively high current of 100 mA g(-1). Initial lithium intercalation capacity of 64 mAh was determined potentiodynamically at very high scan rate of 20 mV s(-1) (similar to 40 C). Somewhat lower initial capacity of 30 mAh g(-1), but much lower capacity fade on cycling, was found for sodium intercalation at the same scan rate. The differences in the Li and Na charge storage capability were explained in terms of ion rearrangement during charging/discharging processes. (C) 2017 Elsevier B.V. All rights reserved.",
journal = "Journal of Power Sources",
title = "The synthesis of Li(Co-Mn-Ni)O-2 cathode material from spent-Li ion batteries and the proof of its functionality in aqueous lithium and sodium electrolytic solutions",
volume = "342",
pages = "690-703",
doi = "10.1016/j.jpowsour.2016.12.115"
}
Senćanski, J., Bajuk-Bogdanović, D. V., Majstorović, D. M., Tchernychova, E., Papan, J.,& Vujković, M.. (2017). The synthesis of Li(Co-Mn-Ni)O-2 cathode material from spent-Li ion batteries and the proof of its functionality in aqueous lithium and sodium electrolytic solutions. in Journal of Power Sources, 342, 690-703.
https://doi.org/10.1016/j.jpowsour.2016.12.115
Senćanski J, Bajuk-Bogdanović DV, Majstorović DM, Tchernychova E, Papan J, Vujković M. The synthesis of Li(Co-Mn-Ni)O-2 cathode material from spent-Li ion batteries and the proof of its functionality in aqueous lithium and sodium electrolytic solutions. in Journal of Power Sources. 2017;342:690-703.
doi:10.1016/j.jpowsour.2016.12.115 .
Senćanski, Jelena, Bajuk-Bogdanović, Danica V., Majstorović, Divna M., Tchernychova, Elena, Papan, Jelena, Vujković, Milica, "The synthesis of Li(Co-Mn-Ni)O-2 cathode material from spent-Li ion batteries and the proof of its functionality in aqueous lithium and sodium electrolytic solutions" in Journal of Power Sources, 342 (2017):690-703,
https://doi.org/10.1016/j.jpowsour.2016.12.115 . .
54
28
55