Mihajlović, Katarina

Link to this page

Authority KeyName Variants
276752ea-373c-4749-957a-a65ddb1f3a97
  • Mihajlović, Katarina (5)

Author's Bibliography

Long-term alprazolam treatment may cause tolerance development by modulating components of glutamatergic neurotransmission in the hippocampus of male Wistar rats

Zarić Kontić, Marina; Dragić, Milorad; Martinović, Jelena; Mihajlović, Katarina; Brkić, Željka; Mitrović, Nataša; Guševac Stojanović, Ivana; Grković, Ivana

(Belgrade : Serbian Neurocardiological Society, 2023)

TY  - CONF
AU  - Zarić Kontić, Marina
AU  - Dragić, Milorad
AU  - Martinović, Jelena
AU  - Mihajlović, Katarina
AU  - Brkić, Željka
AU  - Mitrović, Nataša
AU  - Guševac Stojanović, Ivana
AU  - Grković, Ivana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11048
AB  - The benzodiazepine alprazolam (ALP) is commonly prescribed to treat anxiety, panic, and sleep disorders. However, ALP is often abused for prolonged periods of time, leading to severe side effects such as tolerance, dependence, and withdrawal syndrome. Previous literature data suggest that neuroadaptive changes at synaptic receptors, such as gammaaminobutyric acid receptor type A (GABAAR) and glutamatergic receptors, may be responsible for the occurrence and development of the aforementioned side effects. Therefore, the present study investigated the potential effects of prolonged ALP treatment (2 mg/kg, ip.) on the α1-subunit containing GABAAR and components of glutamatergic neurotransmission in the hippocampus of adult male Wistar rats. The study revealed behavioral changes consistent with a possible onset of tolerance and associated changes in the GABAergic and glutamatergic systems. The primary target of ALP, the α1-subunit containing GABAAR, was decreased indicating its potential downregulation by prolonged agonist (ALP) action. Considering studied glutamatergic components, an increase in NMDAR subunits, a decrease in vGlut1, and differential modulation of excitatory amino acid transporters 1 and 2 (EAAT1/2, in vivo and in vitro) were observed. These changes may all together indicate a compensatory mechanism due to the sustained suppression of glutamatergic neurons by enhanced inhibitory impulses from GABAergic neurons. The data presented provide valuable and, to our knowledge, the first information on components of glutamatergic neurotransmission after prolonged ALP treatment and their potential impact on the development of side effects. However, further research is needed to examine the observed changes in detail.
PB  - Belgrade : Serbian Neurocardiological Society
C3  - 8th Congress of Serbian neuroscience society with international participation : the book of abstracts; 31 May – 2 June; Belgrade
T1  - Long-term alprazolam treatment may cause tolerance development by modulating components of glutamatergic neurotransmission in the hippocampus of male Wistar rats
SP  - 60
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11048
ER  - 
@conference{
author = "Zarić Kontić, Marina and Dragić, Milorad and Martinović, Jelena and Mihajlović, Katarina and Brkić, Željka and Mitrović, Nataša and Guševac Stojanović, Ivana and Grković, Ivana",
year = "2023",
