Kirilkin, Nikita

Link to this page

Authority KeyName Variants
c98a0d1d-384a-4733-bd54-72c5f3007e53
  • Kirilkin, Nikita (4)
  • Kirilkin, Nikita S. (1)
Projects

Author's Bibliography

Utilization of swift heavy ions for modification of graphene oxide-based nanocomposites

Mravik, Željko; Pejčić, Milica; Bajuk-Bogdanović, Danica; Kirilkin, Nikita; Korneeva, Ekaterina; Skuratov, Vladimir; Jovanović, Zoran

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Mravik, Željko
AU  - Pejčić, Milica
AU  - Bajuk-Bogdanović, Danica
AU  - Kirilkin, Nikita
AU  - Korneeva, Ekaterina
AU  - Skuratov, Vladimir
AU  - Jovanović, Zoran
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13146
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Utilization of swift heavy ions for modification of graphene oxide-based nanocomposites
SP  - 42
EP  - 42
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13146
ER  - 
@conference{
author = "Mravik, Željko and Pejčić, Milica and Bajuk-Bogdanović, Danica and Kirilkin, Nikita and Korneeva, Ekaterina and Skuratov, Vladimir and Jovanović, Zoran",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Utilization of swift heavy ions for modification of graphene oxide-based nanocomposites",
pages = "42-42",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13146"
}
Mravik, Ž., Pejčić, M., Bajuk-Bogdanović, D., Kirilkin, N., Korneeva, E., Skuratov, V.,& Jovanović, Z.. (2024). Utilization of swift heavy ions for modification of graphene oxide-based nanocomposites. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 42-42.
https://hdl.handle.net/21.15107/rcub_vinar_13146
Mravik Ž, Pejčić M, Bajuk-Bogdanović D, Kirilkin N, Korneeva E, Skuratov V, Jovanović Z. Utilization of swift heavy ions for modification of graphene oxide-based nanocomposites. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:42-42.
https://hdl.handle.net/21.15107/rcub_vinar_13146 .
Mravik, Željko, Pejčić, Milica, Bajuk-Bogdanović, Danica, Kirilkin, Nikita, Korneeva, Ekaterina, Skuratov, Vladimir, Jovanović, Zoran, "Utilization of swift heavy ions for modification of graphene oxide-based nanocomposites" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):42-42,
https://hdl.handle.net/21.15107/rcub_vinar_13146 .

Physicochemical properties of bismuth vanadate photoanode irradiated by swift heavy ions

Jelić, Marko; Korneeva, Ekaterina; Kirilkin, Nikita; Vershinina, Tatiana; Orelovich, Oleg; Skuratov, Vladimir; Jovanović, Zoran; Jovanović, Sonja

(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, 2024)

TY  - CONF
AU  - Jelić, Marko
AU  - Korneeva, Ekaterina
AU  - Kirilkin, Nikita
AU  - Vershinina, Tatiana
AU  - Orelovich, Oleg
AU  - Skuratov, Vladimir
AU  - Jovanović, Zoran
AU  - Jovanović, Sonja
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13145
PB  - Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade
PB  - Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)
C3  - IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
T1  - Physicochemical properties of bismuth vanadate photoanode irradiated by swift heavy ions
SP  - 41
EP  - 41
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13145
ER  - 
@conference{
author = "Jelić, Marko and Korneeva, Ekaterina and Kirilkin, Nikita and Vershinina, Tatiana and Orelovich, Oleg and Skuratov, Vladimir and Jovanović, Zoran and Jovanović, Sonja",
year = "2024",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME)",
journal = "IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts",
title = "Physicochemical properties of bismuth vanadate photoanode irradiated by swift heavy ions",
pages = "41-41",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13145"
}
Jelić, M., Korneeva, E., Kirilkin, N., Vershinina, T., Orelovich, O., Skuratov, V., Jovanović, Z.,& Jovanović, S.. (2024). Physicochemical properties of bismuth vanadate photoanode irradiated by swift heavy ions. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts
Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade., 41-41.
https://hdl.handle.net/21.15107/rcub_vinar_13145
Jelić M, Korneeva E, Kirilkin N, Vershinina T, Orelovich O, Skuratov V, Jovanović Z, Jovanović S. Physicochemical properties of bismuth vanadate photoanode irradiated by swift heavy ions. in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts. 2024;:41-41.
https://hdl.handle.net/21.15107/rcub_vinar_13145 .
Jelić, Marko, Korneeva, Ekaterina, Kirilkin, Nikita, Vershinina, Tatiana, Orelovich, Oleg, Skuratov, Vladimir, Jovanović, Zoran, Jovanović, Sonja, "Physicochemical properties of bismuth vanadate photoanode irradiated by swift heavy ions" in IMEC2024 - 2nd International Conference on Innovative Materials in Extreme Conditions : Book of abstracts (2024):41-41,
https://hdl.handle.net/21.15107/rcub_vinar_13145 .

