Magic, Marko

Link to this page

Authority KeyName Variants
fc807b2f-a2ff-4387-b137-87f5e10333b0
  • Magic, Marko (1)
Projects

Author's Bibliography

Biocompatibility Investigation of New Endodontic Materials Based on Nanosynthesized Calcium Silicates Combined with Different Radiopacifiers

Ćetenović, Bojana; Prokić, Bogomir; Vasilijić, Saša; Dojčinović, Biljana P.; Magic, Marko; Jokanović, Vukoman R.; Marković, Dejan

(2017)

TY  - JOUR
AU  - Ćetenović, Bojana
AU  - Prokić, Bogomir
AU  - Vasilijić, Saša
AU  - Dojčinović, Biljana P.
AU  - Magic, Marko
AU  - Jokanović, Vukoman R.
AU  - Marković, Dejan
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1451
AB  - Introduction: The aim of this article was to analyze biocompatibility and bioactivity of new endodontic materials on the basis of nanosynthesized calcium silicates (ALBO-MPCA(1) and ALBO-MPCA(2)) combined with different radiopacifiers in comparison with MTA(+). Methods: Morphology of the samples was studied by scanning electron microscopy, and the pH and ion release analysis were also assessed. Biocompatibility of materials eluates (24-hour, 7-day, and 21-day) was conducted by using MIT test. Twelve New Zealand white rabbits were used for intraosseous implantation. Four calvarial defects per animal were created and filled with freshly prepared investigated materials. Results: Samples mostly consisted of agglomerates built up from nanoparticles, preferably spherical and rod-like. There was no significant difference among pH values of materials eluates after 24 hours (P GT .05). The amount of calcium and aluminum ion release decreased, whereas the amount of magnesium and bismuth (ALBO-MPCAl, MTA(+)) and barium (ALBO-MPCA(2)) increased during 21-day period. The metabolic activity of cells increased after the extraction time, except in case of undiluted elutes of ALBO-MPCA(2) and ALBO-MPCAI (21-day). Histologic analysis of the samples revealed newly formed bone tissue with moderate inflammation for all investigated materials, which subsided during 90-day period to mild. Both MIA(+) and ALBO-MPCAI were in direct contact with the newly formed bone tissue. After 90 days, statistically significant difference in hard tissue formation was observed in comparison of MIA(+) and ALBO-MPCki with control group (P LT .05). Conclusions: Experimental materials ALBOMPCA, and ALBO-MPCA(2) possess both biocompatibility and bioactivity. Because ALBO-MPCAA provokes favorable biological response, it is especially good candidate for further clinical investigations.
T2  - Journal of Endodontics
T1  - Biocompatibility Investigation of New Endodontic Materials Based on Nanosynthesized Calcium Silicates Combined with Different Radiopacifiers
VL  - 43
IS  - 3
SP  - 425
EP  - 432
DO  - 10.1016/j.joen.2016.10.041
ER  - 
@article{
author = "Ćetenović, Bojana and Prokić, Bogomir and Vasilijić, Saša and Dojčinović, Biljana P. and Magic, Marko and Jokanović, Vukoman R. and Marković, Dejan",
year = "2017",
abstract = "Introduction: The aim of this article was to analyze biocompatibility and bioactivity of new endodontic materials on the basis of nanosynthesized calcium silicates (ALBO-MPCA(1) and ALBO-MPCA(2)) combined with different radiopacifiers in comparison with MTA(+). Methods: Morphology of the samples was studied by scanning electron microscopy, and the pH and ion release analysis were also assessed. Biocompatibility of materials eluates (24-hour, 7-day, and 21-day) was conducted by using MIT test. Twelve New Zealand white rabbits were used for intraosseous implantation. Four calvarial defects per animal were created and filled with freshly prepared investigated materials. Results: Samples mostly consisted of agglomerates built up from nanoparticles, preferably spherical and rod-like. There was no significant difference among pH values of materials eluates after 24 hours (P GT .05). The amount of calcium and aluminum ion release decreased, whereas the amount of magnesium and bismuth (ALBO-MPCAl, MTA(+)) and barium (ALBO-MPCA(2)) increased during 21-day period. The metabolic activity of cells increased after the extraction time, except in case of undiluted elutes of ALBO-MPCA(2) and ALBO-MPCAI (21-day). Histologic analysis of the samples revealed newly formed bone tissue with moderate inflammation for all investigated materials, which subsided during 90-day period to mild. Both MIA(+) and ALBO-MPCAI were in direct contact with the newly formed bone tissue. After 90 days, statistically significant difference in hard tissue formation was observed in comparison of MIA(+) and ALBO-MPCki with control group (P LT .05). Conclusions: Experimental materials ALBOMPCA, and ALBO-MPCA(2) possess both biocompatibility and bioactivity. Because ALBO-MPCAA provokes favorable biological response, it is especially good candidate for further clinical investigations.",
journal = "Journal of Endodontics",
title = "Biocompatibility Investigation of New Endodontic Materials Based on Nanosynthesized Calcium Silicates Combined with Different Radiopacifiers",
volume = "43",
number = "3",
pages = "425-432",
doi = "10.1016/j.joen.2016.10.041"
}
Ćetenović, B., Prokić, B., Vasilijić, S., Dojčinović, B. P., Magic, M., Jokanović, V. R.,& Marković, D.. (2017). Biocompatibility Investigation of New Endodontic Materials Based on Nanosynthesized Calcium Silicates Combined with Different Radiopacifiers. in Journal of Endodontics, 43(3), 425-432.
https://doi.org/10.1016/j.joen.2016.10.041
Ćetenović B, Prokić B, Vasilijić S, Dojčinović BP, Magic M, Jokanović VR, Marković D. Biocompatibility Investigation of New Endodontic Materials Based on Nanosynthesized Calcium Silicates Combined with Different Radiopacifiers. in Journal of Endodontics. 2017;43(3):425-432.
doi:10.1016/j.joen.2016.10.041 .
Ćetenović, Bojana, Prokić, Bogomir, Vasilijić, Saša, Dojčinović, Biljana P., Magic, Marko, Jokanović, Vukoman R., Marković, Dejan, "Biocompatibility Investigation of New Endodontic Materials Based on Nanosynthesized Calcium Silicates Combined with Different Radiopacifiers" in Journal of Endodontics, 43, no. 3 (2017):425-432,
https://doi.org/10.1016/j.joen.2016.10.041 . .
3
10
9
11