abstract = "The benzodiazepine alprazolam (ALP) is commonly prescribed to treat anxiety, panic, and sleep disorders. However, ALP is often abused for prolonged periods of time, leading to severe side effects such as tolerance, dependence, and withdrawal syndrome. Previous literature data suggest that neuroadaptive changes at synaptic receptors, such as gammaaminobutyric acid receptor type A (GABAAR) and glutamatergic receptors, may be responsible for the occurrence and development of the aforementioned side effects. Therefore, the present study investigated the potential effects of prolonged ALP treatment (2 mg/kg, ip.) on the α1-subunit containing GABAAR and components of glutamatergic neurotransmission in the hippocampus of adult male Wistar rats. The study revealed behavioral changes consistent with a possible onset of tolerance and associated changes in the GABAergic and glutamatergic systems. The primary target of ALP, the α1-subunit containing GABAAR, was decreased indicating its potential downregulation by prolonged agonist (ALP) action. Considering studied glutamatergic components, an increase in NMDAR subunits, a decrease in vGlut1, and differential modulation of excitatory amino acid transporters 1 and 2 (EAAT1/2, in vivo and in vitro) were observed. These changes may all together indicate a compensatory mechanism due to the sustained suppression of glutamatergic neurons by enhanced inhibitory impulses from GABAergic neurons. The data presented provide valuable and, to our knowledge, the first information on components of glutamatergic neurotransmission after prolonged ALP treatment and their potential impact on the development of side effects. However, further research is needed to examine the observed changes in detail.",
publisher = "Belgrade : Serbian Neurocardiological Society",
journal = "8th Congress of Serbian neuroscience society with international participation : the book of abstracts; 31 May – 2 June; Belgrade",
title = "Long-term alprazolam treatment may cause tolerance development by modulating components of glutamatergic neurotransmission in the hippocampus of male Wistar rats",
pages = "60",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11048"
}
Zarić Kontić, M., Dragić, M., Martinović, J., Mihajlović, K., Brkić, Ž., Mitrović, N., Guševac Stojanović, I.,& Grković, I.. (2023). Long-term alprazolam treatment may cause tolerance development by modulating components of glutamatergic neurotransmission in the hippocampus of male Wistar rats. in 8th Congress of Serbian neuroscience society with international participation : the book of abstracts; 31 May – 2 June; Belgrade
Belgrade : Serbian Neurocardiological Society., 60.
https://hdl.handle.net/21.15107/rcub_vinar_11048
Zarić Kontić M, Dragić M, Martinović J, Mihajlović K, Brkić Ž, Mitrović N, Guševac Stojanović I, Grković I. Long-term alprazolam treatment may cause tolerance development by modulating components of glutamatergic neurotransmission in the hippocampus of male Wistar rats. in 8th Congress of Serbian neuroscience society with international participation : the book of abstracts; 31 May – 2 June; Belgrade. 2023;:60.
https://hdl.handle.net/21.15107/rcub_vinar_11048 .
Zarić Kontić, Marina, Dragić, Milorad, Martinović, Jelena, Mihajlović, Katarina, Brkić, Željka, Mitrović, Nataša, Guševac Stojanović, Ivana, Grković, Ivana, "Long-term alprazolam treatment may cause tolerance development by modulating components of glutamatergic neurotransmission in the hippocampus of male Wistar rats" in 8th Congress of Serbian neuroscience society with international participation : the book of abstracts; 31 May – 2 June; Belgrade (2023):60,
https://hdl.handle.net/21.15107/rcub_vinar_11048 .