Influence of N5+ ion irradiation on physicochemical properties of bismuth vanadate

Jelić, Marko; Korneeva, Ekaterina; Kirilkin, Nikita; Vershinina, Tatiana; Orelovich, Oleg; Skuratov, Vladimir; Jovanović, Zoran; Jovanović, Sonja

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Jelić, Marko
AU  - Korneeva, Ekaterina
AU  - Kirilkin, Nikita
AU  - Vershinina, Tatiana
AU  - Orelovich, Oleg
AU  - Skuratov, Vladimir
AU  - Jovanović, Zoran
AU  - Jovanović, Sonja
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11645
AB  - Photoelectrochemical (PEC) cells for solar-energy conversion have received huge interest as a promising technology for renewable energy production. For the efficient application of such cells, it is necessary to develop adequate photoelectrodes. Recently, bismuth vanadate (BiVO4) has emerged as a promising photoanode due to its visible light harvesting properties, band edge positions and low-cost of synthesis. In this study, the effects of N5+ ion irradiation (75keV, 2 × 1014 and 4 × 1014 ions/cm2 ) on physicochemical properties of hydrothermally synthesized BiVO4 thin films were examined. From X-ray diffraction (XRD) study can be concluded that initial monoclinic material didn’t sustain any phase transition after irradiation. Also, preferential orientation remained dominantly along [010] direction with a slightly increasing share of [121] oriented growth, especially after irradiation with 2 × 1014 ions/cm2 . XRD measurements showed shift towards the higher 2θ after irradiation which indicates that interplanar distances decreases. The highest level of crystallinity was observed for the sample irradiated with fluence of 4 × 1014 ions/cm2 . Scanning electron microscopy (SEM) revealed prismatic morphology of all samples with an average grain size of 600 nm without visible traces of irradiation.Raman spectroscopy confirmed presence of bands that correspond to the monoclinic scheelite phase. X-ray photoelectron spectroscopy (XPS) analysis of V 2p confirmed presence of V5+ and V4+ while analysis of O 1s confirmed presence of oxygen in the form of lattice oxygen and in the form of hydroxide. UV-Vis Diffuse Reflectance spectroscopy revealed that calculated band gap decreases with the increase of fluence.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade
T1  - Influence of N5+ ion irradiation on physicochemical properties of bismuth vanadate
SP  - 67
EP  - 68
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11645
ER  - 
@conference{
author = "Jelić, Marko and Korneeva, Ekaterina and Kirilkin, Nikita and Vershinina, Tatiana and Orelovich, Oleg and Skuratov, Vladimir and Jovanović, Zoran and Jovanović, Sonja",
year = "2023",
abstract = "Photoelectrochemical (PEC) cells for solar-energy conversion have received huge interest as a promising technology for renewable energy production. For the efficient application of such cells, it is necessary to develop adequate photoelectrodes. Recently, bismuth vanadate (BiVO4) has emerged as a promising photoanode due to its visible light harvesting properties, band edge positions and low-cost of synthesis. In this study, the effects of N5+ ion irradiation (75keV, 2 × 1014 and 4 × 1014 ions/cm2 ) on physicochemical properties of hydrothermally synthesized BiVO4 thin films were examined. From X-ray diffraction (XRD) study can be concluded that initial monoclinic material didn’t sustain any phase transition after irradiation. Also, preferential orientation remained dominantly along [010] direction with a slightly increasing share of [121] oriented growth, especially after irradiation with 2 × 1014 ions/cm2 . XRD measurements showed shift towards the higher 2θ after irradiation which indicates that interplanar distances decreases. The highest level of crystallinity was observed for the sample irradiated with fluence of 4 × 1014 ions/cm2 . Scanning electron microscopy (SEM) revealed prismatic morphology of all samples with an average grain size of 600 nm without visible traces of irradiation.Raman spectroscopy confirmed presence of bands that correspond to the monoclinic scheelite phase. X-ray photoelectron spectroscopy (XPS) analysis of V 2p confirmed presence of V5+ and V4+ while analysis of O 1s confirmed presence of oxygen in the form of lattice oxygen and in the form of hydroxide. UV-Vis Diffuse Reflectance spectroscopy revealed that calculated band gap decreases with the increase of fluence.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade",
title = "Influence of N5+ ion irradiation on physicochemical properties of bismuth vanadate",
pages = "67-68",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11645"
}
Jelić, M., Korneeva, E., Kirilkin, N., Vershinina, T., Orelovich, O., Skuratov, V., Jovanović, Z.,& Jovanović, S.. (2023). Influence of N5+ ion irradiation on physicochemical properties of bismuth vanadate. in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade
Belgrade : Serbian Ceramic Society., 67-68.
https://hdl.handle.net/21.15107/rcub_vinar_11645
Jelić M, Korneeva E, Kirilkin N, Vershinina T, Orelovich O, Skuratov V, Jovanović Z, Jovanović S. Influence of N5+ ion irradiation on physicochemical properties of bismuth vanadate. in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade. 2023;:67-68.
https://hdl.handle.net/21.15107/rcub_vinar_11645 .
Jelić, Marko, Korneeva, Ekaterina, Kirilkin, Nikita, Vershinina, Tatiana, Orelovich, Oleg, Skuratov, Vladimir, Jovanović, Zoran, Jovanović, Sonja, "Influence of N5+ ion irradiation on physicochemical properties of bismuth vanadate" in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade (2023):67-68,
https://hdl.handle.net/21.15107/rcub_vinar_11645 .

