Dragojlović, Danka

Link to this page

Authority KeyName Variants
8e7ee8e9-4af7-49d0-a0df-11d7041d51a2
  • Dragojlović, Danka (2)
Projects

Author's Bibliography

Experimental and computational study of the two-fluid nozzle spreading characteristics

Pezo, Milada L.; Pezo, Lato; Dragojlović, Danka; Čolović, Radmilo; Čolović, Dušica; Vidosavljević, Strahinja; Hadnađev, Miroslav; Đuragić, Olivera

(2021)

TY  - JOUR
AU  - Pezo, Milada L.
AU  - Pezo, Lato
AU  - Dragojlović, Danka
AU  - Čolović, Radmilo
AU  - Čolović, Dušica
AU  - Vidosavljević, Strahinja
AU  - Hadnađev, Miroslav
AU  - Đuragić, Olivera
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8921
AB  - Spray nozzles are widely used in processing industry for spreading evenly large amount of fluids. The expansion of fluid depends on the nozzle type, the parameters of the nozzle and the characteristics of the working fluids. The experiments were performed for five fluid types used in food/pharma/animal feed application (glycerol, soybean oil, molasses, hydroxypropyl methylcellulose, tara gum), three diameters of the nozzle (1 mm, 3 mm, 5 mm) and three fluid temperatures (40 °C, 50 °C and 60 °C). An experimentally validated numerical model was developed, based on laminar two-phase flow, investigating different liquids, assuming the ideal gas flow, applying the finite volume method and volume of the fluid model with interface tracking. The effects of liquid parameters, nozzle diameter and liquid temperature on the characteristics of the jet were also analysed by artificial neural network model. The nozzle diameter strongly influenced the spreading characteristics of the jet, while the temperature affected the liquid viscosity. The increase of the temperature also led to the augment of the spreading angle of the fluid passing from the nozzle and also the enhancement of the spaying liquid expansion. © 2020 Institution of Chemical Engineers
T2  - Chemical Engineering Research and Design
T1  - Experimental and computational study of the two-fluid nozzle spreading characteristics
VL  - 166
SP  - 18
EP  - 28
DO  - 10.1016/j.cherd.2020.11.027
ER  - 
@article{
author = "Pezo, Milada L. and Pezo, Lato and Dragojlović, Danka and Čolović, Radmilo and Čolović, Dušica and Vidosavljević, Strahinja and Hadnađev, Miroslav and Đuragić, Olivera",
year = "2021",
abstract = "Spray nozzles are widely used in processing industry for spreading evenly large amount of fluids. The expansion of fluid depends on the nozzle type, the parameters of the nozzle and the characteristics of the working fluids. The experiments were performed for five fluid types used in food/pharma/animal feed application (glycerol, soybean oil, molasses, hydroxypropyl methylcellulose, tara gum), three diameters of the nozzle (1 mm, 3 mm, 5 mm) and three fluid temperatures (40 °C, 50 °C and 60 °C). An experimentally validated numerical model was developed, based on laminar two-phase flow, investigating different liquids, assuming the ideal gas flow, applying the finite volume method and volume of the fluid model with interface tracking. The effects of liquid parameters, nozzle diameter and liquid temperature on the characteristics of the jet were also analysed by artificial neural network model. The nozzle diameter strongly influenced the spreading characteristics of the jet, while the temperature affected the liquid viscosity. The increase of the temperature also led to the augment of the spreading angle of the fluid passing from the nozzle and also the enhancement of the spaying liquid expansion. © 2020 Institution of Chemical Engineers",
journal = "Chemical Engineering Research and Design",
title = "Experimental and computational study of the two-fluid nozzle spreading characteristics",
volume = "166",
pages = "18-28",
doi = "10.1016/j.cherd.2020.11.027"
}
Pezo, M. L., Pezo, L., Dragojlović, D., Čolović, R., Čolović, D., Vidosavljević, S., Hadnađev, M.,& Đuragić, O.. (2021). Experimental and computational study of the two-fluid nozzle spreading characteristics. in Chemical Engineering Research and Design, 166, 18-28.
https://doi.org/10.1016/j.cherd.2020.11.027
Pezo ML, Pezo L, Dragojlović D, Čolović R, Čolović D, Vidosavljević S, Hadnađev M, Đuragić O. Experimental and computational study of the two-fluid nozzle spreading characteristics. in Chemical Engineering Research and Design. 2021;166:18-28.
doi:10.1016/j.cherd.2020.11.027 .
Pezo, Milada L., Pezo, Lato, Dragojlović, Danka, Čolović, Radmilo, Čolović, Dušica, Vidosavljević, Strahinja, Hadnađev, Miroslav, Đuragić, Olivera, "Experimental and computational study of the two-fluid nozzle spreading characteristics" in Chemical Engineering Research and Design, 166 (2021):18-28,
https://doi.org/10.1016/j.cherd.2020.11.027 . .
5
4