Prolonged Alprazolam Treatment Alters Components of Glutamatergic Neurotransmission in the Hippocampus of Male Wistar Rats—The Neuroadaptive Changes following Long-Term Benzodiazepine (Mis)Use

Zarić Kontić, Marina; Dragić, Milorad; Martinović, Jelena; Mihajlović, Katarina; Brkić, Željka; Mitrović, Nataša; Grković, Ivana

(2023)

TY  - JOUR
AU  - Zarić Kontić, Marina
AU  - Dragić, Milorad
AU  - Martinović, Jelena
AU  - Mihajlović, Katarina
AU  - Brkić, Željka
AU  - Mitrović, Nataša
AU  - Grković, Ivana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11160
AB  - Alprazolam (ALP), a benzodiazepine (BDZ) used to treat anxiety, panic, and sleep disorders, is one of the most prescribed psychotropic drugs worldwide. The side effects associated with long-term (mis)use of ALP have become a major challenge in pharmacotherapy, emphasizing the unmet need to further investigate their underlying molecular mechanisms. Prolonged BDZ exposure may induce adaptive changes in the function of several receptors, including the primary target, gammaaminobutyric acid receptor type A (GABAAR), but also other neurotransmitter receptors such as glutamatergic. The present study investigated the potential effects of prolonged ALP treatment on components of glutamatergic neurotransmission, with special emphasis on N-Methyl-D-aspartate receptor (NMDAR) in the hippocampus of adult male Wistar rats. The study revealed behavioral changes consistent with potential onset of tolerance and involvement of the glutamatergic system in its development. Specifically, an increase in NMDAR subunits (NR1, NR2A, NR2B), a decrease in vesicular glutamate transporter 1 (vGlut1), and differential modulation of excitatory amino acid transporters 1 and 2 (EAAT1/2, in vivo and in vitro) were observed, alongside a decrease in α1-containing GABAAR following the treatment. By describing the development of compensatory actions in the glutamatergic system, the present study provides valuable information on neuroadaptive mechanisms following prolonged ALP intake.
T2  - Pharmaceuticals
T1  - Prolonged Alprazolam Treatment Alters Components of Glutamatergic Neurotransmission in the Hippocampus of Male Wistar Rats—The Neuroadaptive Changes following Long-Term Benzodiazepine (Mis)Use
VL  - 16
IS  - 3
SP  - 331
DO  - 10.3390/ph16030331
ER  - 
@article{
author = "Zarić Kontić, Marina and Dragić, Milorad and Martinović, Jelena and Mihajlović, Katarina and Brkić, Željka and Mitrović, Nataša and Grković, Ivana",
year = "2023",
abstract = "Alprazolam (ALP), a benzodiazepine (BDZ) used to treat anxiety, panic, and sleep disorders, is one of the most prescribed psychotropic drugs worldwide. The side effects associated with long-term (mis)use of ALP have become a major challenge in pharmacotherapy, emphasizing the unmet need to further investigate their underlying molecular mechanisms. Prolonged BDZ exposure may induce adaptive changes in the function of several receptors, including the primary target, gammaaminobutyric acid receptor type A (GABAAR), but also other neurotransmitter receptors such as glutamatergic. The present study investigated the potential effects of prolonged ALP treatment on components of glutamatergic neurotransmission, with special emphasis on N-Methyl-D-aspartate receptor (NMDAR) in the hippocampus of adult male Wistar rats. The study revealed behavioral changes consistent with potential onset of tolerance and involvement of the glutamatergic system in its development. Specifically, an increase in NMDAR subunits (NR1, NR2A, NR2B), a decrease in vesicular glutamate transporter 1 (vGlut1), and differential modulation of excitatory amino acid transporters 1 and 2 (EAAT1/2, in vivo and in vitro) were observed, alongside a decrease in α1-containing GABAAR following the treatment. By describing the development of compensatory actions in the glutamatergic system, the present study provides valuable information on neuroadaptive mechanisms following prolonged ALP intake.",
journal = "Pharmaceuticals",
title = "Prolonged Alprazolam Treatment Alters Components of Glutamatergic Neurotransmission in the Hippocampus of Male Wistar Rats—The Neuroadaptive Changes following Long-Term Benzodiazepine (Mis)Use",
volume = "16",
number = "3",
pages = "331",
doi = "10.3390/ph16030331"
}
Zarić Kontić, M., Dragić, M., Martinović, J., Mihajlović, K., Brkić, Ž., Mitrović, N.,& Grković, I.. (2023). Prolonged Alprazolam Treatment Alters Components of Glutamatergic Neurotransmission in the Hippocampus of Male Wistar Rats—The Neuroadaptive Changes following Long-Term Benzodiazepine (Mis)Use. in Pharmaceuticals, 16(3), 331.
https://doi.org/10.3390/ph16030331
Zarić Kontić M, Dragić M, Martinović J, Mihajlović K, Brkić Ž, Mitrović N, Grković I. Prolonged Alprazolam Treatment Alters Components of Glutamatergic Neurotransmission in the Hippocampus of Male Wistar Rats—The Neuroadaptive Changes following Long-Term Benzodiazepine (Mis)Use. in Pharmaceuticals. 2023;16(3):331.
doi:10.3390/ph16030331 .
Zarić Kontić, Marina, Dragić, Milorad, Martinović, Jelena, Mihajlović, Katarina, Brkić, Željka, Mitrović, Nataša, Grković, Ivana, "Prolonged Alprazolam Treatment Alters Components of Glutamatergic Neurotransmission in the Hippocampus of Male Wistar Rats—The Neuroadaptive Changes following Long-Term Benzodiazepine (Mis)Use" in Pharmaceuticals, 16, no. 3 (2023):331,
https://doi.org/10.3390/ph16030331 . .
4
3

