Aliefendić, Meho

Link to this page

Authority KeyName Variants
b2efbd94-2052-487b-9c7e-afb6b39b9486
  • Aliefendić, Meho (1)
Projects

Author's Bibliography

The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution

Georgijević, Radovan; Vujković, Milica; Gutić, Sanjin J.; Aliefendić, Meho; Jugović, Dragana; Mitrić, Miodrag; Đokić, Veljko R.; Mentus, Slavko V.

(2019)

TY  - JOUR
AU  - Georgijević, Radovan
AU  - Vujković, Milica
AU  - Gutić, Sanjin J.
AU  - Aliefendić, Meho
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Đokić, Veljko R.
AU  - Mentus, Slavko V.
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7936
AB  - To contribute to the knowledge on the influence of synthesis procedure on the intercalation kinetics of lithium ions into phospho-olivines, LiFePO4/C composite samples (LFPC) were synthesized in two ways, the first one in a sol-gel procedure (SG), and the other in a solid-state reaction (SS). The X-ray diffractograms (XRD) of both samples overlapped with that of pure LiFePO4, taken from the crystallographic database. Scanning electron microscopy pictures indicated the high degree of interparticle sintering, which caused a considerable agglomerate growth. The results of potentiodynamic measurements in aqueous LiNO3 solution revealed that for SS sample, three times higher initial capacity from that of SG one, (amounting to 74 mAh g−1 at 5 mV s−1). However, capacity fade on rising scan rate is much more expressed for SS sample than for SG one. We suggest that a different degree of material utilization due to the incomplete coverage of olivine particles by carbon explains this difference. The technique of separation of diffusion and capacitance currents was applied in a kinetic analysis, but it was shown to be inappropriate. We suggest the inapplicability of classic CV theory to the intercalation system accompanied by phase transition. Instead, a model of ohmic resistance determination of process kinetics was considered. LFPC-SS sample delivers three times larger capacity in LiNO3, amounting to 74 mAh g−1 at 1 mV s−1.
T2  - Journal of Alloys and Compounds
T1  - The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution
VL  - 776
SP  - 475
EP  - 485
DO  - 10.1016/j.jallcom.2018.10.246
ER  - 
@article{
author = "Georgijević, Radovan and Vujković, Milica and Gutić, Sanjin J. and Aliefendić, Meho and Jugović, Dragana and Mitrić, Miodrag and Đokić, Veljko R. and Mentus, Slavko V.",
year = "2019",
abstract = "To contribute to the knowledge on the influence of synthesis procedure on the intercalation kinetics of lithium ions into phospho-olivines, LiFePO4/C composite samples (LFPC) were synthesized in two ways, the first one in a sol-gel procedure (SG), and the other in a solid-state reaction (SS). The X-ray diffractograms (XRD) of both samples overlapped with that of pure LiFePO4, taken from the crystallographic database. Scanning electron microscopy pictures indicated the high degree of interparticle sintering, which caused a considerable agglomerate growth. The results of potentiodynamic measurements in aqueous LiNO3 solution revealed that for SS sample, three times higher initial capacity from that of SG one, (amounting to 74 mAh g−1 at 5 mV s−1). However, capacity fade on rising scan rate is much more expressed for SS sample than for SG one. We suggest that a different degree of material utilization due to the incomplete coverage of olivine particles by carbon explains this difference. The technique of separation of diffusion and capacitance currents was applied in a kinetic analysis, but it was shown to be inappropriate. We suggest the inapplicability of classic CV theory to the intercalation system accompanied by phase transition. Instead, a model of ohmic resistance determination of process kinetics was considered. LFPC-SS sample delivers three times larger capacity in LiNO3, amounting to 74 mAh g−1 at 1 mV s−1.",
journal = "Journal of Alloys and Compounds",
title = "The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution",
volume = "776",
pages = "475-485",
doi = "10.1016/j.jallcom.2018.10.246"
}
Georgijević, R., Vujković, M., Gutić, S. J., Aliefendić, M., Jugović, D., Mitrić, M., Đokić, V. R.,& Mentus, S. V.. (2019). The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution. in Journal of Alloys and Compounds, 776, 475-485.
https://doi.org/10.1016/j.jallcom.2018.10.246
Georgijević R, Vujković M, Gutić SJ, Aliefendić M, Jugović D, Mitrić M, Đokić VR, Mentus SV. The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution. in Journal of Alloys and Compounds. 2019;776:475-485.
doi:10.1016/j.jallcom.2018.10.246 .
Georgijević, Radovan, Vujković, Milica, Gutić, Sanjin J., Aliefendić, Meho, Jugović, Dragana, Mitrić, Miodrag, Đokić, Veljko R., Mentus, Slavko V., "The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution" in Journal of Alloys and Compounds, 776 (2019):475-485,
https://doi.org/10.1016/j.jallcom.2018.10.246 . .
8
8
8