Dai, Min

Link to this page

Authority KeyName Variants
f6d93647-553f-41a9-b621-2924c06f18d9
  • Dai, Min (2)
Projects

Author's Bibliography

A novel design for fin profile in metal hydride reactor towards heat transfer enhancement: Theoretical derivations and analysis

Wang, Jing; Dai, Min; Liu, Jiaxuan; Wu, Zhen; Zhang, Zaoxiao; Grbović-Novaković, Jasmina; Yang, Fusheng

(2023)

TY  - JOUR
AU  - Wang, Jing
AU  - Dai, Min
AU  - Liu, Jiaxuan
AU  - Wu, Zhen
AU  - Zhang, Zaoxiao
AU  - Grbović-Novaković, Jasmina
AU  - Yang, Fusheng
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11545
AB  - Hydrogen storage using metal hydrides is one of the research hotspots in the field of energy storage. However, metal hydride powders are known to have low thermal conductivity, which causes significant temperature fluctuation and hinders further reaction, hence efficient thermal management is a must for hydrogen storage using metal hydrides. In this paper, based on the principle of entransy dissipation, the optimal profile of fin in a cylindrical reactor under steady-state conditions is deduced. The expression for the temperature distribution of the bed is also obtained, which could clearly account for the influences of multiple involving factors, such as fin thickness, fin spacing, and radius of reactor. Through simulation, the characteristic time of hydrogen absorption for reactor inserting the optimized fin, is shortened by 19.1 % compared with the conventional uniform thickness fin. The influence of the geometric parameters of storage reactor was further discussed. When the ratio of the inner and outer radius of the reactor is confined (rr/rt ≤ 2), linear thinning fin can be seen as a reasonable simplification of the optimized fin with comparable heat transfer enhancement effect. This study proves that the thermal management of metal hydride reactors, particularly those inserting high thermal conductivity materials like graphite, can be optimized quantitatively by entransy theory
T2  - Journal of Energy Storage
T1  - A novel design for fin profile in metal hydride reactor towards heat transfer enhancement: Theoretical derivations and analysis
VL  - 72
SP  - 108570
DO  - 10.1016/j.est.2023.108570
ER  - 
@article{
author = "Wang, Jing and Dai, Min and Liu, Jiaxuan and Wu, Zhen and Zhang, Zaoxiao and Grbović-Novaković, Jasmina and Yang, Fusheng",
year = "2023",
abstract = "Hydrogen storage using metal hydrides is one of the research hotspots in the field of energy storage. However, metal hydride powders are known to have low thermal conductivity, which causes significant temperature fluctuation and hinders further reaction, hence efficient thermal management is a must for hydrogen storage using metal hydrides. In this paper, based on the principle of entransy dissipation, the optimal profile of fin in a cylindrical reactor under steady-state conditions is deduced. The expression for the temperature distribution of the bed is also obtained, which could clearly account for the influences of multiple involving factors, such as fin thickness, fin spacing, and radius of reactor. Through simulation, the characteristic time of hydrogen absorption for reactor inserting the optimized fin, is shortened by 19.1 % compared with the conventional uniform thickness fin. The influence of the geometric parameters of storage reactor was further discussed. When the ratio of the inner and outer radius of the reactor is confined (rr/rt ≤ 2), linear thinning fin can be seen as a reasonable simplification of the optimized fin with comparable heat transfer enhancement effect. This study proves that the thermal management of metal hydride reactors, particularly those inserting high thermal conductivity materials like graphite, can be optimized quantitatively by entransy theory",
journal = "Journal of Energy Storage",
title = "A novel design for fin profile in metal hydride reactor towards heat transfer enhancement: Theoretical derivations and analysis",
volume = "72",
pages = "108570",
doi = "10.1016/j.est.2023.108570"
}
Wang, J., Dai, M., Liu, J., Wu, Z., Zhang, Z., Grbović-Novaković, J.,& Yang, F.. (2023). A novel design for fin profile in metal hydride reactor towards heat transfer enhancement: Theoretical derivations and analysis. in Journal of Energy Storage, 72, 108570.
https://doi.org/10.1016/j.est.2023.108570
Wang J, Dai M, Liu J, Wu Z, Zhang Z, Grbović-Novaković J, Yang F. A novel design for fin profile in metal hydride reactor towards heat transfer enhancement: Theoretical derivations and analysis. in Journal of Energy Storage. 2023;72:108570.
doi:10.1016/j.est.2023.108570 .
Wang, Jing, Dai, Min, Liu, Jiaxuan, Wu, Zhen, Zhang, Zaoxiao, Grbović-Novaković, Jasmina, Yang, Fusheng, "A novel design for fin profile in metal hydride reactor towards heat transfer enhancement: Theoretical derivations and analysis" in Journal of Energy Storage, 72 (2023):108570,
https://doi.org/10.1016/j.est.2023.108570 . .
1
1
3

Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization

Zhu, Pengfei; Wu, Zhen; Guo, Leilei; Yao, Jing; Dai, Min; Ren, Jianwei; Kurko, Sandra V.; Yan, Hongli; Yang, Fusheng; Zhang, Zaoxiao

(2021)

TY  - JOUR
AU  - Zhu, Pengfei
AU  - Wu, Zhen
AU  - Guo, Leilei
AU  - Yao, Jing
AU  - Dai, Min
AU  - Ren, Jianwei
AU  - Kurko, Sandra V.
AU  - Yan, Hongli
AU  - Yang, Fusheng
AU  - Zhang, Zaoxiao
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9818
AB  - In order to develop clean and efficient energy conversion technology, a novel combined cooling, heating and power (CCHP) system using biomass as fuel is proposed in this work. The proposed CCHP system consists of biomass gasification unit, solid oxide fuel cell (SOFC), engine power generation unit and absorption refrigeration unit. Thermodynamic model of the CCHP system is developed for the parametric and exergy analyses to evaluate the performance. The parametric analysis shows that increasing the steam to biomass ratio or the SOFC fuel utilization factor helps to improve the electrical efficiency, while the increase of air equivalent ratio has a negative effect. The exergy analysis shows that the two units of biomass gasification and engine power generation have the largest exergy destruction ratio, which is 46.9% and 16.8% under the biomass flux of 500 kg·h−1. This is because these two units involve in high-temperature thermochemical reaction process, resulting in relatively large exergy destruction. Besides, the tradeoff between maximum exergy efficiency, CCHP efficiency and minimum total annual cost is conducted by multi-objective optimization. Through optimization, the system could reach the high CCHP efficiency of 75% and net electrical efficiency of 52%, as well as the low total annual cost of 410 k$ simultaneously. This work could provide the basic design idea, and high-efficiency and low-cost operation strategy for the practical application of the proposed novel biomass-fueled CCHP poly-generation system.
T2  - Energy Conversion and Management
T1  - Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization
VL  - 240
SP  - 114245
DO  - 10.1016/j.enconman.2021.114245
ER  - 
@article{
author = "Zhu, Pengfei and Wu, Zhen and Guo, Leilei and Yao, Jing and Dai, Min and Ren, Jianwei and Kurko, Sandra V. and Yan, Hongli and Yang, Fusheng and Zhang, Zaoxiao",
year = "2021",
abstract = "In order to develop clean and efficient energy conversion technology, a novel combined cooling, heating and power (CCHP) system using biomass as fuel is proposed in this work. The proposed CCHP system consists of biomass gasification unit, solid oxide fuel cell (SOFC), engine power generation unit and absorption refrigeration unit. Thermodynamic model of the CCHP system is developed for the parametric and exergy analyses to evaluate the performance. The parametric analysis shows that increasing the steam to biomass ratio or the SOFC fuel utilization factor helps to improve the electrical efficiency, while the increase of air equivalent ratio has a negative effect. The exergy analysis shows that the two units of biomass gasification and engine power generation have the largest exergy destruction ratio, which is 46.9% and 16.8% under the biomass flux of 500 kg·h−1. This is because these two units involve in high-temperature thermochemical reaction process, resulting in relatively large exergy destruction. Besides, the tradeoff between maximum exergy efficiency, CCHP efficiency and minimum total annual cost is conducted by multi-objective optimization. Through optimization, the system could reach the high CCHP efficiency of 75% and net electrical efficiency of 52%, as well as the low total annual cost of 410 k$ simultaneously. This work could provide the basic design idea, and high-efficiency and low-cost operation strategy for the practical application of the proposed novel biomass-fueled CCHP poly-generation system.",
journal = "Energy Conversion and Management",
title = "Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization",
volume = "240",
pages = "114245",
doi = "10.1016/j.enconman.2021.114245"
}
Zhu, P., Wu, Z., Guo, L., Yao, J., Dai, M., Ren, J., Kurko, S. V., Yan, H., Yang, F.,& Zhang, Z.. (2021). Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization. in Energy Conversion and Management, 240, 114245.
https://doi.org/10.1016/j.enconman.2021.114245
Zhu P, Wu Z, Guo L, Yao J, Dai M, Ren J, Kurko SV, Yan H, Yang F, Zhang Z. Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization. in Energy Conversion and Management. 2021;240:114245.
doi:10.1016/j.enconman.2021.114245 .
Zhu, Pengfei, Wu, Zhen, Guo, Leilei, Yao, Jing, Dai, Min, Ren, Jianwei, Kurko, Sandra V., Yan, Hongli, Yang, Fusheng, Zhang, Zaoxiao, "Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization" in Energy Conversion and Management, 240 (2021):114245,
https://doi.org/10.1016/j.enconman.2021.114245 . .
1
59
8
45