The effect of swift heavy ion irradiation on physicochemical properties of monoclinic bismuth vanadate

Jelić, Marko; Korneeva, Ekaterina; Kirilkin, Nikita; Vershinina, Tatiana; Orelovich, Oleg; Skuratov, Vladimir; Jovanović, Zoran; Jovanović, Sonja

(Belgrade : Materials Research Society of Serbia, 2023)

TY  - CONF
AU  - Jelić, Marko
AU  - Korneeva, Ekaterina
AU  - Kirilkin, Nikita
AU  - Vershinina, Tatiana
AU  - Orelovich, Oleg
AU  - Skuratov, Vladimir
AU  - Jovanović, Zoran
AU  - Jovanović, Sonja
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11654
AB  - Monoclinic bismuth vanadate (BiVO4) is considered to be one of the most promising photoanode materials for photoelectrochemical (PEC) water splitting due to its suitable band gap and band structure, good stability and low-cost synthesis. However, BiVO4 has poor charge transfer properties due to the high rate of electron-hole recombination and understanding the effects contributing to it is important for further improvements. Herein, we report the effect of swift heavy ion irradiation (Xe, 150 MeV, 1010 – 5×1011 ions/cm2 ) on physicochemical properties of hydrothermally synthesized BiVO4 thin films. X-ray diffraction study (XRD) showed that irradiated material preserved initial monoclinic scheelite crystal phase and preferential growth along [010] direction. As the fluence increased, a shift of the diffraction maxima towards lower 2θ values was observed indicating increased interplanar distances. Also, for the 5×1011 ions/cm2 irradiated sample, high degree of amorphization was noticed. Scanning electron microscopy (SEM) of all samples showed prismatic grains with an average size of 600 nm. In irradiated samples formation of ion tracks, ~10 nm in diameter, was observed. X-ray photoelectron spectroscopy (XPS) analysis of Bi 4f, V 2p and O 1s states showed that, after irradiation, increased amounts of V4+ and oxygen in the form of hydroxide occurred, especially at higher fluences. By using UV-Vis Diffuse Reflectance spectroscopy we showed that band gap decreased with the increase of fluence. Photocurrent densities obtained from linear sweep voltammetry indicated that irradiation with fluences higher than 1010 ions/cm2 have a notable negative effect on PEC oxygen evolution reaction. However, 1-hour-long chronoamperometry measurements of 1010 ions/cm2 irradiated sample revealed an increase of photocurrent densities. In order to get a better insight into preceding phenomena, we performed XRD, SEM and XPS analysis after PEC process.
PB  - Belgrade : Materials Research Society of Serbia
C3  - YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro
T1  - The effect of swift heavy ion irradiation on physicochemical properties of monoclinic bismuth vanadate
SP  - 95
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11654
ER  - 
@conference{
author = "Jelić, Marko and Korneeva, Ekaterina and Kirilkin, Nikita and Vershinina, Tatiana and Orelovich, Oleg and Skuratov, Vladimir and Jovanović, Zoran and Jovanović, Sonja",
year = "2023",
