Bezbradica, Dejan I.

Link to this page

Authority KeyName Variants
a4b1b72e-3bfb-483d-8303-fc4cb229c301
  • Bezbradica, Dejan I. (1)
Projects

Author's Bibliography

Immobilization of dextransucrase on functionalized TiO2 supports

Miljković, Miona G.; Lazić, Vesna M.; Banjanac, Katarina; Davidović, Slađana Z.; Bezbradica, Dejan I.; Marinković, Aleksandar D.; Sredojević, Dušan; Nedeljković, Jovan; Dimitrijević-Branković, Suzana I.

(2018)

TY  - JOUR
AU  - Miljković, Miona G.
AU  - Lazić, Vesna M.
AU  - Banjanac, Katarina
AU  - Davidović, Slađana Z.
AU  - Bezbradica, Dejan I.
AU  - Marinković, Aleksandar D.
AU  - Sredojević, Dušan
AU  - Nedeljković, Jovan
AU  - Dimitrijević-Branković, Suzana I.
PY  - 2018
UR  - http://linkinghub.elsevier.com/retrieve/pii/S0141813018302952
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7776
AB  - The TiO2 based hybrid supports with different functional groups (amino, glutaraldehyde or epoxy) were prepared and their influence on immobilization of dextransucrase (DS) was studied. Novel synthetic route for surface modification of TiO2 with amino and glutaraldehyde groups was developed taking advantage of charge transfer complex (CTC) formation between surface Ti atoms and salicylate-type of ligand (5 aminosalicylic acid (5-ASA)). The proposed coordination of 5-ASA to the surface of TiO2 powder and optical properties of CTC was presented. The pristine TiO2 and amino functionalized TiO2 have higher sorption capacity for DS (12.6 and 12.0 mg g(-1), respectively) compared to glutaraldehyde and epoxy activated supports (9.6 and 9.8 mg g(-1) respectively). However, immobilized enzyme to either glutaraldehyde or epoxy functionalized TiO2 have almost two times higher expressed activities compared to pristine TiO2 support (258, 235 and 142 IU g(-1), respectively). Thermal stability of enzyme immobilized on glutaraldehyde and epoxy functionalized supports was studied at 40 degrees C, as well as operational stability under long-run working conditions in repeated cycles. After five cycles, DS imobilized on glutaraldehyde activated support retained almost 70% of its initial expressed activity, while, after five cycles, performance of DS immobilized on epoxy activated support was significantly lower (15%).
T2  - International Journal of Biological Macromolecules
T1  - Immobilization of dextransucrase on functionalized TiO2 supports
VL  - 114
SP  - 1216
EP  - 1223
DO  - 10.1016/j.ijbiomac.2018.04.027
ER  - 
@article{
author = "Miljković, Miona G. and Lazić, Vesna M. and Banjanac, Katarina and Davidović, Slađana Z. and Bezbradica, Dejan I. and Marinković, Aleksandar D. and Sredojević, Dušan and Nedeljković, Jovan and Dimitrijević-Branković, Suzana I.",
year = "2018",
abstract = "The TiO2 based hybrid supports with different functional groups (amino, glutaraldehyde or epoxy) were prepared and their influence on immobilization of dextransucrase (DS) was studied. Novel synthetic route for surface modification of TiO2 with amino and glutaraldehyde groups was developed taking advantage of charge transfer complex (CTC) formation between surface Ti atoms and salicylate-type of ligand (5 aminosalicylic acid (5-ASA)). The proposed coordination of 5-ASA to the surface of TiO2 powder and optical properties of CTC was presented. The pristine TiO2 and amino functionalized TiO2 have higher sorption capacity for DS (12.6 and 12.0 mg g(-1), respectively) compared to glutaraldehyde and epoxy activated supports (9.6 and 9.8 mg g(-1) respectively). However, immobilized enzyme to either glutaraldehyde or epoxy functionalized TiO2 have almost two times higher expressed activities compared to pristine TiO2 support (258, 235 and 142 IU g(-1), respectively). Thermal stability of enzyme immobilized on glutaraldehyde and epoxy functionalized supports was studied at 40 degrees C, as well as operational stability under long-run working conditions in repeated cycles. After five cycles, DS imobilized on glutaraldehyde activated support retained almost 70% of its initial expressed activity, while, after five cycles, performance of DS immobilized on epoxy activated support was significantly lower (15%).",
journal = "International Journal of Biological Macromolecules",
title = "Immobilization of dextransucrase on functionalized TiO2 supports",
volume = "114",
pages = "1216-1223",
doi = "10.1016/j.ijbiomac.2018.04.027"
}
Miljković, M. G., Lazić, V. M., Banjanac, K., Davidović, S. Z., Bezbradica, D. I., Marinković, A. D., Sredojević, D., Nedeljković, J.,& Dimitrijević-Branković, S. I.. (2018). Immobilization of dextransucrase on functionalized TiO2 supports. in International Journal of Biological Macromolecules, 114, 1216-1223.
https://doi.org/10.1016/j.ijbiomac.2018.04.027
Miljković MG, Lazić VM, Banjanac K, Davidović SZ, Bezbradica DI, Marinković AD, Sredojević D, Nedeljković J, Dimitrijević-Branković SI. Immobilization of dextransucrase on functionalized TiO2 supports. in International Journal of Biological Macromolecules. 2018;114:1216-1223.
doi:10.1016/j.ijbiomac.2018.04.027 .
Miljković, Miona G., Lazić, Vesna M., Banjanac, Katarina, Davidović, Slađana Z., Bezbradica, Dejan I., Marinković, Aleksandar D., Sredojević, Dušan, Nedeljković, Jovan, Dimitrijević-Branković, Suzana I., "Immobilization of dextransucrase on functionalized TiO2 supports" in International Journal of Biological Macromolecules, 114 (2018):1216-1223,
https://doi.org/10.1016/j.ijbiomac.2018.04.027 . .
18
12
18