Arsenijević, Nevena

Link to this page

Authority KeyName Variants
orcid::0000-0002-2582-8619
  • Arsenijević, Nevena (1)
Projects

Author's Bibliography

“Soft Protein Corona” as the Stabilizer of the Methionine-Coated Silver Nanoparticles in the Physiological Environment: Insights into the Mechanism of the Interaction

Bondžić, Aleksandra M.; Jovanović, Dunja; Arsenijević, Nevena; Laban, Bojana; Lazarević-Pašti, Tamara; Klekotka, Urszula; Bondžić, Bojan P.

(2022)

TY  - JOUR
AU  - Bondžić, Aleksandra M.
AU  - Jovanović, Dunja
AU  - Arsenijević, Nevena
AU  - Laban, Bojana
AU  - Lazarević-Pašti, Tamara
AU  - Klekotka, Urszula
AU  - Bondžić, Bojan P.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10404
AB  - The study of the interactions between nanoparticles (NPs) and proteins has had a pivotal role in facilitating the understanding of biological effects and safe application of NPs after exposure to the physiological environment. Herein, for the first time, the interaction between L-methionine capped silver nanoparticles (AgMet), and bovine serum albumin (BSA) is investigated in order to predict the fate of AgMet after its contact with the most abundant blood transport protein. The detailed insights into the mechanism of interaction were achieved using different physicochemical techniques. The UV/Vis, TEM, and DLS were used for the characterization of the newly formed “entity”, while the kinetic and thermodynamic parameters were utilized to describe the adsorption process. Additionally, the fluorescence quenching and synchronous fluorescence studies enabled the prediction of the binding affinity and gave us insight into the influence of the adsorption on the conformation state of the BSA. According to the best of our knowledge, for the first time, we show that BSA can be used as an external stabilizer agent which is able to induce the peptization of previously agglomerated AgMet. We believe that the obtained results could contribute to further improvement of AgNPs’ performances as well as to the understanding of their in vivo behavior, which could contribute to their potential use in preclinical research studies.
T2  - International Journal of Molecular Sciences
T1  - “Soft Protein Corona” as the Stabilizer of the Methionine-Coated Silver Nanoparticles in the Physiological Environment: Insights into the Mechanism of the Interaction
VL  - 23
IS  - 16
SP  - 8985
DO  - 10.3390/ijms23168985
ER  - 
@article{
author = "Bondžić, Aleksandra M. and Jovanović, Dunja and Arsenijević, Nevena and Laban, Bojana and Lazarević-Pašti, Tamara and Klekotka, Urszula and Bondžić, Bojan P.",
year = "2022",
abstract = "The study of the interactions between nanoparticles (NPs) and proteins has had a pivotal role in facilitating the understanding of biological effects and safe application of NPs after exposure to the physiological environment. Herein, for the first time, the interaction between L-methionine capped silver nanoparticles (AgMet), and bovine serum albumin (BSA) is investigated in order to predict the fate of AgMet after its contact with the most abundant blood transport protein. The detailed insights into the mechanism of interaction were achieved using different physicochemical techniques. The UV/Vis, TEM, and DLS were used for the characterization of the newly formed “entity”, while the kinetic and thermodynamic parameters were utilized to describe the adsorption process. Additionally, the fluorescence quenching and synchronous fluorescence studies enabled the prediction of the binding affinity and gave us insight into the influence of the adsorption on the conformation state of the BSA. According to the best of our knowledge, for the first time, we show that BSA can be used as an external stabilizer agent which is able to induce the peptization of previously agglomerated AgMet. We believe that the obtained results could contribute to further improvement of AgNPs’ performances as well as to the understanding of their in vivo behavior, which could contribute to their potential use in preclinical research studies.",
journal = "International Journal of Molecular Sciences",
title = "“Soft Protein Corona” as the Stabilizer of the Methionine-Coated Silver Nanoparticles in the Physiological Environment: Insights into the Mechanism of the Interaction",
volume = "23",
number = "16",
pages = "8985",
doi = "10.3390/ijms23168985"
}
Bondžić, A. M., Jovanović, D., Arsenijević, N., Laban, B., Lazarević-Pašti, T., Klekotka, U.,& Bondžić, B. P.. (2022). “Soft Protein Corona” as the Stabilizer of the Methionine-Coated Silver Nanoparticles in the Physiological Environment: Insights into the Mechanism of the Interaction. in International Journal of Molecular Sciences, 23(16), 8985.
https://doi.org/10.3390/ijms23168985
Bondžić AM, Jovanović D, Arsenijević N, Laban B, Lazarević-Pašti T, Klekotka U, Bondžić BP. “Soft Protein Corona” as the Stabilizer of the Methionine-Coated Silver Nanoparticles in the Physiological Environment: Insights into the Mechanism of the Interaction. in International Journal of Molecular Sciences. 2022;23(16):8985.
doi:10.3390/ijms23168985 .
Bondžić, Aleksandra M., Jovanović, Dunja, Arsenijević, Nevena, Laban, Bojana, Lazarević-Pašti, Tamara, Klekotka, Urszula, Bondžić, Bojan P., "“Soft Protein Corona” as the Stabilizer of the Methionine-Coated Silver Nanoparticles in the Physiological Environment: Insights into the Mechanism of the Interaction" in International Journal of Molecular Sciences, 23, no. 16 (2022):8985,
https://doi.org/10.3390/ijms23168985 . .
4
2