Intermittent Theta Burst Stimulation Ameliorates Cognitive Deficit and Attenuates Neuroinflammation via PI3K/Akt/mTOR Signaling Pathway in Alzheimer’s-Like Disease Model

Stekić, Anđela; Zeljković, Milica; Zarić Kontić, Marina; Mihajlović, Katarina; Adžić, Marija; Stevanović, Ivana; Ninković, Milica; Grković, Ivana; Ilić, Tihomir V.; Nedeljković, Nadežda; Dragić, Milorad

(2022)

TY  - JOUR
AU  - Stekić, Anđela
AU  - Zeljković, Milica
AU  - Zarić Kontić, Marina
AU  - Mihajlović, Katarina
AU  - Adžić, Marija
AU  - Stevanović, Ivana
AU  - Ninković, Milica
AU  - Grković, Ivana
AU  - Ilić, Tihomir V.
AU  - Nedeljković, Nadežda
AU  - Dragić, Milorad
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11159
AB  - Neurodegeneration implies progressive neuronal loss and neuroinflammation further contributing to pathology progression. It is a feature of many neurological disorders, most common being Alzheimer’s disease (AD). Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive stimulation which modulates excitability of stimulated brain areas through magnetic pulses. Numerous studies indicated beneficial effect of rTMS in several neurological diseases, including AD, however, exact mechanism are yet to be elucidated. We aimed to evaluate the effect of intermittent theta burst stimulation (iTBS), an rTMS paradigm, on behavioral, neurochemical and molecular level in trimethyltin (TMT)-induced Alzheimer’s-like disease model. TMT acts as a neurotoxic agent targeting hippocampus causing cognitive impairment and neuroinflammation, replicating behavioral and molecular aspects of AD. Male Wistar rats were divided into four experimental groups–controls, rats subjected to a single dose of TMT (8 mg/kg), TMT rats subjected to iTBS two times per day for 15 days and TMT sham group. After 3 weeks, we examined exploratory behavior and memory, histopathological and changes on molecular level. TMT-treated rats exhibited severe and cognitive deficit. iTBS-treated animals showed improved cognition. iTBS reduced TMT-induced inflammation and increased anti-inflammatory molecules. We examined PI3K/Akt/mTOR signaling pathway which is involved in regulation of apoptosis, cell growth and learning and memory. We found significant downregulation of phosphorylated forms of Akt and mTOR in TMT-intoxicated animals, which were reverted following iTBS stimulation. Application of iTBS produces beneficial effects on cognition in of rats with TMT-induced hippocampal neurodegeneration and that effect could be mediated via PI3K/Akt/mTOR signaling pathway, which could candidate this protocol as a potential therapeutic approach in neurodegenerative diseases such as AD.
T2  - Frontiers in Aging Neuroscience
T1  - Intermittent Theta Burst Stimulation Ameliorates Cognitive Deficit and Attenuates Neuroinflammation via PI3K/Akt/mTOR Signaling Pathway in Alzheimer’s-Like Disease Model
VL  - 14
DO  - 10.3389/fnagi.2022.889983
ER  - 
@article{
author = "Stekić, Anđela and Zeljković, Milica and Zarić Kontić, Marina and Mihajlović, Katarina and Adžić, Marija and Stevanović, Ivana and Ninković, Milica and Grković, Ivana and Ilić, Tihomir V. and Nedeljković, Nadežda and Dragić, Milorad",
year = "2022",