abstract = "Monoclinic bismuth vanadate (BiVO4) is considered to be one of the most promising photoanode materials for photoelectrochemical (PEC) water splitting due to its suitable band gap and band structure, good stability and low-cost synthesis. However, BiVO4 has poor charge transfer properties due to the high rate of electron-hole recombination and understanding the effects contributing to it is important for further improvements. Herein, we report the effect of swift heavy ion irradiation (Xe, 150 MeV, 1010 – 5×1011 ions/cm2 ) on physicochemical properties of hydrothermally synthesized BiVO4 thin films. X-ray diffraction study (XRD) showed that irradiated material preserved initial monoclinic scheelite crystal phase and preferential growth along [010] direction. As the fluence increased, a shift of the diffraction maxima towards lower 2θ values was observed indicating increased interplanar distances. Also, for the 5×1011 ions/cm2 irradiated sample, high degree of amorphization was noticed. Scanning electron microscopy (SEM) of all samples showed prismatic grains with an average size of 600 nm. In irradiated samples formation of ion tracks, ~10 nm in diameter, was observed. X-ray photoelectron spectroscopy (XPS) analysis of Bi 4f, V 2p and O 1s states showed that, after irradiation, increased amounts of V4+ and oxygen in the form of hydroxide occurred, especially at higher fluences. By using UV-Vis Diffuse Reflectance spectroscopy we showed that band gap decreased with the increase of fluence. Photocurrent densities obtained from linear sweep voltammetry indicated that irradiation with fluences higher than 1010 ions/cm2 have a notable negative effect on PEC oxygen evolution reaction. However, 1-hour-long chronoamperometry measurements of 1010 ions/cm2 irradiated sample revealed an increase of photocurrent densities. In order to get a better insight into preceding phenomena, we performed XRD, SEM and XPS analysis after PEC process.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro",
title = "The effect of swift heavy ion irradiation on physicochemical properties of monoclinic bismuth vanadate",
pages = "95",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11654"
}
Jelić, M., Korneeva, E., Kirilkin, N., Vershinina, T., Orelovich, O., Skuratov, V., Jovanović, Z.,& Jovanović, S.. (2023). The effect of swift heavy ion irradiation on physicochemical properties of monoclinic bismuth vanadate. in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro
Belgrade : Materials Research Society of Serbia., 95.
https://hdl.handle.net/21.15107/rcub_vinar_11654
Jelić M, Korneeva E, Kirilkin N, Vershinina T, Orelovich O, Skuratov V, Jovanović Z, Jovanović S. The effect of swift heavy ion irradiation on physicochemical properties of monoclinic bismuth vanadate. in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro. 2023;:95.
https://hdl.handle.net/21.15107/rcub_vinar_11654 .
Jelić, Marko, Korneeva, Ekaterina, Kirilkin, Nikita, Vershinina, Tatiana, Orelovich, Oleg, Skuratov, Vladimir, Jovanović, Zoran, Jovanović, Sonja, "The effect of swift heavy ion irradiation on physicochemical properties of monoclinic bismuth vanadate" in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro (2023):95,
https://hdl.handle.net/21.15107/rcub_vinar_11654 .

Ion channeling implantation induced MgF2 crystal damage through the “eye” of photoluminescence spectroscopy

Gloginjić, Marko; Erich, Marko; Skuratov, Vladimir A.; Kirilkin, Nikita S.; Kokkoris, Mike; Fazinić, Stjepko; Karlušić, Marko; Petrović, Srđan M.

(2023)