Application of soybean oil and glycerol in animal feed production, ANN model

Dragojlović, Danka; Pezo, Lato; Čolović, Dušica; Vidosavljević, Strahinja; Pezo, Milada L.; Čolović, Radmilo; Kokić, Bojana; Đuragić, Olivera

(2019)

TY  - JOUR
AU  - Dragojlović, Danka
AU  - Pezo, Lato
AU  - Čolović, Dušica
AU  - Vidosavljević, Strahinja
AU  - Pezo, Milada L.
AU  - Čolović, Radmilo
AU  - Kokić, Bojana
AU  - Đuragić, Olivera
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8821
AB  - In the past few decades the diet preparation in feed production has evolved towards more complicated technological operations, which include different liquid addition. A wide scale of different liquids is used in contemporary animal feed production, from oils and glycerol to more expensive products in a liquid form, such as enzymes, flavourings, amino acids, vitamins and others. In the presented study the liquid addition in feed production was observed, with a specific goal to investigate the spraying systems in order to better understand the effects of fluids, such as soybean oil and glycerol, on feed production. The dispersion angles of spraying nozzle for glycerol and soybean oil were determined as an indicator of the uniform application of liquids during feed production. Dispersion of the material was accomplished using the two-fluid nozzle. The performance of Artificial Neural Network (ANN) was compared with experimental data in order to develop rapid and accurate method for prediction of dispersion angle. The ANN model showed high prediction accuracy (r2 = 0.945).
T2  - Acta Periodica Technologica
T1  - Application of soybean oil and glycerol in animal feed production, ANN model
IS  - 50
SP  - 51
EP  - 58
DO  - 10.2298/APT1950051D
ER  - 
@article{
author = "Dragojlović, Danka and Pezo, Lato and Čolović, Dušica and Vidosavljević, Strahinja and Pezo, Milada L. and Čolović, Radmilo and Kokić, Bojana and Đuragić, Olivera",
year = "2019",
abstract = "In the past few decades the diet preparation in feed production has evolved towards more complicated technological operations, which include different liquid addition. A wide scale of different liquids is used in contemporary animal feed production, from oils and glycerol to more expensive products in a liquid form, such as enzymes, flavourings, amino acids, vitamins and others. In the presented study the liquid addition in feed production was observed, with a specific goal to investigate the spraying systems in order to better understand the effects of fluids, such as soybean oil and glycerol, on feed production. The dispersion angles of spraying nozzle for glycerol and soybean oil were determined as an indicator of the uniform application of liquids during feed production. Dispersion of the material was accomplished using the two-fluid nozzle. The performance of Artificial Neural Network (ANN) was compared with experimental data in order to develop rapid and accurate method for prediction of dispersion angle. The ANN model showed high prediction accuracy (r2 = 0.945).",
journal = "Acta Periodica Technologica",
title = "Application of soybean oil and glycerol in animal feed production, ANN model",
number = "50",
pages = "51-58",
doi = "10.2298/APT1950051D"
}
Dragojlović, D., Pezo, L., Čolović, D., Vidosavljević, S., Pezo, M. L., Čolović, R., Kokić, B.,& Đuragić, O.. (2019). Application of soybean oil and glycerol in animal feed production, ANN model. in Acta Periodica Technologica(50), 51-58.
https://doi.org/10.2298/APT1950051D
Dragojlović D, Pezo L, Čolović D, Vidosavljević S, Pezo ML, Čolović R, Kokić B, Đuragić O. Application of soybean oil and glycerol in animal feed production, ANN model. in Acta Periodica Technologica. 2019;(50):51-58.
doi:10.2298/APT1950051D .
Dragojlović, Danka, Pezo, Lato, Čolović, Dušica, Vidosavljević, Strahinja, Pezo, Milada L., Čolović, Radmilo, Kokić, Bojana, Đuragić, Olivera, "Application of soybean oil and glycerol in animal feed production, ANN model" in Acta Periodica Technologica, no. 50 (2019):51-58,
https://doi.org/10.2298/APT1950051D . .
3
3