abstract = "Neurodegeneration implies progressive neuronal loss and neuroinflammation further contributing to pathology progression. It is a feature of many neurological disorders, most common being Alzheimer’s disease (AD). Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive stimulation which modulates excitability of stimulated brain areas through magnetic pulses. Numerous studies indicated beneficial effect of rTMS in several neurological diseases, including AD, however, exact mechanism are yet to be elucidated. We aimed to evaluate the effect of intermittent theta burst stimulation (iTBS), an rTMS paradigm, on behavioral, neurochemical and molecular level in trimethyltin (TMT)-induced Alzheimer’s-like disease model. TMT acts as a neurotoxic agent targeting hippocampus causing cognitive impairment and neuroinflammation, replicating behavioral and molecular aspects of AD. Male Wistar rats were divided into four experimental groups–controls, rats subjected to a single dose of TMT (8 mg/kg), TMT rats subjected to iTBS two times per day for 15 days and TMT sham group. After 3 weeks, we examined exploratory behavior and memory, histopathological and changes on molecular level. TMT-treated rats exhibited severe and cognitive deficit. iTBS-treated animals showed improved cognition. iTBS reduced TMT-induced inflammation and increased anti-inflammatory molecules. We examined PI3K/Akt/mTOR signaling pathway which is involved in regulation of apoptosis, cell growth and learning and memory. We found significant downregulation of phosphorylated forms of Akt and mTOR in TMT-intoxicated animals, which were reverted following iTBS stimulation. Application of iTBS produces beneficial effects on cognition in of rats with TMT-induced hippocampal neurodegeneration and that effect could be mediated via PI3K/Akt/mTOR signaling pathway, which could candidate this protocol as a potential therapeutic approach in neurodegenerative diseases such as AD.",
journal = "Frontiers in Aging Neuroscience",
title = "Intermittent Theta Burst Stimulation Ameliorates Cognitive Deficit and Attenuates Neuroinflammation via PI3K/Akt/mTOR Signaling Pathway in Alzheimer’s-Like Disease Model",
volume = "14",
doi = "10.3389/fnagi.2022.889983"
}
Stekić, A., Zeljković, M., Zarić Kontić, M., Mihajlović, K., Adžić, M., Stevanović, I., Ninković, M., Grković, I., Ilić, T. V., Nedeljković, N.,& Dragić, M.. (2022). Intermittent Theta Burst Stimulation Ameliorates Cognitive Deficit and Attenuates Neuroinflammation via PI3K/Akt/mTOR Signaling Pathway in Alzheimer’s-Like Disease Model. in Frontiers in Aging Neuroscience, 14.
https://doi.org/10.3389/fnagi.2022.889983
Stekić A, Zeljković M, Zarić Kontić M, Mihajlović K, Adžić M, Stevanović I, Ninković M, Grković I, Ilić TV, Nedeljković N, Dragić M. Intermittent Theta Burst Stimulation Ameliorates Cognitive Deficit and Attenuates Neuroinflammation via PI3K/Akt/mTOR Signaling Pathway in Alzheimer’s-Like Disease Model. in Frontiers in Aging Neuroscience. 2022;14.
doi:10.3389/fnagi.2022.889983 .
Stekić, Anđela, Zeljković, Milica, Zarić Kontić, Marina, Mihajlović, Katarina, Adžić, Marija, Stevanović, Ivana, Ninković, Milica, Grković, Ivana, Ilić, Tihomir V., Nedeljković, Nadežda, Dragić, Milorad, "Intermittent Theta Burst Stimulation Ameliorates Cognitive Deficit and Attenuates Neuroinflammation via PI3K/Akt/mTOR Signaling Pathway in Alzheimer’s-Like Disease Model" in Frontiers in Aging Neuroscience, 14 (2022),
https://doi.org/10.3389/fnagi.2022.889983 . .
11
15
1
13

Altered Topographic Distribution and Enhanced Neuronal Expression of Adenosine-Metabolizing Enzymes in Rat Hippocampus and Cortex from Early to late Adulthood

Dragić, Milorad; Stekić, Anđela; Zeljković, Milica; Zarić Kontić, Marina; Mihajlović, Katarina; Adžić, Marija; Grković, Ivana; Nedeljković, Nadežda

(2022)