TY  - CONF
AU  - Gloginjić, Marko
AU  - Erich, Marko
AU  - Skuratov, Vladimir A.
AU  - Kirilkin, Nikita S.
AU  - Kokkoris, Mike
AU  - Fazinić, Stjepko
AU  - Karlušić, Marko
AU  - Petrović, Srđan M.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11071
AB  - Magnesium fluoride (MgF2) single crystal has been widely used as a material for application in optics due to its excellent properties like birefringence, wide range of transparency and low refractive index. As such, MgF2 has been proposed for planar waveguide structures. Ion implantation method was frequently used for planar waveguide production due to its ability to modulate optical properties by introduction of impurities and defects in crystal lattice. In all optics fabrication processes, there are demands for a precise control of optical characteristics modulation and hence the need for precise distribution of implanted impurities and induced damage. In this study, 4 MeV C3+ ions with the fluence of 5×1015 ions/cm2 were implanted in (001) axial direction of MgF2 single crystal. In order to determine the damage depth distribution in the crystal sample, photoluminescence (PL) spectroscopy was proposed as a method of evaluation. PL spectroscopy was used as a convenient method for damage investigation of transparent and semi-transparent samples. The cross-section of the implanted zone was mapped with the step of 0.34 µm and the variations in the spectra were investigated. It was shown that intensity evolution of two prominent wide bands with the intensity maximums at about 590 nm and 733 nm can be used for damage depth distribution estimation. Comparing the relative changes of derivatives of the band’s intensities, data related to the damage depth distribution were obtained. Obtained distribution was compared with the SRIM calculation of displacement damage. Considering the difference in implantation direction, good agreement with SRIM results was obtained. As a consequence of ion channeling, it was shown that damage distribution is extended deeper (for about 20%).
C3  - 27th International Conference on Applied Physics of Condensed Matter : APCOM 2022 : the book of abstracts; June 22 - 24; Strbske Pleso, Slovak Republic
T1  - Ion channeling implantation induced MgF2 crystal damage through the “eye” of photoluminescence spectroscopy
VL  - 2778
IS  - 1
SP  - 040007
DO  - 10.1063/5.0135868
ER  - 
@conference{
author = "Gloginjić, Marko and Erich, Marko and Skuratov, Vladimir A. and Kirilkin, Nikita S. and Kokkoris, Mike and Fazinić, Stjepko and Karlušić, Marko and Petrović, Srđan M.",
year = "2023",
abstract = "Magnesium fluoride (MgF2) single crystal has been widely used as a material for application in optics due to its excellent properties like birefringence, wide range of transparency and low refractive index. As such, MgF2 has been proposed for planar waveguide structures. Ion implantation method was frequently used for planar waveguide production due to its ability to modulate optical properties by introduction of impurities and defects in crystal lattice. In all optics fabrication processes, there are demands for a precise control of optical characteristics modulation and hence the need for precise distribution of implanted impurities and induced damage. In this study, 4 MeV C3+ ions with the fluence of 5×1015 ions/cm2 were implanted in (001) axial direction of MgF2 single crystal. In order to determine the damage depth distribution in the crystal sample, photoluminescence (PL) spectroscopy was proposed as a method of evaluation. PL spectroscopy was used as a convenient method for damage investigation of transparent and semi-transparent samples. The cross-section of the implanted zone was mapped with the step of 0.34 µm and the variations in the spectra were investigated. It was shown that intensity evolution of two prominent wide bands with the intensity maximums at about 590 nm and 733 nm can be used for damage depth distribution estimation. Comparing the relative changes of derivatives of the band’s intensities, data related to the damage depth distribution were obtained. Obtained distribution was compared with the SRIM calculation of displacement damage. Considering the difference in implantation direction, good agreement with SRIM results was obtained. As a consequence of ion channeling, it was shown that damage distribution is extended deeper (for about 20%).",
journal = "27th International Conference on Applied Physics of Condensed Matter : APCOM 2022 : the book of abstracts; June 22 - 24; Strbske Pleso, Slovak Republic",
title = "Ion channeling implantation induced MgF2 crystal damage through the “eye” of photoluminescence spectroscopy",
volume = "2778",
number = "1",
pages = "040007",
doi = "10.1063/5.0135868"
}
Gloginjić, M., Erich, M., Skuratov, V. A., Kirilkin, N. S., Kokkoris, M., Fazinić, S., Karlušić, M.,& Petrović, S. M.. (2023). Ion channeling implantation induced MgF2 crystal damage through the “eye” of photoluminescence spectroscopy. in 27th International Conference on Applied Physics of Condensed Matter : APCOM 2022 : the book of abstracts; June 22 - 24; Strbske Pleso, Slovak Republic, 2778(1), 040007.
https://doi.org/10.1063/5.0135868
Gloginjić M, Erich M, Skuratov VA, Kirilkin NS, Kokkoris M, Fazinić S, Karlušić M, Petrović SM. Ion channeling implantation induced MgF2 crystal damage through the “eye” of photoluminescence spectroscopy. in 27th International Conference on Applied Physics of Condensed Matter : APCOM 2022 : the book of abstracts; June 22 - 24; Strbske Pleso, Slovak Republic. 2023;2778(1):040007.
doi:10.1063/5.0135868 .
Gloginjić, Marko, Erich, Marko, Skuratov, Vladimir A., Kirilkin, Nikita S., Kokkoris, Mike, Fazinić, Stjepko, Karlušić, Marko, Petrović, Srđan M., "Ion channeling implantation induced MgF2 crystal damage through the “eye” of photoluminescence spectroscopy" in 27th International Conference on Applied Physics of Condensed Matter : APCOM 2022 : the book of abstracts; June 22 - 24; Strbske Pleso, Slovak Republic, 2778, no. 1 (2023):040007,
https://doi.org/10.1063/5.0135868 . .