TY  - JOUR
AU  - Dragić, Milorad
AU  - Stekić, Anđela
AU  - Zeljković, Milica
AU  - Zarić Kontić, Marina
AU  - Mihajlović, Katarina
AU  - Adžić, Marija
AU  - Grković, Ivana
AU  - Nedeljković, Nadežda
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10222
AB  - The present study demonstrates altered topographic distribution and enhanced neuronal expression of major adenosine-metabolizing enzymes, i.e. ecto-5ʹ-nucleotidase (eN) and tissue non-specific alkaline phosphatase (TNAP), as well as adenosine receptor subtype A2A in the hippocampus and cortex of male rats from early to late adulthood (3, 6, 12 and 15 months old males). The significant effect of age was demonstrated for the increase in the activity and the protein expression of eN and TNAP. At 15-m, enzyme histochemistry demonstrated enhanced expression of eN in synapse-rich hippocampal and cortical layers, whereas the upsurge of TNAP was observed in the hippocampal and cortical neuropil, rather than in cells and layers where two enzymes mostly reside in 3-m old brain. Furthermore, a dichotomy in A1R and A2AR expression was demonstrated in the cortex and hippocampus from early to late adulthood. Specifically, a decrease in A1R and enhancement of A2AR expression were demonstrated by immunohistochemistry, the latter being almost exclusively localized in hippocampal pyramidal and cortical superficial cell layers. We did not observe any glial upregulation of A2AR, which was common for both advanced age and chronic neurodegeneration. Taken together, the results imply that the adaptative changes in adenosine signaling occurring in neuronal elements early in life may be responsible for the later prominent glial enhancement in A2AR-mediated adenosine signaling, and neuroinflammation and neurodegeneration, which are the hallmarks of both advanced age and age-associated neurodegenerative diseases.
T2  - Neurochemical Research
T1  - Altered Topographic Distribution and Enhanced Neuronal Expression of Adenosine-Metabolizing Enzymes in Rat Hippocampus and Cortex from Early to late Adulthood
DO  - 10.1007/s11064-022-03557-5
ER  - 
@article{
author = "Dragić, Milorad and Stekić, Anđela and Zeljković, Milica and Zarić Kontić, Marina and Mihajlović, Katarina and Adžić, Marija and Grković, Ivana and Nedeljković, Nadežda",
year = "2022",
abstract = "The present study demonstrates altered topographic distribution and enhanced neuronal expression of major adenosine-metabolizing enzymes, i.e. ecto-5ʹ-nucleotidase (eN) and tissue non-specific alkaline phosphatase (TNAP), as well as adenosine receptor subtype A2A in the hippocampus and cortex of male rats from early to late adulthood (3, 6, 12 and 15 months old males). The significant effect of age was demonstrated for the increase in the activity and the protein expression of eN and TNAP. At 15-m, enzyme histochemistry demonstrated enhanced expression of eN in synapse-rich hippocampal and cortical layers, whereas the upsurge of TNAP was observed in the hippocampal and cortical neuropil, rather than in cells and layers where two enzymes mostly reside in 3-m old brain. Furthermore, a dichotomy in A1R and A2AR expression was demonstrated in the cortex and hippocampus from early to late adulthood. Specifically, a decrease in A1R and enhancement of A2AR expression were demonstrated by immunohistochemistry, the latter being almost exclusively localized in hippocampal pyramidal and cortical superficial cell layers. We did not observe any glial upregulation of A2AR, which was common for both advanced age and chronic neurodegeneration. Taken together, the results imply that the adaptative changes in adenosine signaling occurring in neuronal elements early in life may be responsible for the later prominent glial enhancement in A2AR-mediated adenosine signaling, and neuroinflammation and neurodegeneration, which are the hallmarks of both advanced age and age-associated neurodegenerative diseases.",
journal = "Neurochemical Research",
title = "Altered Topographic Distribution and Enhanced Neuronal Expression of Adenosine-Metabolizing Enzymes in Rat Hippocampus and Cortex from Early to late Adulthood",
doi = "10.1007/s11064-022-03557-5"
}
Dragić, M., Stekić, A., Zeljković, M., Zarić Kontić, M., Mihajlović, K., Adžić, M., Grković, I.,& Nedeljković, N.. (2022). Altered Topographic Distribution and Enhanced Neuronal Expression of Adenosine-Metabolizing Enzymes in Rat Hippocampus and Cortex from Early to late Adulthood. in Neurochemical Research.
https://doi.org/10.1007/s11064-022-03557-5
Dragić M, Stekić A, Zeljković M, Zarić Kontić M, Mihajlović K, Adžić M, Grković I, Nedeljković N. Altered Topographic Distribution and Enhanced Neuronal Expression of Adenosine-Metabolizing Enzymes in Rat Hippocampus and Cortex from Early to late Adulthood. in Neurochemical Research. 2022;.
doi:10.1007/s11064-022-03557-5 .
Dragić, Milorad, Stekić, Anđela, Zeljković, Milica, Zarić Kontić, Marina, Mihajlović, Katarina, Adžić, Marija, Grković, Ivana, Nedeljković, Nadežda, "Altered Topographic Distribution and Enhanced Neuronal Expression of Adenosine-Metabolizing Enzymes in Rat Hippocampus and Cortex from Early to late Adulthood" in Neurochemical Research (2022),
https://doi.org/10.1007/s11064-022-03557-5 . .
2
2
2

Downregulation of CD73/A2AR-Mediated Adenosine Signaling as a Potential Mechanism of Neuroprotective Effects of Theta-Burst Transcranial Magnetic Stimulation in Acute Experimental Autoimmune Encephalomyelitis

Dragić, Milorad; Zeljković, Milica; Stevanović, Ivana; Adžić, Marija; Stekić, Anđela; Mihajlović, Katarina; Grković, Ivana; Ilić, Nela; Ilić, Tihomir V.; Nedeljković, Nadežda; Ninković, Milica

(2021)

TY  - JOUR
AU  - Dragić, Milorad
AU  - Zeljković, Milica
AU  - Stevanović, Ivana
AU  - Adžić, Marija
AU  - Stekić, Anđela
AU  - Mihajlović, Katarina
AU  - Grković, Ivana
AU  - Ilić, Nela
AU  - Ilić, Tihomir V.
AU  - Nedeljković, Nadežda
AU  - Ninković, Milica
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10082
AB  - Multiple sclerosis (MS) is a chronic neurodegenerative disease caused by autoimmune-mediated inflammation in the central nervous system. Purinergic signaling is critically involved in MS-associated neuroinflammation and its most widely applied animal model—experimental autoimmune encephalomyelitis (EAE). A promising but poorly understood approach in the treatment of MS is repetitive transcranial magnetic stimulation. In the present study, we aimed to investigate the effect of continuous theta-burst stimulation (CTBS), applied over frontal cranial bone, on the adenosine-mediated signaling system in EAE, particularly on CD73/A2AR/A1R in the context of neuroinflammatory activation of glial cells. EAE was induced in two-month-old female DA rats and in the disease peak treated with CTBS protocol for ten consecutive days. Lumbosacral spinal cord was analyzed immunohistochemically for adenosine-mediated signaling components and pro- and anti-inflammatory factors. We found downregulated IL-1β and NF- κB-ir and upregulated IL-10 pointing towards a reduction in the neuroinflammatory process in EAE animals after CTBS treatment. Furthermore, CTBS attenuated EAE-induced glial eN/CD73 expression and activity, while inducing a shift in A2AR expression from glia to neurons, contrary to EAE, where tight coupling of eN/CD73 and A2AR on glial cells is observed. Finally, increased glial A1R expression following CTBS supports anti-inflammatory adenosine actions and potentially contributes to the overall neuroprotective effect observed in EAE animals after CTBS treatment.
T2  - Brain Sciences
T2  - Brain Sciences
T1  - Downregulation of CD73/A2AR-Mediated Adenosine Signaling as a Potential Mechanism of Neuroprotective Effects of Theta-Burst Transcranial Magnetic Stimulation in Acute Experimental Autoimmune Encephalomyelitis
VL  - 11
IS  - 6
SP  - 736
DO  - 10.3390/brainsci11060736
ER  - 
@article{
author = "Dragić, Milorad and Zeljković, Milica and Stevanović, Ivana and Adžić, Marija and Stekić, Anđela and Mihajlović, Katarina and Grković, Ivana and Ilić, Nela and Ilić, Tihomir V. and Nedeljković, Nadežda and Ninković, Milica",
year = "2021",
abstract = "Multiple sclerosis (MS) is a chronic neurodegenerative disease caused by autoimmune-mediated inflammation in the central nervous system. Purinergic signaling is critically involved in MS-associated neuroinflammation and its most widely applied animal model—experimental autoimmune encephalomyelitis (EAE). A promising but poorly understood approach in the treatment of MS is repetitive transcranial magnetic stimulation. In the present study, we aimed to investigate the effect of continuous theta-burst stimulation (CTBS), applied over frontal cranial bone, on the adenosine-mediated signaling system in EAE, particularly on CD73/A2AR/A1R in the context of neuroinflammatory activation of glial cells. EAE was induced in two-month-old female DA rats and in the disease peak treated with CTBS protocol for ten consecutive days. Lumbosacral spinal cord was analyzed immunohistochemically for adenosine-mediated signaling components and pro- and anti-inflammatory factors. We found downregulated IL-1β and NF- κB-ir and upregulated IL-10 pointing towards a reduction in the neuroinflammatory process in EAE animals after CTBS treatment. Furthermore, CTBS attenuated EAE-induced glial eN/CD73 expression and activity, while inducing a shift in A2AR expression from glia to neurons, contrary to EAE, where tight coupling of eN/CD73 and A2AR on glial cells is observed. Finally, increased glial A1R expression following CTBS supports anti-inflammatory adenosine actions and potentially contributes to the overall neuroprotective effect observed in EAE animals after CTBS treatment.",
journal = "Brain Sciences, Brain Sciences",
title = "Downregulation of CD73/A2AR-Mediated Adenosine Signaling as a Potential Mechanism of Neuroprotective Effects of Theta-Burst Transcranial Magnetic Stimulation in Acute Experimental Autoimmune Encephalomyelitis",
volume = "11",
number = "6",
pages = "736",
doi = "10.3390/brainsci11060736"
}
Dragić, M., Zeljković, M., Stevanović, I., Adžić, M., Stekić, A., Mihajlović, K., Grković, I., Ilić, N., Ilić, T. V., Nedeljković, N.,& Ninković, M.. (2021). Downregulation of CD73/A2AR-Mediated Adenosine Signaling as a Potential Mechanism of Neuroprotective Effects of Theta-Burst Transcranial Magnetic Stimulation in Acute Experimental Autoimmune Encephalomyelitis. in Brain Sciences, 11(6), 736.
https://doi.org/10.3390/brainsci11060736
Dragić M, Zeljković M, Stevanović I, Adžić M, Stekić A, Mihajlović K, Grković I, Ilić N, Ilić TV, Nedeljković N, Ninković M. Downregulation of CD73/A2AR-Mediated Adenosine Signaling as a Potential Mechanism of Neuroprotective Effects of Theta-Burst Transcranial Magnetic Stimulation in Acute Experimental Autoimmune Encephalomyelitis. in Brain Sciences. 2021;11(6):736.
doi:10.3390/brainsci11060736 .
Dragić, Milorad, Zeljković, Milica, Stevanović, Ivana, Adžić, Marija, Stekić, Anđela, Mihajlović, Katarina, Grković, Ivana, Ilić, Nela, Ilić, Tihomir V., Nedeljković, Nadežda, Ninković, Milica, "Downregulation of CD73/A2AR-Mediated Adenosine Signaling as a Potential Mechanism of Neuroprotective Effects of Theta-Burst Transcranial Magnetic Stimulation in Acute Experimental Autoimmune Encephalomyelitis" in Brain Sciences, 11, no. 6 (2021):736,
https://doi.org/10.3390/brainsci11060736 . .
4
11
9